Task Decomposition Using Pattern Distributor

Sheng-Uei Guan*, TseNgee Neo and Chunyu Bao

Department of Electrical and Computer Engineering
National University of Singapore
10 Kent Ridge Crescent, Singapore 119260
*sg_1 1@yahoo.coleleguans@nus.edu.sg

Abstract O In this paper, we propose a new task decompasitiethod for multilayered

feedforward neural networks, namélgisk Decomposition with Pattern Distributor in order

to shorten the training time and improve the gdigation accuracy of a network under
training. This new method uses the combination oflates (small-size feedforward network)
in parallel and series, to produce the overall tsemlufor a complex problem. Based on a
“divide-and-conquer” technique, the original prahlds decomposed into several simpler
sub-problems by gattern distributor module in the network, where each sub-problem is
composed of the whole input vector and a fractiborthe output vector of the original
problem. These sub-problems are then solved bgdhresponding groups of modules, where
each group of modules is connected in series wighpattern distributor module and the
modules in each group are connected in paralled. désign details and implementation of
this new method are introduced in this paper. S\m¥nchmark classification problems are
used to test this new method. The analysis andriexeetal results show that this new

method could reduce training time and improve galigation accuracy.

Keywords [0 Task decomposition, multilayered feedforward nkumatwork, pattern

distributor

1. Introduction

Multilayered feedforward neural networks have beesed extensively in solving
classification problems. However, the concomitaistadvantages of building multilayered
feedforward networks are the long training time amdatisfactory generalization accuracy.
One of the main reasons that cause these disadesnis because large networks tend to
introduce high internal interference due to thersr coupling among their hidden-layer
weights (acobs et al., 1991During the weight-updating (training) processe thfluences
(desired outputs) from two or more output unitsldocause the hidden-layer weights to
compromise to non-optimal values due to the interfee in their weight-updating direction.
In order to overcome this drawback, various tastodgosition methods based on “divide-
and-conquer” have been proposed. Instead of usisggle, large feedforward network
(classic non-modular network), these task decontipasmethods use a modular network,
which is formed by integrating several modules feawdule is a small size feedforward
network) to solve the given problem. In the follogisection, several task decomposition

methods are discussed.

2. Task decomposition methods

The method proposed irEfficient classification for multiclass problemsing modular neural
networks” presented byinand, etc. in 199%livides aK -class original problem int& two-
class sub-problems and each sub-problem is solyed &ingle-output module (small size
feedforward network) respectively. Therefore, eaaddule is used to discriminate one class
of patterns from patterns belonging to the remainafasses. The collection of all the
modules produces the overall solution for the aagiproblem. Another method proposed in

“Task decomposition and module combination basedlass relations: A modular neural network for

. . (K
pattern classification’splits theK -class original problem mt%zj two-class sub-problems.

Each sub-problem is learned independently by a meodghile training patterns belonging to
the otherK -2 classes is ignored (Lu and Ito, 1999). The finadrall solution is obtained
by integrating all of the trained modules into anfmax modular network. The output
parallelism method decomposes the original compleblem into a set of simpler sub-
problems without any prior knowledge concerning deeomposition of the problem (Guan
and Li, 2000 and Guan and Li 2002). Each sub-prohke composed of the whole input
problem space and a fraction of the output proldpate as illustrated in figure 1:

“Figure 1 near here”
“Figure 2 near here”

Each sub-problem is then solved by building andimg a module. A collection of
these modules (in parallel) is the overall solutibthe original problem. The overview of the
final network architecture is illustrated in figu2e

Instead of decomposing the problem with high dinmre output space into several
sub-problems with low dimensional output space, fethod proposed inA‘ multisieving
neural-network architecture that decomposes legriéisks automatically” by Lu et al. in 1994
decomposes the size (number of patterns) of thblgmo into several smaller size sub-
problems. Patterns are classified by a rough smedule (non-modular network) at the
beginning and those patterns that are not cladssiiecessfully will be presented to another
sieve module. This process continues until allghterns are classified correctly. The sieve
modules are added into the network adaptively pitigress of training.

The training time of these methods is shorter &edgeneralization accuracy is better
as compared to the classic nhon-modular network. évew these methods still have some
drawbacks. Firstly, for the methods proposedibgnd et al. in 1998nd Guan and Li in 2002,

although the dimension (number of output classpath sub-problem is smaller than the

original problem, the size of each sub-problem&ning pattern set is still as large as the
original problem. Therefore, each module will hawenecessarily long training time and
ineffective learning especially when the originalolem is very large. Secondly, the
methods proposed Mnand et al. in 199%nd Lu and Ito in 1999 usually split the problem
into a set of two-class sub-problems. When theimaid<-class problem is very compleK (

is very large), a very large number of modules tllneeded to learn the sub-problems and
thus resulting in excessive computational costrdifi the methods proposed Byiand et al.

in 1995,Lu and Ito in 1999 and Guan and Li in 2002 intégyi@l the modules together at the
final stage in order to produce the overall solutior the original problem. This allows error
from any of the modules affecting the performaraeracy) of the other modules and thus
causing interferences among the modules. Duringclhssification process for each input
pattern, all the modules have to classify that frgattern correctly. Any module classifies the
input pattern wrongly may cause the overall cléssiion process to be incorrect. Lastly, the
method proposed by Lu et al. in 1994 only redudes dize of the problem but not the
dimension of the problem. The internal interferenfthat exists within each module due to
the coupling of output units) are not reduced.

In this paper, we propose a new task decompositiogthod called Task
Decomposition with Pattern Distributor to overcome the drawbacks as mentioned above. In
section 3, the design details and overview of ttopased modular network architecture will
be introduced. In section 4, a simple model isomticed to analysis the PD network. In
section 5, modular PD is introduced to improvegkdormance of PD network. In section 6,
the experimental results are shown and analyzedcudsion and conclusion will be

presented in section 7.

3. Design details for the pattern distributor netwak

In order to reduce effectively the size of therag pattern set presented to each module
(small-size feedforward network) in the modular wark, an additional module is
incorporated into the network and it acts as agpadttlistributor. This pattern distributor has a
higher position (level) as compared to the othedutes in the network. The overview of the
new network architecture is shown in figure 3(aevdas the specific training algorithm for
the pattern distributor module is illustrated iguiie 3(b) and the following section.

“Figure 3 near here”

3.1 Training of the pattern distributor network

To implement the new modular network, the firstpsts to decompose a complex
classification problem with a large number of outplasses into a set of sub-problems, each
with a small number of output classes. To trainghttern distributor (modul@ as shown in
figure 3(a) & (b)) that has output units, first, instead of having &lloutput classes of the
original training patterns presented to this mogdtrigining patterns (fronlN output classes)
are first grouped together and classified intoclasses (wher@, < N), namely Class,
patterns (patterns belonging to the original “slado classN/r” are grouped and classified
into this class), Class;, patterns (patterns belonging to the original “sld&+1 to 2N/r” are
grouped and classified into this class), ..., tos€la patterns(patterns belonging to the
original “class (-1)N/r+1 to classN” are grouped and classified into this class). Has of
“manually modified training patterns” (with a snallnumber of output classes) is then
presented to the pattern distributor to train aglg fit learn.

It should be mentioned that the “equally” groupifgthe output class as illustrated
earlier or as shown in figure 3(a) is just to semgea clearer example. In fact, the grouping

process is flexible (based on the user’s decisbifferent grouping of the output classes will

cause the new modular network to have differerihitig time and generalization accuracy.
The remaining modules (moduleto moduler as indicated in figure 3(a)) in the network are
trained by using the corresponding training patteomly (for example, training patterns
belonging to “clas4 to clasdN/r” are used to train modull. This process continues until all
the modules are well trained. Therefore, the sfzeaining patterns presented to each module
is reduced significantly as compared to the tastod®wosition methods mentioned in section
2.

It should be mentioned that these modules can hkeeiudecomposed (based on
output parallelism) into smaller sub-modules. Theagh module can be viewed as a group of
sub-modules that are connected in parallel. Theifieddversion of figure 3(a) is shown in
figure 4.

“Figure 4 near here”

3.2 Operation of the pattern distributor network

After the training process is completed, when a ,nemseen input pattern (for example
pattern that belongs to “clagdo classN/r”) is presented to the modular network, the pattern
distributor will first accept this pattern, clasgsif correctly and the corresponding output unit
in the pattern distributor (for this example, outpmit 1) will have the largest value among
all the other output units. Thus only the corregtiog module (for this example, module

will be activated and used. After that, the inpattern is presented to this module (modile
only and then this module will complete the cldsaiion process. Only two instead of all

modules are used in each classification processistlikely to reduce errors.

Constructive Backpropagation (CBP) algorithm wasedi to train the network in the

experiments ehtokangas 1999). CBP is briefly introduced iyppendix |. CBP can reduce

the excessive computational cost significantly aldo it does not requir@any prior

knowledge concerning decomposition.

In this paper, RPROP is used with the followinggmaetersn® = 1.2,n" =0.5,A¢ = 0.1,Anax
= 50, Amin = 1.0e-6, with initial weights selecting from —B8.2 0.25 randomlyRiedmiller and

Braun, 1993)

In order to avoid large computational cost and fittielg, a method calleckarly stopping
using validation set is used as the stopping caitdthe details and various definitions of the
stopping criteria are presentedAppendix 1.

The set of available patterns is divided into thsees: araining set is used to train
the network, avalidation set is used to evaluate the quality of the networkrdutraining and
to measure overfitting, andtest set is used at the end of training to evaluate theltast
network. The size of the training, validation, amdt set is 50%, 25% and 25% of the

problem’s total available patterns.

4. Analysis of the pattern distributor network

The performance of PD module greatly affects theopmance of the whole network. When
this pattern distributor classifies a pattern wilgnthe remaining classification process will
also be wrong. In our design, we hope PD netwodtddchave little or no error compared
with ordinary TD networks. So the error of PD magabuld not be very large. We present a
simple model to discuss what condition a PD netwariuld satisfy for it to outperform an

ordinary TD network.

“Figure 5 near here”
Referring to figure 5, assume the PD module hasdutputs, and the number of the output
classes iK. Both Module 1 and Module 2 haw2 output classes (assume K is a even
number here). The network has been further dividemsome sub-modules. The network is
divided into the same sub-modules using an ordif@ynetwork (here we have chosen an
output parallelism network (Guan and Li, 2000 ancasand Li 2002)) in order to compare
the results (figure 6).

“Figure 6 near here”

Consider the course of testing. In the following assume that each corresponding module
in these two network models has the same probabilierror as they are implemented in the
same way. Then the error incurred from the PD netwaodel will be the error from the
pattern distributor module plus the error from thedule involved, while the error from the
TD network model will be the sum of errors from @il modules that respond with some

incorrect results.

Assume the probability of error in the above TDwwaek ispe.. And for each test example, the
probability of error in either Module 1 or Modulei2ps/2. To those examples which could
enter Module 1 of the PD network, the probabilityecror in Module 1 is equal to that in Part
1 of the TD network. In other words, probability efror in Module 1 ig¢/2. Also, the

probability of error in Module 2 ipJ/2. Assume the probability of error in the PD modue i

PerD-

Assume the number of the test exampledlisand the number of examples belonging to

Module 1 of the PD network IN/2.

The number of examples classified or recognizechaigoby the TD network is:
N =N b, (1)
The number of examples dispatched wrongly by then@fork is:

s =NEbepD+2%E¢N—thepD)B%:NEpepD+NE%—NEpepDE% @

If the PD network has better result than the TDvoek, thenN,, < N;, must be satisfied.

Notice in Equation (2), the last term is much sarathan the other two.

Npp = N [peep + E%_NEpePDB%<NEpePD+NB%<NEpe=NTD 3)
So

1
pePD<E|:pe (4)

If the above relationship could be satisfied, thereof the PD network will be smaller than

that of the TD network.

Discussions:

In the above analysi¥ is considered as an even number. Here we dishassituation that

K is odd. Assume that PD has two outputs, and eatgubaoorresponds to a module. Module
1 has(K+1)/2 output classes and Module 2 hi#s1)/2 output classes. Still, assume the
probability of error in the corresponding TD netWas p.. And for each test example, the
probability of error in either Module 1 or Moduld<p/2.

Assume the number of the test exampldsd,iand the number of examples belonging to each
output clas$\/K. The number of examples dispatched wrongly by hen@®work is:

1 K+1 1K-1
Nep = N D+ N = N D) B2 2 =N = N [y) B2
(5)

=NEpePD+(N—NEpePD)EF

Under this assumption, if the relationship in E4).i§ satisfied, the PD network still could get

better results.

This simple model shows if the error of PD moduesinall enough, the PD network could
have better results than the ordinary TD netwohe $ame analysis can be easily extened to

the case when the number of modules consideredris than two.

5. Improvement on the pattern distributor network— modular

pattern distributor

Results in Parallel growing and training of neural networkingsoutput parallelism’showed that
the training time and generalization accuracy ofdolar networks based on output
parallelism are better than classic non-modulawoits (Guan and Li, 2002). Thus, instead
of using a non-modular pattern distributor modualg ihdicated in figure 3(a)) in the network,
the performance can be further improved by usingodular pattern distributor module. The
output parallelism method is applied to the non-olad pattern distributor module by
decomposing it into several sub-modules. An overvi# the modular pattern distributor
architecture is shown in figure 7:

“Figure 7 near here”
In figure 7, the pattern distributor is decomposed 2 modules only (to simplify the figure).
In fact, the number of modules is determined byuker. The performance of the modular

network is expected to be better if the number oflntes used is larger.

10

6. Experimental results and analysis

6.1 Experiment scheme

Four benchmark classification problems, nameébwel, Glass, Segmentation, and Letter
Recognition were used to evaluate the performance of the nedutar network —Task
Decomposition with Pattern Distributor. These classification problems were taken from the
PROBEN1 benchmark collectioPrechelt, 1994and University of California at Irvine (UCI)
repository of machine learning database. In theokekperiments undertaken, the first three
classification problems were conducted 10 triald #me Letter Recognition problem was
conducted 5 trials (due to the long training timAd) the hidden units and output units use the
sigmoid activation function andgHs set to 0.1. When a hidden unit needs to bedidgle
candidates are trained and the best one is seleiliethe experiments were simulated on a
Pentium 1l — 2.4GHZ PC. The sub-problems werevadl sequentially and the CPU time

expended was recorded respectively.

6.2 Experimental results and analysis

Three important metrics, namely, training time, gmafization accuracy, and network
complexity will be used as the criteria to judge performance of the new modular network.
Guan and Li's (2002) results showed that the perémrce (in terms of the three important
issues as mentioned earlier) of output parallelisnibetter than the classic non-modular
neural network. In this paper, the performance ofpot parallelism will be used as a
yardstick and the performance of the new modulawvoek will be compared to it.
For training time, the CPU time spent to train tiedules will be compared. It should

be noted that the number of training patterns pitesketo each module is different. Therefore,
the computational cost of one training epoch céferdsignificantly. Comparing the number

of epochs solely will lead to unfair comparison amds training epoch will not be used as the

11

judging criteria. For generalization accuracy, sification error instead of test error will be
compared as all the problems used are classificgioblems. For network complexity, the
number of hidden units and independent parametesiimber of weights and biases) in the

network will be compared.

A. Glass
This data set is used to classify glass types. rEsalts of a chemical analysis of glass
splinters (percentage of 8 different constitueetrednts) plus the refractive index are used to
classify a sample to be either float processed ar-float processed building windows,
vehicle windows, containers, tableware, or heacdpkanThis data set consists of 9 inputs, 6
outputs, and 643 patterns (they are divided intb tB&ining patterns, 161 validation patterns,
and 161 test patterns). The patterns were norntbéinel scaled so that each component lies
within [0, 1]. This problem was divided into twotputs by PD module. Each output of the
PD module consisted of 3 outputs. Then this probleas divided into 6 sub-modules and
each module has one output unit.

“Table 1 near here”
From Table 1, it is observed that the classificatégsror using ordinary TD network (here
output parallelism) was 14.2236%, and that usingmmodular PD network was 7.82609%.
The classification error of a non-modular PD modwas 2.422358%. According to our
analysis, if Equation (4) could be satisfied, ihestwords, if the error of PD module was
smaller than half of the error of TD network, th® Retwork will have better results.
Equation (4) was apparently satisfied, and usirgRBD network had smaller classification
error. It matched with our analysis. It could becafound that the classification error was
further reduced when using a modular PD networkpamed with a non-modular network.

The modular PD module’s classification error wad6226% which was small than the non-

12

modular PD module. Our analysis suggests that ¢tiebperformance of PD module could
get better performance of the whole PD network. dberall classification error is reduced to
7.63975% when using the modular PD network.

From Table 1, it is also seen that the trainingetinsing ordinary TD network is 63.7 s in

parallel and 197.7 s in series, and that usingmodular PD network is 82.9 s in parallel and

194.3 s in series. It is not have much differeddee number of hidden units and the number

of independent parameters using ordinary TD netwierR53.5 and 2848.5 respectively,

while those using non-modular PD network is 391 &413.8 respectively. The PD

network has more hidden units and independent pammthan ordinary TD network. If

modular PD network is used, there are more theemdshits and independent parameters

compared with non-modular PD network, but the frajriime in parallel is reduced.

B. Vowel

The input patterns of this data set are 10 elemesit vectors representing vowel sounds
which belong to one of 11 classes. It has 990 patten total (they are divided into 495
training patterns, 248 validation patterns, and 243t patterns). The patterns were
normalized and scaled so that each component lidnwWO, 1]. This problem was divided
into three outputs by the PD module. The first autgf PD consisted of 3 outputs, the second
output of PD consisted of 4 outputs, and the lagput of PD consisted of 4 outputs. Then
this problem was divided into 11 sub-modules ardhesaib-module has only one output unit.
Table 2 shows that the classification error usimgoadinary TD network (here output
parallelism) is 25.54955%, and that using a nonutedPD network is 18.70445%. The
classification error of the non-modular PD modute 6.680157%. Compared to the
classification error of TD network, the PD modulelassification error is very small. So the

PD network produced better results. It can alstobad that the classification error could be

13

further reduced when using a modular PD networkpamed with a non-modular network.
The overall classification error is reduced to ¥8 @hen using the modular PD network.
“Table 2 near here”

From Table 2, it is also seen that the trainincetumsing ordinary TD network is 58.7 s in

parallel and 418.9 s in series, and that usingmodular PD network is 117 s in parallel and

245.6 s in series. Though the training time in elrancreases using PD network compared

with ordinary TD network, the training time in sssigreatly decreases. The number of

hidden units and the number of independent paramasing ordinary TD network is 184.4

and 2333.5 respectively, while those using non-rnayd®D network is 229.4 and 2955.8

respectively. The PD network has more hidden wmitsindependent parameters than

ordinary TD network. If modular PD network is usétkre are more the hidden units and

independent parameters compared with non-moduland®®ork, but the training time in

parallel is reduced.

C. Segmentation
This data set consists of 18 inputs, 7 outputs, andtal of 2310 patterns (1155 training
patterns, 578 validation patterns, and 577 tetepe). The patterns were normalized and
scaled so that each component lies within [0, h]s Begmentation problem was divided into
two outputs by PD module. One of the PD’s outputssested of 3 outputs while the other
consists of 4 outputs. And the problem was diviokd 7 sub-modules.

“Table 3 near here”
Table 3 shows that the classification error usimgaadinary TD network (here output
parallelism) is 5.181979%, and that using a nonutadPD network is 4.61005%. The
classification error of the non-modular PD modsld.i03986%. According to our analysis, if

Equation (4) could be satisfied, in other wordghi error of PD module was smaller than

14

half of the error of TD network, the PD network Milave better results. Equation (4) was
apparently satisfied, and using the PD network &adhaller classification error. It matched
with our analysis. Compared to the classificatiororeof TD network, the PD module’s
classification error is very small. So the PD netwproduced better results. It can also be
found that the classification error could be furtteduced when using a modular PD network
compared with a non-modular network. The overalissification error is reduced to
4.57539% when using the modular PD network.

From Table 3, it is seen that the training timengrdinary TD network is 610.2 s in parallel

and 1719.6 s in series, and that using non-modRDanetwork is 213.4 s in parallel and

706.9 s in series. Both the training time in patadihd in series greatly decreases using PD

network compared with ordinary TD network. The nembf hidden units and the number of

independent parameters using ordinary TD netwoitlbis1 and 3175 respectively, while

those using non-modular PD network is 128.9 an® &/ fespectively. The PD network has

less hidden units and independent parameters tidiamaoy TD network. If modular PD

network is used, there are more the hidden undsradependent parameters compared with

_ - Deleted: 1
T

non-modular PD network, but the training time imadkel is reduced.

D. Letter recognition

The goal of this data is to recognize digitizedtgrais. Each element of the input vector is a
numerical attribute computed from a pixel arraytearing the letters. This data set consists
of 16 inputs, 26 outputs, and total of 20000 paggi 0000 training patterns, 5000 validation
patterns, and 5000 test patterns). All the patterese normalized and scaled so that each
component lies within [0, 1]. The problem was deddinto 14 sub-modules. 12 of them are
solved by sub-modules with 2 output units while temaining is solved by modules with 1
output unit. The PD module has 4 outputs. The fitgput of PD module has 4 sub-modules

(7 original output classes), the second output DfrRodule has 4 sub-modules (7 original

15

output classes), the third output of PD module hasib-modules (6 original output classes)
and the last output of PD module has 3 sub-mod@lesiginal output classes).
“Table 4 near here”

Table 4 shows that the classification error usimgaadinary TD network (here output

parallelism) is 15.784%, and that using a non-maxd®D network is 19.369%. Such a PD
network did not produce better results. Accordimgtir former analysis, the network could
not have better performance if the classificatiomreof PD module is too large. Here the
classification error of the non-modular PD moddelv.872%, and this value is very large
compared to the classification error of TD netwdtlcould explain why the non-modular PD

network did not get better performance. We alsdcaothat when using the modular PD
network, the PD network produced lower classifmaterror which is 15.444%. The possible

reason may be that the PD module’s performanaepsdved when using the modular PD.

7. Discussions and conclusions

7.1 Discussions

From the earlier section, it is shown that if thessification error of PD module is not
very large, the performance dask Decomposition Pattern Distributor method is better than
the output parallelism method, which on the otremchhas been shown to be better than the
classic non-modular network method (that uses glesitarge network to solve the problem)
(Guan and Li, 2002). Therefore, the performanca ofodular pattern distributor network is
generally better than that of a classic non-modoé&work. However, the question is: How
much is the improvement over a non-modular netwdrk@ performance comparison for
these two networks is presented here. Vowel andLetter recognition data sets were used
in the experiments. Table 5 shows the experimemsllts for the three methodsof-

modular network, output parallelism andModular Pattern Distributor method) by using the

16

Vowel data setFrom Table 5, it is observed that the classificagoror reduction by th€ask
Decomposition with Modular Pattern Distributor (18.3) vs.Classic Non-modular Network
(34.737) is 47.32%. The percentage of training treduction by thelask Decomposition
with Modular Pattern Distributor (51.8) vs.Classic Non-modular Network (197.93) is
73.83%.
“Table 5 near here”
Table 6 shows the experimental results by usind ¢ter recognition data set
“Table 6 near here”

From Table 6, it is observed that the classificatgrror reduction by th&ask
Decomposition with Modular Pattern Distributor (15.444) vsClassic Non-modular Network
(21.672) is 28.74%. The percentage of training teduction by thelask Decomposition
with Modular Pattern Distributor (2293.6) vs.Classic Non-modular Network (20845.05) is
89.0%.

1. From Table 5 and 6, it is observed that the peréorre (in terms of training time and
classification error) of a modular pattern disttiirunetwork is much better than that
of a classic non-modular network. The reductiontrigining time is especially
significant (>73%).Lastly, all the experimental uks showed that the new modular
network inherits the advantages provided by theutuparallelisnmethod.

Besides these advantages, the new modular networkidpes more advantages (as
compared to the output parallelisnethod):

1. Training time is further reduced since each modulde network only need to solve
a smaller and simpler sub-problem. The reductiosigaificant when the size of the
original training pattern set is large.

2. Generalization accuracy is further improved sint¢ha modules in the new modular

network can solve the sub-problems better.

17

3. Although the total number of independent parameiterthe new modular network
exceeds that in the output parallelism methodnthe modular approach yields faster
convergence.

4. Various combinations of modules (in parallel andséries) allow more useful and
flexible problem solving as compared to the outpartallelism method, which only

uses parallel combination.

In order to further improve the PD method, we coaldo apply thePattern Distributor
method to the PD module. In other words, multi-leyattern distributors (performing task
decomposition by applying thgattern distributor method to the pattern distributor module)

could be considered.

7.2 Conclusions

This paper presented a better (as compared tauthetgarallelism approach or conventional
non-modular approach) task decomposition approamledc Task Decomposition with
Pattern Distributor to build a new modular network. This new approachonly inherits the
advantages provided by the output parallelism ntkbthd also provides more advantages. Its
performance can be improved further by incorporatidditional pattern distributor modules
into the network. Based on this method, a problem lee divided flexibly into several sub-
problems by the pattern distributor module, wheaehesub-problem is composed of the
whole input vector and a fraction of the outputteecThe combinations (in parallel and in
series) of modules in the new modular network wesed to solve each sub-problem
respectively. This new method could not only redtloe internal interferences that exist
inside the hidden structure of the large networklegoupling it into several modules but also

prevent the error from any of the modules affectimg performance (accuracy) of the other

18

modules by designing all the modules independenh fach other. Besides, this new method
also builds modules that can solve the sub-probleatier and faster since by incorporating
the pattern distributor module into the networle #ize (humber of patterns) and dimension
(number of output classes) of training pattern esented to each sub-module would be
reduced, thus, unnecessary long training time aeffective learning can be avoided

Our analysis and the experimental results showattttis new method has shorter
training time and better generalization accuracycaspared to the output parallelism
method. The results of this new method could béh&rrimproved by using more levels of

modules in the network.

References

Anand, R., Mehrotra, K., Mohan, C. K. and Ranka(1995) Efficient classification for multiclass
problems using modular neural networs-E Transactions on Neural Networks, 6(1), 117 — 124.
Baum, E. B. and Haussler, D. (1989) What size ngtsgvalid generalizatioMeural Computation,
1(1), 151-160.

Blum, A. and Rivest, R. L. (1992) Training a 3-nodaural network is NP-completseural

Networks, 5(1), 117-128.

Guan, S. U. and Li, S. C. (2000) An approach talprgrowing and training of neural networks,
Proceeding of 2000 |EEE International Symposium on Intelligent Sgnal Processing and

Communication Systems, Honolulu, Hawaii, 2, 1101 — 1104.

Guan, S. U. andLi, S. C. (2002) Parallel growingl draining of neural networks using output
parallelism,EEE Transactions on Neural Networks, 13(3), 542 -550.

Jacobs, R. A., Jordan, M. I., Nowlan, M. I. and tdim G. E. (1991) Adaptive mixtures of local
expertsNeural Computation, 3(1), 79-87.

Lehtokangas, M. (1999) Modeling with constructivaekpropagationeural Networks, 12, 707-716.
Lu, B. L. Kita, H., and Nishikawa, Y. (1994) A migieving neural-network architecture that
decomposes learning tasks automaticaitypceedings of |IEEE Conference on Neural Networks,
Orlando, FL, 1319-1324.

Lu, B. L. and Ito, M. (1999) Task decomposition anddule combination based on class relations: A
modular neural network for pattern classificatitEE.E Transactions on Neural networks, 10(5), 1244
—1256.

19

Prechelt, L. (1994) PROBENL1: A set of neural netnmenchmark problems and benchmarking rules,
Technical Report 21/94, Department of Informatics, University of KarlsejiGermany.

Prechelt, L. (1997) Investigation of the CasCor ifanof learning algorithmsNeural Networks,
10(5), 885 — 896.

Riedmiller, M. and Braun, H. (1993) A direct adaptimethod for faster backpropagation learning:
the RPROP algorithnRroceedings of the IEEE International Conference on Neural Networks, 586-
591.

Appendix |

The Constructive Backpropagation algorithm (CBPh dee depicted briefly as follows
(Lehtokangas, 1999 and Guan and Li, 2002)

1. Initialization: The network has no hidden units. Only bias weighhd shortcut
connections from the input units to the outputsifeéed the output units. Train the weights of

this initial configuration by minimizing the sum sfuared errors:
P K)
E=>> (04 —ty) 1)
whereP is the number of training patterni,is the number of output units,, is the actual

output value of thekth output unit for thep th training pattern and, is the desired output

value of thek th output unit for thep th training pattern.

“Figure 8 near here”

2. Training a new hidden unit: Connect inputs to the new unit (let the new umgtthei th
hidden unit,i > 0) and connect its output to the output units asvshim Figure 8. Adjust all
the weights connected to the new unit (both inmat eutput connections) by minimizing the

modified sum of squared errors:

P K i-1 2
E :ZZ a(zwjkopj +Vvikopi)_tpk (2
j=0
wherew;, is the connection from thigh hidden unit to thexth output unit (v, represents a
set of weights which are the bias weights and shbrtonnections trained in step b), is
the output of thg th hidden unit for thepth training pattern ¢, represent inputs to bias

weights and shortcut connections), af is the activation function. Note that in the new

20

i th unit perspective, the previous units are fixedother words, we are only training the

weights connected to the new unit (both input amighat connections).
3. Freezing a new hidden unit: Fix the weights connected to the unit permanently

4. Testing for convergence: If the current number of hidden units yields arceptable

solution, then stop the training. Otherwise go hacktep 2.

Appendix Il

TheEarly Stopping method using validation set is used as the stgpgitteria in training the
new modular network. The set of available pattésrdivided into three sets:teaining set is
used to train the networkvalidation set is used to evaluate the quality of the networkraur
training and to measure overfitting, antkest set is used at the end of training to evaluate the
resultant network. The size of the training, vatiidn, and test set is 50%, 25% and 25% of
the problem’s total available patterns. The errazasureE used isthe sguared error
percentage (Prechelt, 1994)derived from the normalization of the mean sqdaeeror to
reduce the dependency on the number of coefficiarttee problem representation and on the

range of output values used:

0 -0.. P K
E =100 —M0 %" %" (0, —t,)? 3)
K EP p=1 k=1
where o,,,,and o,,, are the maximum and minimum values of output coeffits in the

problem representation.

E, (t)is the average error per pattern of the network dhe training set, measured after
epoclt. The valueE,, (t s the corresponding error on the validation sefragpochtand is
used by the stopping criteridg, (t i9 the corresponding error on the test set; ribisknown

to the training algorithm but characterizes thelitpaf the network resulting from training.

The valueE_, (t) is defined to be the lowest validation set errbtamed in epochs up to

opt
epoch:

Eqp () =MinE,, (1) (4)

21

The generalization loss (Prechelt, 1994pat epocht is defined as the relative increase of the
validation error over the minimum so far (in perjen

GL(t) = 100Eq:va((tt)) -1) (5)

A high generalization loss is one candidate reasorstop training because it directly

indicates overfitting.

To formalize the notion of training progresstraining strip of length m (Prechelt, 1994)s
defined to be a sequence mfepochs numbered+1... n+m wheren is divisible bym.
The training progress measured after a trainirig &r

Zt'Dt—mﬂ...t E" (tl) _
ml]nint'Dt—mﬂ...t Etr (t')

P, (t) =1000L{ D (6)

It is used to measure how much larger the averaggrig error is than the minimum training

error during the training strip.

During the process of growing and training indivatiumodules, we adopted the following

heuristic overall stopping criterid,, <E, OR (Reduction of training set error due to the

last new hidden unit is less than 0.01% AND Validation set error increased due to the last

new hidden unit). The first part E,, < E,) means that the optimal validation set error is

opt
below the thresholdK,) and the result has been acceptable. The othemnpans the last
insertion of a hidden unit resulted in hardly ampgress. The criteria for adding a new
hidden unit are as followsAt least 25 epochs reached for the current network AND
(Generalization loss GL(t) >5 OR Training progress P;(t) <0.1). The first part means that
the current network should be trained for at leasertain number of epochs before a new
hidden unit is installed because the error curvey iime turbulent at the beginning. The

second part means that the current network has dnesfitted or training has little progress.

It is a bit unsatisfactory that all of these ciisiesire heuristic.

22

The oviginal problan

Imput Vector Cratpat Vector

1 nl n i k2 S .
1 [© OO DO O0O oo O
o ool loool |ol|lo o
5 55 (R 5 9 N oo O

Sub-problanl T
Sub- problany-
T b problemy

Figure 1: Problem decomposition based on Output Parallelism

A

Figure 2: Task Decomposition based on Output Parallelism

— > Class:
Module 1 .
— Class N/r
— » Class N/r +1
Unseen Module 2 .
Input —> Class 2N/
pattern Module
—_—»
0
Qutputn,
Act as “Patterr —— > Class (-2)N/r +1
distributor” Moduler-1| -
¥ Class (-1)N/r
— > Class (-1)N/r +1
Module r .
— Class |

Figure 3(a): Overview of the pattern distributor network architecture

Regrouped into
n, classes by the

N original user (wheren, < Train the — Outputn,

original N, classes of module 0

cla_ss_es of) _ modified I\?Iggtlﬂeerr? — > Outputn,

training training patterns Distributor)

patterns —>» Outputn,.;
—— Outputn,

23

Figure 3(b): Training for the pattern distributor module

Module 1
I
Unseen Module 2
Input
pattern| Patterr —— Class N/r+1
N Distributor :
module : .

Module r

Sut-module Class (N-1)N/r+1

Sut-module — Class N

I!

Figure 4: Modified new network architecture

Module 1

Sut-module Module 1 has sever
sub modules, K/2

Sub-modu output classes

Unseen /

Input
Sut-modul
pattern Pattern L modux
Distributor
— module Module 2

Sut-module Module 2 has several

sub modules, K/2

Suk-module
output classes

Suk-module

Figure 5: Pattern Distributor divides the output classesinto two equal portions.

24

Unseer
test
pattern

Module 1

_’

_’

_>

/

Suk-module

Suk-module

Sut-module

Module 2

_’

_’

_>

Sut-module A

Sut-module

AN

Module 1 has
several modules
and K/2 output
classes, and it
corresponds to
Module 1 of the
PD network

Module 2 has
several modules
and K/2 output
classes, and it
corresponds to
Module 2 of the
PD network

Figure 6: An ordinary TD network corresponding to the PD network in figure 5.

Unseer
Input
Pattern

Pattern Distributor fo
Class 1 to Class N/2
patterns

Pattern Distributor for
Class N/2 +1 to Class|
N patterns

Suk-module

Suk-module

Stb-module

i

Suk-module

Figure 7: Modular pattern distributor

New Unit i

Figure 8: Training a new hidden unit in CBP learning. Y represents
previously added connections to network output units.

25

Task Decomposition Method Training time Hidden Indp. C. error
(s) Units Param. (%)
Output Parallelism 63.7 253.5 2848.5 14.2236
(6 sub-modules) (in parallel)
197.7
(in series)
Non-modular Pattern Distributor’s 82.9 30.6 387.2 2.422358
performance
(each output of PD module include
three sub-modules)
Task Decomposition withon- 82.9 391.2 4413.8 7.82609
modular pattern distributor (in parallel)
(1 pattern distributor modules and 6 194.3
sub-modules) (in series)
Modular Pattern Distributor’s 54.7 59.7 676.7 2.360246
(in parallel)
Overall Performance 108.7
(in series)
Task Decomposition witmodular 54.7 420.3 4703.3 7.63975
pattern distributor (in parallel)
(2 pattern distributor modules and 6 220.1
sub-modules) (in series)

Table 1: Results for the Glass data

NOTES: 1. In the “Task Decomposition Method” colurfimon-modular pattern distributor” means the pattern

distributor module is a classic non-modular feedfmd network while thodular pattern

distributor” means the pattern distributor modwl@écomposed into several modules based on the

Output parallelism method.

2. “Training time” column stands for the time (CRithe, in seconds) taken by growing and training

each module. Training time (in parallel) stands floe maximum training time among all the

modules (all modules are trained in parallel). firgg time (in series) stands for the sum of

training time for all the modules (all modules &na@ned in series).

3. “Indp. Param.” stands for the total numberrafépendent parameters (the number of weights and

biases in the network) of all modules.

4. “C. Error” stands for classification error.

Task Decomposition Method Training time Hidden Indp. C.error
(s) Units Param. (%)
Output Parallelism 58.7 184.4 2333.8 25.54655

26

(11 modules)

(in parallel)

418.9
(in series)
Non-modular Pattern Distributor’s 117 245 376 6.680157
performance
(outputs of PD module include 3, 4, 4
output sub-modules respectively)
Task Decomposition withon- 117 229.4 2955.8 18.70445
modular pattern distributor (in parallel)
(1 pattern distributor modules and 11 245.6
sub-modules) (in series)
Modular Pattern Distributor’s 51.8 54 681 6.072874
(in parallel)
Overall Performance 138.8
(in series)
Task Decomposition witmodular 51.8 258.9 3260.8 18.3
pattern distributor (in parallel)
(3 pattern distributor modules and 11 267.4
sub-modules) (in series)
Table 2: Results for the Vowel data
NOTES: Refer to NOTES under Table 1.
Task Decomposition Method Training time Hidden Indp. C.error
(s) Units Param. (%)
Output Parallelism 610.2 152.1 3175 5.181979
(7 modules) (in parallel)
1719.6
(in series)
Non-modular Pattern Distributor’s 2134 13.9 329.9 1.03986
performance
(outputs of PD module include 3 and 4
output sub-modules respectively)
Task Decomposition withon- 2134 128.9 2762.9 4.61005
modular pattern distributor (in parallel)
(1 pattern distributor modules and 7 706.9
sub-modules) (in series)
Modular Pattern Distributor’s 155.6 243 524 1.091853
(in parallel)
Overall Performance 302.6
(in series)
Task Decomposition witmodular 155.6 139.3 2957 4.57539
pattern distributor (in parallel)
(2 pattern distributor modules and 7 796.1
sub-modules) (in series)
Table 3: Results for the Segmentation data
NOTES: Refer to NOTES under Table 1.
Task Decomposition Method Training time Hidden Indp. C.error
(s) Units Param. (%)

27

Output Parallelism 3707 394.6 7877 15.784
(14 modules) (in parallel)
29483.2
(in series)
Non-modular Pattern Distributor’s 3940.8 73 1601 17.872
performance

(outputs of PD module include 4,4, 3
and 3 output sub-modules respectively)

Task Decomposition withon- 3940.8 460.4 9331.8 19.396
modular pattern distributor (in parallel)
(1 pattern distributor modules and 14 15088.8
sub-modules) (in series)
Modular Pattern Distributor’s 2293.6 194.6 3570.8 13.088
(in parallel)
Overall Performance 7610.4
(in series)
Task Decomposition witmodular 2293.6 582 11301.6 15.444
pattern distributor (in parallel)
(4 pattern distributor modules and 14 18758.4
sub-modules) (in series)

Table 4: Results for the Letter Recognition data

Method Training time Hidden Indp. C.error
(s) Units Param. (%)
Classic Non-modular Network 197.93 26.65 707 34.737
Output Parallelism 58.7 184.4 2333.8 25.54655
(11 modules) (in parallel)
418.9
(in series)
Task Decomposition witmodular 51.8 258.9 3260.8 18.3
pattern distributor (in parallel)
(2 pattern distributor modules and 267.4
7 sub-modules) (in series)

Table 5: Results for the Vowel data

Method Training time Hidden Indp. C.error
(s) Units Param. (%)
Classic Non-modular Network 20845.05 73.6 3607 21.672
Output Parallelism 3707 394.6 7877 15.784
(14 modules) (in parallel)
29483.2
(in series)
Task Decomposition with modular 2293.6 582 11301.6 15.444
pattern distributor (in parallel)
(4 pattern distributor modules and 14 18758.4
sub-modules) (in series)

Table 6: Results for the Letter Recognition data

28

