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Abstract   In this paper, we propose a new task decomposition method for multilayered 

feedforward neural networks, namely Task Decomposition with Pattern Distributor in order 

to shorten the training time and improve the generalization accuracy of a network under 

training. This new method uses the combination of modules (small-size feedforward network) 

in parallel and series, to produce the overall solution for a complex problem. Based on a 

“divide-and-conquer” technique, the original problem is decomposed into several simpler 

sub-problems by a pattern distributor module in the network, where each sub-problem is 

composed of the whole input vector and a fraction of the output vector of the original 

problem. These sub-problems are then solved by the corresponding groups of modules, where 

each group of modules is connected in series with the pattern distributor module and the 

modules in each group are connected in parallel. The design details and implementation of 

this new method are introduced in this paper. Several benchmark classification problems are 

used to test this new method. The analysis and experimental results show that this new 

method could reduce training time and improve generalization accuracy. 

 

Keywords  Task decomposition, multilayered feedforward neural network, pattern 

distributor 
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1. Introduction 

Multilayered feedforward neural networks have been used extensively in solving 

classification problems. However, the concomitant disadvantages of building multilayered 

feedforward networks are the long training time and unsatisfactory generalization accuracy. 

One of the main reasons that cause these disadvantages is because large networks tend to 

introduce high internal interference due to the strong coupling among their hidden-layer 

weights (Jacobs et al., 1991). During the weight-updating (training) process, the influences 

(desired outputs) from two or more output units could cause the hidden-layer weights to 

compromise to non-optimal values due to the interference in their weight-updating direction. 

In order to overcome this drawback, various task decomposition methods based on “divide-

and-conquer” have been proposed. Instead of using a single, large feedforward network 

(classic non-modular network), these task decomposition methods use a modular network, 

which is formed by integrating several modules (each module is a small size feedforward 

network) to solve the given problem. In the following section, several task decomposition 

methods are discussed.  

 

2. Task decomposition methods 

The method proposed in “Efficient classification for multiclass problems using modular neural 

networks” presented by Anand, etc. in 1995 divides a K -class original problem into K  two-

class sub-problems and each sub-problem is solved by a single-output module (small size 

feedforward network) respectively. Therefore, each module is used to discriminate one class 

of patterns from patterns belonging to the remaining classes. The collection of all the 

modules produces the overall solution for the original problem. Another method proposed in 

“Task decomposition and module combination based on class relations: A modular neural network for 
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pattern classification” splits the K -class original problem into 








2

K
 two-class sub-problems. 

Each sub-problem is learned independently by a module while training patterns belonging to 

the other 2−K  classes is ignored (Lu and Ito, 1999). The final overall solution is obtained 

by integrating all of the trained modules into a min-max modular network. The output 

parallelism method decomposes the original complex problem into a set of simpler sub-

problems without any prior knowledge concerning the decomposition of the problem (Guan 

and Li, 2000 and Guan and Li 2002). Each sub-problem is composed of the whole input 

problem space and a fraction of the output problem space as illustrated in figure 1: 

“Figure 1 near here” 
“Figure 2 near here” 

 
Each sub-problem is then solved by building and training a module. A collection of 

these modules (in parallel) is the overall solution of the original problem. The overview of the 

final network architecture is illustrated in figure 2.  

Instead of decomposing the problem with high dimensional output space into several 

sub-problems with low dimensional output space, the method proposed in “A multisieving 

neural-network architecture that decomposes learning tasks automatically” by Lu et al. in 1994 

decomposes the size (number of patterns) of the problem into several smaller size sub-

problems. Patterns are classified by a rough sieve module (non-modular network) at the 

beginning and those patterns that are not classified successfully will be presented to another 

sieve module. This process continues until all the patterns are classified correctly. The sieve 

modules are added into the network adaptively with progress of training. 

The training time of these methods is shorter and the generalization accuracy is better 

as compared to the classic non-modular network. However, these methods still have some 

drawbacks. Firstly, for the methods proposed by Anand et al. in 1995 and Guan and Li in 2002, 

although the dimension (number of output class) of each sub-problem is smaller than the 
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original problem, the size of each sub-problem’s training pattern set is still as large as the 

original problem. Therefore, each module will have unnecessarily long training time and 

ineffective learning especially when the original problem is very large. Secondly, the 

methods proposed by Anand et al. in 1995 and Lu and Ito in 1999 usually split the problem 

into a set of two-class sub-problems. When the original K-class problem is very complex (K 

is very large), a very large number of modules will be needed to learn the sub-problems and 

thus resulting in excessive computational cost. Thirdly, the methods proposed by Anand et al. 

in 1995, Lu and Ito in 1999 and Guan and Li in 2002 integrate all the modules together at the 

final stage in order to produce the overall solution for the original problem. This allows error 

from any of the modules affecting the performance (accuracy) of the other modules and thus 

causing interferences among the modules. During the classification process for each input 

pattern, all the modules have to classify that input pattern correctly. Any module classifies the 

input pattern wrongly may cause the overall classification process to be incorrect. Lastly, the 

method proposed by Lu et al. in 1994 only reduces the size of the problem but not the 

dimension of the problem. The internal interferences (that exists within each module due to 

the coupling of output units) are not reduced. 

In this paper, we propose a new task decomposition method called Task 

Decomposition with Pattern Distributor to overcome the drawbacks as mentioned above. In 

section 3, the design details and overview of the proposed modular network architecture will 

be introduced. In section 4, a simple model is introduced to analysis the PD network. In 

section 5, modular PD is introduced to improve the performance of PD network. In section 6, 

the experimental results are shown and analyzed. Discussion and conclusion will be 

presented in section 7.  

3. Design details for the pattern distributor network 
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In order to reduce effectively the size of the training pattern set presented to each module 

(small-size feedforward network) in the modular network, an additional module is 

incorporated into the network and it acts as a pattern distributor. This pattern distributor has a 

higher position (level) as compared to the other modules in the network. The overview of the 

new network architecture is shown in figure 3(a) whereas the specific training algorithm for 

the pattern distributor module is illustrated in figure 3(b) and the following section. 

“Figure 3 near here” 

 

 

3.1 Training of the pattern distributor network  

To implement the new modular network, the first step is to decompose a complex 

classification problem with a large number of output classes into a set of sub-problems, each 

with a small number of output classes. To train the pattern distributor (module 0 as shown in 

figure 3(a) & (b) ) that has r output units, first, instead of having all N output classes of the 

original training patterns presented to this module, training patterns (from N output classes) 

are first grouped together and classified into nr classes (where nr < N), namely Class n1 

patterns  (patterns belonging to the original “class 1 to class N/r” are grouped and classified 

into this class), Class n2 patterns (patterns belonging to the original “class N/r+1 to 2N/r” are 

grouped and classified into this class ), …, to Class nr patterns(patterns belonging to the 

original “class (r-1)N/r+1 to class N” are grouped and classified into this class). This set of 

“manually modified training patterns” (with a smaller number of output classes) is then 

presented to the pattern distributor to train and help it learn.  

It should be mentioned that the “equally” grouping of the output class as illustrated 

earlier or as shown in figure 3(a) is just to serve as a clearer example. In fact, the grouping 

process is flexible (based on the user’s decision). Different grouping of the output classes will 
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cause the new modular network to have different training time and generalization accuracy. 

The remaining modules (module 1 to module r as indicated in figure 3(a)) in the network are 

trained by using the corresponding training patterns only (for example, training patterns 

belonging to “class 1 to class N/r” are used to train module 1). This process continues until all 

the modules are well trained. Therefore, the size of training patterns presented to each module 

is reduced significantly as compared to the task decomposition methods mentioned in section 

2.  

It should be mentioned that these modules can be further decomposed (based on 

output parallelism) into smaller sub-modules. Thus, each module can be viewed as a group of 

sub-modules that are connected in parallel. The modified version of figure 3(a) is shown in 

figure 4: 

“Figure 4 near here” 

 

3.2 Operation of the pattern distributor network 

After the training process is completed, when a new, unseen input pattern (for example 

pattern that belongs to “class 1 to class N/r”) is presented to the modular network, the pattern 

distributor will first accept this pattern, classify it correctly and the corresponding output unit 

in the pattern distributor (for this example, output unit 1) will have the largest value among 

all the other output units. Thus only the corresponding module (for this example, module 1) 

will be activated and used. After that, the input pattern is presented to this module (module 1) 

only and then this module will complete the classification process. Only two instead of all 

modules are used in each classification process, this is likely to reduce errors. 

 

 Constructive Backpropagation (CBP) algorithm was used to train the network in the 

experiments (Lehtokangas, 1999). CBP is briefly introduced in Appendix I. CBP can reduce 
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the excessive computational cost significantly and also it does not require any prior 

knowledge concerning decomposition. 

 

In this paper, RPROP is used with the following parameters: η+ = 1.2, η- =0.5, ∆0 = 0.1, ∆max 

= 50, ∆min = 1.0e-6, with initial weights selecting from –0.25… 0.25 randomly (Riedmiller and 

Braun, 1993). 

 

In order to avoid large computational cost and overfitting, a method called early stopping 

using validation set is used as the stopping criteria. The details and various definitions of the 

stopping criteria are presented in Appendix II. 

The set of available patterns is divided into three sets: a training set is used to train 

the network, a validation set is used to evaluate the quality of the network during training and 

to measure overfitting, and a test set is used at the end of training to evaluate the resultant 

network. The size of the training, validation, and test set is 50%, 25% and 25% of the 

problem’s total available patterns.  

 

4. Analysis of the pattern distributor network 

The performance of PD module greatly affects the performance of the whole network. When 

this pattern distributor classifies a pattern wrongly, the remaining classification process will 

also be wrong. In our design, we hope PD networks could have little or no error compared 

with ordinary TD networks. So the error of PD module could not be very large. We present a 

simple model to discuss what condition a PD network should satisfy for it to outperform an 

ordinary TD network.  
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“Figure 5 near here” 

Referring to figure 5, assume the PD module has two outputs, and the number of the output 

classes is K. Both Module 1 and Module 2 have K/2 output classes (assume K is a even 

number here). The network has been further divided into some sub-modules. The network is 

divided into the same sub-modules using an ordinary TD network (here we have chosen an 

output parallelism network (Guan and Li, 2000 and Guan and Li 2002)) in order to compare 

the results (figure 6). 

“Figure 6 near here” 

 

Consider the course of testing. In the following, we assume that each corresponding module 

in these two network models has the same probability of error as they are implemented in the 

same way. Then the error incurred from the PD network model will be the error from the 

pattern distributor module plus the error from the module involved, while the error from the 

TD network model will be the sum of errors from all the modules that respond with some 

incorrect results.  

 

Assume the probability of error in the above TD network is pe. And for each test example, the 

probability of error in either Module 1 or Module 2 is pe/2. To those examples which could 

enter Module 1 of the PD network, the probability of error in Module 1 is equal to that in Part 

1 of the TD network. In other words, probability of error in Module 1 is pe/2. Also, the 

probability of error in Module 2 is pe/2. Assume the probability of error in the PD module is 

pePD.   

 

Assume the number of the test examples is N, and the number of examples belonging to 

Module 1 of the PD network is N/2.  



 9 

The number of examples classified or recognized wrongly by the TD network is: 

eTD pNN ⋅=                                                                                                              (1) 

The number of examples dispatched wrongly by the PD network is: 
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If the above relationship could be satisfied, the error of the PD network will be smaller than 

that of the TD network.  

 

Discussions: 

In the above analysis, K is considered as an even number. Here we discuss the situation that 

K is odd. Assume that PD has two outputs, and each output corresponds to a module. Module 

1 has (K+1)/2 output classes and Module 2 has (K-1)/2 output classes. Still, assume the 

probability of error in the corresponding TD network is pe. And for each test example, the 

probability of error in either Module 1 or Module 2 is pe/2. 

Assume the number of the test examples is N, and the number of examples belonging to each 

output class N/K. The number of examples dispatched wrongly by the PD network is: 
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Under this assumption, if the relationship in Eq. (4) is satisfied, the PD network still could get 

better results.   

 

This simple model shows if the error of PD module is small enough, the PD network could 

have better results than the ordinary TD network. The same analysis can be easily extened to 

the case when the number of modules considered is more than two. 

 

5. Improvement on the pattern distributor network– modular 

pattern distributor 

Results in “Parallel growing and training of neural networks using output parallelism” showed that 

the training time and generalization accuracy of modular networks based on output 

parallelism are better than classic non-modular networks (Guan and Li, 2002). Thus, instead 

of using a non-modular pattern distributor module (as indicated in figure 3(a)) in the network, 

the performance can be further improved by using a modular pattern distributor module. The 

output parallelism method is applied to the non-modular pattern distributor module by 

decomposing it into several sub-modules. An overview of the modular pattern distributor 

architecture is shown in figure 7: 

“Figure 7 near here” 

In figure 7, the pattern distributor is decomposed into 2 modules only (to simplify the figure). 

In fact, the number of modules is determined by the user. The performance of the modular 

network is expected to be better if the number of modules used is larger.  
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6. Experimental results and analysis 

6.1 Experiment scheme 

Four benchmark classification problems, namely Vowel, Glass, Segmentation, and Letter 

Recognition were used to evaluate the performance of the new modular network – Task 

Decomposition with Pattern Distributor. These classification problems were taken from the 

PROBEN1 benchmark collection (Prechelt, 1994) and University of California at Irvine (UCI) 

repository of machine learning database. In the set of experiments undertaken, the first three 

classification problems were conducted 10 trials and the Letter Recognition problem was 

conducted 5 trials (due to the long training time). All the hidden units and output units use the 

sigmoid activation function and Eth is set to 0.1. When a hidden unit needs to be added, 8 

candidates are trained and the best one is selected. All the experiments were simulated on a 

Pentium IIII – 2.4GHZ PC. The sub-problems were solved sequentially and the CPU time 

expended was recorded respectively.  

 

6.2 Experimental results and analysis 

Three important metrics, namely, training time, generalization accuracy, and network 

complexity will be used as the criteria to judge the performance of the new modular network. 

Guan and Li’s (2002) results showed that the performance (in terms of the three important 

issues as mentioned earlier) of output parallelism is better than the classic non-modular 

neural network. In this paper, the performance of output parallelism will be used as a 

yardstick and the performance of the new modular network will be compared to it. 

 For training time, the CPU time spent to train the modules will be compared. It should 

be noted that the number of training patterns presented to each module is different. Therefore, 

the computational cost of one training epoch can differ significantly. Comparing the number 

of epochs solely will lead to unfair comparison and thus training epoch will not be used as the 
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judging criteria. For generalization accuracy, classification error instead of test error will be 

compared as all the problems used are classification problems. For network complexity, the 

number of hidden units and independent parameters (the number of weights and biases) in the 

network will be compared.  

 

A. Glass 

This data set is used to classify glass types. The results of a chemical analysis of glass 

splinters (percentage of 8 different constituent elements) plus the refractive index are used to 

classify a sample to be either float processed or non-float processed building windows, 

vehicle windows, containers, tableware, or head lamps. This data set consists of 9 inputs, 6 

outputs, and 643 patterns (they are divided into 321 training patterns, 161 validation patterns, 

and 161 test patterns). The patterns were normalized and scaled so that each component lies 

within [0, 1]. This problem was divided into two outputs by PD module. Each output of  the 

PD module consisted of 3 outputs. Then this problem was divided into 6 sub-modules and 

each module has one output unit.  

“Table 1 near here” 

From Table 1, it is observed that the classification error using ordinary TD network (here 

output parallelism) was 14.2236%, and that using a non-modular PD network was 7.82609%. 

The classification error of a non-modular PD module was 2.422358%. According to our 

analysis, if Equation (4) could be satisfied, in other words, if the error of PD module was 

smaller than half of the error of TD network, the PD network will have better results. 

Equation (4) was apparently satisfied, and using the PD network had smaller classification 

error. It matched with our analysis. It could be also found that the classification error was 

further reduced when using a modular PD network compared with a non-modular network. 

The modular PD module’s classification error was 2.36026% which was small than the non-
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modular PD module. Our analysis suggests that the better performance of PD module could 

get better performance of the whole PD network. The overall classification error is reduced to 

7.63975% when using the modular PD network. 

From Table 1, it is also seen that the training time using ordinary TD network is 63.7 s in 

parallel and 197.7 s in series, and that using non-modular PD network is 82.9 s in parallel and 

194.3 s in series. It is not have much difference. The number of hidden units and the number 

of independent parameters using ordinary TD network is 253.5 and 2848.5 respectively, 

while those using non-modular PD network is 391.2 and 4413.8 respectively. The PD 

network has more hidden units and independent parameters than ordinary TD network. If 

modular PD network is used, there are more the hidden units and independent parameters 

compared with non-modular PD network, but the training time in parallel is reduced. 

 

B. Vowel 

The input patterns of this data set are 10 element real vectors representing vowel sounds 

which belong to one of 11 classes. It has 990 patterns in total (they are divided into 495 

training patterns, 248 validation patterns, and 247 test patterns). The patterns were 

normalized and scaled so that each component lies within [0, 1]. This problem was divided 

into three outputs by the PD module. The first output of PD consisted of 3 outputs, the second 

output of PD consisted of 4 outputs, and the last output of PD consisted of 4 outputs. Then 

this problem was divided into 11 sub-modules and each sub-module has only one output unit. 

Table 2 shows that the classification error using an ordinary TD network (here output 

parallelism) is 25.54955%, and that using a non-modular PD network is 18.70445%. The 

classification error of the non-modular PD module is 6.680157%. Compared to the 

classification error of TD network, the PD module’s classification error is very small. So the 

PD network produced better results. It can also be found that the classification error could be 
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further reduced when using a modular PD network compared with a non-modular network. 

The overall classification error is reduced to 18.3% when using the modular PD network. 

“Table 2 near here” 

From Table 2, it is also seen that the training time using ordinary TD network is 58.7 s in 

parallel and 418.9 s in series, and that using non-modular PD network is 117 s in parallel and 

245.6 s in series. Though the training time in parallel increases using PD network compared 

with ordinary TD network, the training time in series greatly decreases. The number of 

hidden units and the number of independent parameters using ordinary TD network is 184.4 

and 2333.5 respectively, while those using non-modular PD network is 229.4 and 2955.8 

respectively. The PD network has more hidden units and independent parameters than 

ordinary TD network. If modular PD network is used, there are more the hidden units and 

independent parameters compared with non-modular PD network, but the training time in 

parallel is reduced. 

 

C. Segmentation 

This data set consists of 18 inputs, 7 outputs, and a total of 2310 patterns (1155 training 

patterns, 578 validation patterns, and 577 test patterns). The patterns were normalized and 

scaled so that each component lies within [0, 1]. This segmentation problem was divided into 

two outputs by PD module. One of the PD’s outputs consisted of 3 outputs while the other 

consists of 4 outputs. And the problem was divided into 7 sub-modules.  

“Table 3 near here” 

Table 3 shows that the classification error using an ordinary TD network (here output 

parallelism) is 5.181979%, and that using a non-modular PD network is 4.61005%. The 

classification error of the non-modular PD module is 1.03986%. According to our analysis, if 

Equation (4) could be satisfied, in other words, if the error of PD module was smaller than 
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half of the error of TD network, the PD network will have better results. Equation (4) was 

apparently satisfied, and using the PD network had a smaller classification error. It matched 

with our analysis. Compared to the classification error of TD network, the PD module’s 

classification error is very small. So the PD network produced better results. It can also be 

found that the classification error could be further reduced when using a modular PD network 

compared with a non-modular network. The overall classification error is reduced to 

4.57539% when using the modular PD network. 

From Table 3, it is seen that the training time using ordinary TD network is 610.2 s in parallel 

and 1719.6 s in series, and that using non-modular PD network is 213.4 s in parallel and 

706.9 s in series. Both the training time in parallel and in series greatly decreases using PD 

network compared with ordinary TD network. The number of hidden units and the number of 

independent parameters using ordinary TD network is 152.1 and 3175 respectively, while 

those using non-modular PD network is 128.9 and 2762.9 respectively. The PD network has 

less hidden units and independent parameters than ordinary TD network. If modular PD 

network is used, there are more the hidden units and independent parameters compared with 

non-modular PD network, but the training time in parallel is reduced. 

D. Letter recognition 

The goal of this data is to recognize digitized patterns. Each element of the input vector is a 

numerical attribute computed from a pixel array containing the letters. This data set consists 

of 16 inputs, 26 outputs, and total of 20000 patterns (10000 training patterns, 5000 validation 

patterns, and 5000 test patterns). All the patterns were normalized and scaled so that each 

component lies within [0, 1]. The problem was divided into 14 sub-modules. 12 of them are 

solved by sub-modules with 2 output units while the remaining is solved by modules with 1 

output unit. The PD module has 4 outputs. The first output of PD module has 4 sub-modules 

(7 original output classes), the second output of PD module has 4 sub-modules (7 original 

Deleted: ¶
¶
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output classes), the third output of PD module has 3 sub-modules (6 original output classes) 

and the last output of PD module has 3 sub-modules (6 original output classes).  

“Table 4 near here” 

Table 4 shows that the classification error using an ordinary TD network (here output 

parallelism) is 15.784%, and that using a non-modular PD network is 19.369%. Such a PD 

network did not produce better results. According to our former analysis, the network could 

not have better performance if the classification error of PD module is too large. Here the 

classification error of the non-modular PD module is 17.872%, and this value is very large 

compared to the classification error of TD network. It could explain why the non-modular PD 

network did not get better performance. We also notice that when using the modular PD 

network, the PD network produced lower classification error which is 15.444%. The possible 

reason may be that the PD module’s performance is improved when using the modular PD.  

 

7. Discussions and conclusions 

7.1 Discussions 

From the earlier section, it is shown that if the classification error of PD module is not 

very large, the performance of Task Decomposition Pattern Distributor method is better than 

the output parallelism method, which on the other hand has been shown to be better than the 

classic non-modular network method (that uses a single, large network to solve the problem) 

(Guan and Li, 2002). Therefore, the performance of a modular pattern distributor network is 

generally better than that of a classic non-modular network. However, the question is: How 

much is the improvement over a non-modular network? The performance comparison for 

these two networks is presented here. The Vowel and Letter recognition data sets were used 

in the experiments. Table 5 shows the experimental results for the three methods (non-

modular network, output parallelism and Modular Pattern Distributor method) by using the 
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Vowel data set. From Table 5, it is observed that the classification error reduction by the Task 

Decomposition with Modular Pattern Distributor (18.3) vs. Classic Non-modular Network 

(34.737) is 47.32%. The percentage of training time reduction by the Task Decomposition 

with Modular Pattern Distributor (51.8) vs. Classic Non-modular Network (197.93) is 

73.83%. 

“Table 5 near here” 

Table 6 shows the experimental results by using the Letter recognition data set: 

“Table 6 near here” 

From Table 6, it is observed that the classification error reduction by the Task 

Decomposition with Modular Pattern Distributor (15.444) vs. Classic Non-modular Network 

(21.672) is 28.74%. The percentage of training time reduction by the Task Decomposition 

with Modular Pattern Distributor (2293.6) vs. Classic Non-modular Network (20845.05) is 

89.0%.  

1. From Table 5 and 6, it is observed that the performance (in terms of training time and 

classification error) of a modular pattern distributor network is much better than that 

of a classic non-modular network. The reduction in training time is especially 

significant (>73%).Lastly, all the experimental results showed that the new modular 

network inherits the advantages provided by the output parallelism method.  

Besides these advantages, the new modular network provides more advantages (as 

compared to the output parallelism method): 

1. Training time is further reduced since each module in the network only need to solve 

a smaller and simpler sub-problem. The reduction is significant when the size of the 

original training pattern set is large. 

2. Generalization accuracy is further improved since all the modules in the new modular 

network can solve the sub-problems better. 
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3. Although the total number of independent parameters in the new modular network 

exceeds that in the output parallelism method, the new modular approach yields faster 

convergence.  

4. Various combinations of modules (in parallel and in series) allow more useful and 

flexible problem solving as compared to the output parallelism method, which only 

uses parallel combination. 

 

In order to further improve the PD method, we could also apply the Pattern Distributor 

method to the PD module. In other words, multi-level pattern distributors (performing task 

decomposition by applying the pattern distributor method to the pattern distributor module) 

could be considered.  

 

7.2 Conclusions 

This paper presented a better (as compared to the output parallelism approach or conventional 

non-modular approach) task decomposition approach called Task Decomposition with 

Pattern Distributor to build a new modular network. This new approach not only inherits the 

advantages provided by the output parallelism method but also provides more advantages. Its 

performance can be improved further by incorporating additional pattern distributor modules 

into the network. Based on this method, a problem can be divided flexibly into several sub-

problems by the pattern distributor module, where each sub-problem is composed of the 

whole input vector and a fraction of the output vector. The combinations (in parallel and in 

series) of modules in the new modular network were used to solve each sub-problem 

respectively. This new method could not only reduce the internal interferences that exist 

inside the hidden structure of the large network by decoupling it into several modules but also 

prevent the error from any of the modules affecting the performance (accuracy) of the other 
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modules by designing all the modules independent from each other. Besides, this new method 

also builds modules that can solve the sub-problems better and faster since by incorporating 

the pattern distributor module into the network, the size (number of patterns) and dimension 

(number of output classes) of training pattern set presented to each sub-module would be 

reduced, thus, unnecessary long training time and ineffective learning can be avoided  

Our analysis and the experimental results showed that this new method has shorter 

training time and better generalization accuracy as compared to the output parallelism 

method. The results of this new method could be further improved by using more levels of 

modules in the network.  
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Appendix I 

The Constructive Backpropagation algorithm (CBP) can be depicted briefly as follows 

(Lehtokangas, 1999 and Guan and Li, 2002): 

1. Initialization: The network has no hidden units. Only bias weights and shortcut 

connections from the input units to the output units feed the output units. Train the weights of 

this initial configuration by minimizing the sum of squared errors: 

∑∑
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pkpk toE

1 1

2)(                                                           (1) 

whereP is the number of training patterns, K is the number of output units, pko  is the actual 

output value of the k th output unit for the p th training pattern and pkt is the desired output 

value of the k th output unit for the p th training pattern. 

“Figure 8 near here” 

 

2. Training a new hidden unit: Connect inputs to the new unit (let the new unit be the i th 

hidden unit, 0>i ) and connect its output to the output units as shown in Figure 8. Adjust all 

the weights connected to the new unit (both input and output connections) by minimizing the 

modified sum of squared errors: 
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where jkw  is the connection from thej th hidden unit to the k th output unit ( kw0 represents a 

set of weights which are the bias weights and shortcut connections trained in step 1), pjo is 

the output of thej th hidden unit for the p th training pattern ( 0po represent inputs to bias 

weights and shortcut connections), and )(⋅a is the activation function. Note that in the new 
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i th unit perspective, the previous units are fixed. In other words, we are only training the 

weights connected to the new unit (both input and output connections). 

 

3. Freezing a new hidden unit: Fix the weights connected to the unit permanently. 

 

4. Testing for convergence: If the current number of hidden units yields an acceptable 

solution, then stop the training. Otherwise go back to step 2. 

 

Appendix II 

The Early Stopping method using validation set is used as the stopping criteria in training the 

new modular network. The set of available patterns is divided into three sets: a training set is 

used to train the network, a validation set is used to evaluate the quality of the network during 

training and to measure overfitting, and a test set is used at the end of training to evaluate the 

resultant network.  The size of the training, validation, and test set is 50%, 25% and 25% of 

the problem’s total available patterns. The error measure E  used is the squared error 

percentage (Prechelt, 1994), derived from the normalization of the mean squared error to 

reduce the dependency on the number of coefficients in the problem representation and on the 

range of output values used: 
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where maxo and mino are the maximum and minimum values of output coefficients in the 

problem representation. 

 

)(tEtr is the average error per pattern of the network over the training set, measured after 

epocht . The value )(tEva is the corresponding error on the validation set after epoch t and is 

used by the stopping criterion. )(tEte  is the corresponding error on the test set; it is not known 

to the training algorithm but characterizes the quality of the network resulting from training. 

 

The value )(tEopt  is defined to be the lowest validation set error obtained in epochs up to 

epocht :  
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The generalization loss (Prechelt, 1994) at epoch t  is defined as the relative increase of the 

validation error over the minimum so far (in percent): 

)1
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(100)( −⋅=

tE

tE
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opt

va      (5) 

A high generalization loss is one candidate reason to stop training because it directly 

indicates overfitting.  

 

To formalize the notion of training progress, a training strip of length m (Prechelt, 1994) is 

defined to be a sequence of m epochs numbered 1+n … mn +  where n  is divisible bym . 

The training progress measured after a training strip is: 

)1
)'(min

)'(
(1000)(

...1'

...1' −
⋅

⋅=
+−∈

+−∈∑
tEm

tE
tP

trtmtt

tmtt tr

m          (6) 

It is used to measure how much larger the average training error is than the minimum training 

error during the training strip.  

 

During the process of growing and training individual modules, we adopted the following 

heuristic overall stopping criteria: thopt EE <  OR (Reduction of training set error due to the 

last new hidden unit is less than 0.01% AND Validation set error increased due to the last 

new hidden unit). The first part ( thopt EE < ) means that the optimal validation set error is 

below the threshold (thE ) and the result has been acceptable. The other part means the last 

insertion of a hidden unit resulted in hardly any progress. The criteria for adding a new 

hidden unit are as follows: At least 25 epochs reached for the current network AND 

(Generalization loss )(tGL >5 OR Training progress )(5 tP <0.1). The first part means that 

the current network should be trained for at least a certain number of epochs before a new 

hidden unit is installed because the error curves may be turbulent at the beginning. The 

second part means that the current network has been overfitted or training has little progress. 

It is a bit unsatisfactory that all of these criteria are heuristic.  
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Figure 1: Problem decomposition based on Output Parallelism 

                                                                                                                        
 
                       Figure 2: Task Decomposition based  on Output Parallelism 
 

 

 

 

 

          
           
          
         
                      
                                    
 
         
         

   
   

Figure 3(a): Overview of the pattern distributor network architecture 
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Figure 3(b): Training for the pattern distributor module 

 

 

 

 

 

 

 

 

 

 

Figure 4: Modified new network architecture 

 

 

 

 

 

 

 

 

 

 

 

            Figure 5: Pattern Distributor divides the output classes into two equal portions. 
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Figure 6: An ordinary TD network corresponding to the PD network in figure 5. 

 

 

 

 

 

 
 
 

Figure 7: Modular pattern distributor 
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Task Decomposition Method Training time  
(s) 

Hidden 
Units 

Indp. 
 Param. 

C. error  
(%) 

Output Parallelism 
(6 sub-modules) 

 

63.7 
(in parallel) 

197.7 
(in series) 

 

253.5 
 

2848.5 
 

14.2236 
 

Non-modular Pattern Distributor’s 
performance 

(each output of PD module include 
three sub-modules) 

82.9 
 

30.6 
 

387.2 
 

2.422358 
 

Task Decomposition with non-
modular pattern distributor 

(1 pattern distributor modules and 6 
sub-modules) 

 

 82.9 
(in parallel) 

194.3 
(in series) 

 

391.2 4413.8 7.82609 
 

 Modular  Pattern Distributor’s 

Overall Performance 
 

 54.7 
(in parallel)  

108.7 
(in series) 

59.7 
 

676.7 
 

2.360246 
 

Task Decomposition with modular 
pattern distributor 

(2 pattern distributor modules and 6 
sub-modules) 

 

54.7 
(in parallel) 

 220.1 
(in series) 

 

420.3 4703.3 7.63975 
 
 

Table 1: Results for the Glass data 
 

NOTES: 1. In the “Task Decomposition Method” column, “non-modular pattern distributor” means the pattern 

distributor module is a classic non-modular feedforward network while “modular pattern 

distributor” means the pattern distributor module is decomposed into several modules based on the 

Output parallelism method. 

 2. “Training time” column stands for the time (CPU time, in seconds) taken by growing and training 

each module. Training time (in parallel) stands for the maximum training time among all the 

modules (all modules are trained in parallel). Training time (in series) stands for the sum of 

training time for all the modules (all modules are trained in series). 

3.  “Indp. Param.” stands for the total number of independent parameters (the number of weights and 

biases in the network) of all modules.  

4.  “C. Error” stands for classification error.  

 

Task Decomposition Method Training time  
(s) 

Hidden 
Units 

Indp. 
Param. 

C.error  
(%) 

Output Parallelism 58.7 184.4 2333.8 25.54655 
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(11 modules)  (in parallel) 
418.9 

(in series) 
 

   

Non-modular Pattern Distributor’s 
performance 

(outputs of PD module include 3, 4, 4 
output sub-modules respectively) 

117 
 

24.5 
 

376 
 

6.680157 
 

Task Decomposition with non-
modular pattern distributor 

(1 pattern distributor modules and 11 
sub-modules) 

 

 117 
(in parallel) 

245.6 
 (in series) 

 

229.4 2955.8 18.70445 

Modular  Pattern Distributor’s 

Overall Performance 
 

51.8 
 (in parallel) 

138.8 
 (in series) 

54 681 6.072874 
 

Task Decomposition with modular 
pattern distributor 

(3 pattern distributor modules and 11 
sub-modules) 

 

51.8 
(in parallel) 

267.4 
 (in series) 

 

258.9 3260.8 18.3 

Table 2: Results for the Vowel data 

NOTES: Refer to NOTES under Table 1. 

 

 

Task Decomposition Method Training time  
(s) 

Hidden 
Units 

Indp. 
Param. 

C.error  
(%) 

Output Parallelism 
(7 modules) 

610.2  
(in parallel) 

1719.6 
 (in series) 

152.1 
 

3175 
 

5.181979 
 

Non-modular Pattern Distributor’s 
performance 

(outputs of PD module include 3 and 4 
output sub-modules respectively) 

213.4 13.9 329.9 1.03986 

Task Decomposition with non-
modular pattern distributor 

(1 pattern distributor modules and 7 
sub-modules) 

213.4 
 (in parallel) 

706.9 
(in series) 

128.9 2762.9 4.61005 
 

Modular  Pattern Distributor’s 

Overall Performance 
 

155.6  
(in parallel) 

302.6  
(in series) 

24.3 524 1.091853 
 

Task Decomposition with modular 
pattern distributor 

(2 pattern distributor modules and 7 
sub-modules) 

 

155.6 
 (in parallel) 

796.1  
(in series) 

 

139.3 
 

2957 
 

4.57539 
 

Table 3: Results for the Segmentation data 
NOTES: Refer to NOTES under Table 1. 

 

Task Decomposition Method Training time  
(s) 

Hidden 
Units 

Indp. 
Param. 

C.error  
(%) 
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Output Parallelism 
(14 modules) 

 

3707 
 (in parallel) 

29483.2 
 (in series) 

394.6 
 

7877 
 

15.784 
 

Non-modular Pattern Distributor’s 
performance 

(outputs of PD module include 4,4, 3 
and 3 output sub-modules respectively) 

3940.8 
 

73 
 

1601 
 

17.872 
 

Task Decomposition with non-
modular pattern distributor 

(1 pattern distributor modules and 14 
sub-modules) 

3940.8 
 (in parallel) 

15088.8 
 (in series) 

460.4 9331.8 19.396 
 

Modular  Pattern Distributor’s 

Overall Performance 
 

 2293.6 
(in parallel) 

7610.4 
(in series) 

194.6 
 

3570.8 
 

13.088 
 

Task Decomposition with modular 
pattern distributor 

(4 pattern distributor modules and 14 
sub-modules) 

2293.6  
(in parallel) 

 18758.4 
(in series) 

582 11301.6 15.444 
 

Table 4: Results for the Letter Recognition data 
 

 

Method Training time  
(s) 

Hidden 
Units 

Indp. 
Param. 

C.error  
(%) 

Classic Non-modular Network 
 

197.93 26.65 707 34.737 

Output Parallelism 
(11 modules) 

58.7 
 (in parallel) 

418.9 
(in series) 

 

184.4 
 

2333.8 
 

25.54655 
 

Task Decomposition with modular 
pattern distributor 

(2 pattern distributor modules and 
7 sub-modules) 

 

51.8 
(in parallel) 

267.4 
 (in series) 

 

258.9 3260.8 18.3 

Table 5: Results for the Vowel data 
 

Method Training time  
(s) 

Hidden 
Units 

Indp. 
Param. 

C.error  
(%) 

Classic Non-modular Network 
 

20845.05 73.6 3607 21.672 

Output Parallelism 
(14 modules) 

 

3707 
 (in parallel) 

29483.2 
 (in series) 

 

394.6 
 

7877 
 

15.784 
 

Task Decomposition with modular 
pattern distributor 

(4 pattern distributor modules and 14 
sub-modules) 

2293.6  
(in parallel) 

 18758.4 
(in series) 

 

582 11301.6 15.444 
 

Table 6: Results for the Letter Recognition data 
 


