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Abstract—A Self-Organising Cloud Radio Access Network (C-RAN) is proposed, which dynamically adapt to varying capacity
demands. The Base Band Units and Remote Radio Heads are scaled semi-statically based on the concept of cell differentiation and
integration (CDI) while a dynamic load balancing is formulated as an integer-based optimisation problem with constraints. A Discrete
Particle Swarm Optimisation (DPSO) is developed as an Evolutionary Algorithm to solve load balancing optimisation problem. The
performance of DPSO is tested based on two problem scenarios and compared to an Exhaustive Search (ES) algorithm. The DPSO
deliver optimum performance for small-scale networks and near optimum performance for large-scale networks. The DPSO has less

complexity and is much faster than the ES algorithm. Computational results demonstrate significant throughput improvement in a
CDI-enabled C-RAN compared to a fixed C-RAN, i.e., an average throughput increase of 45.53% and 42.102%, and a decrease of
23.149% and 20.903% in the average blocked users is experienced for Proportional Fair (PF) and Round Robin (RR) schedulers,
respectively. A power model is proposed to estimate the overall power consumption of C-RAN. A decrease of =~ 16% is estimated in a
CDl-enabled C-RAN when compared to a fixed C-RAN, both serving the same geographical area.

Index Terms—Base Band Unit (BBU), Cloud Radio Access Network (C-RAN), Particle Swarm Optimisation (PSO), Remote Radio

Head (RRH), Self-Optimising Network (SON).

1 INTRODUCTION

N the past few years, the proliferation of personal hand-

held mobile computing devices such as tablets and smart-
phones, along with the growing volume of data-demanding
services and applications, has produced and a great need
for wireless access and high-speed data transmission. In-
ternet access anywhere and everywhere has triggered the
formation of radio hot-spot networks. The major challenge
in cellular networks is managing the available resources in
a way to achieve 1) Optimum returns on investment, 2)
User’s service demands satisfaction, and 3) High levels of
network QoS. Unaware of the cell load, a user equipment
(UE) associates itself to the cell providing the strongest
signal. The spatial distribution of users and their capacity
demands vary with respect to time, causing unbalanced
traffic loads and wasteful utilisation of network’s resources.
Therefore, it is important to self-optimise the network re-
sources dynamically.

To overcome the aforementioned challenges, C-RAN [1]-
[3] has been proposed as a novel architecture that can
address some significant challenges the Mobile Network
Operators (MNOs) are facing with today. C-RAN architec-
ture is composed of three parts: 1) The Base Band Units
(BBUs) collected into a virtualised BBU cloud/pool for
centralised processing, 2)The Remotely distributed Remote
Radio Heads (RRHs) in the radio access network, and 3) An
optical transport network (OTN) that connects the BBUs to
the RRH. C-RAN can achieve significant cost and energy
savings by dynamically scaling the BBUs with respect to
changing traffic conditions [4] and adjusting the logical

BBU-RRH links using suitable resource allocations schemes.

C-RAN with Self-optimising ability can provide MNOs
with a flexible network regarding network dimensioning,
adaptation to non-uniform traffic, and efficient utilisation
of network resources. However, before a full commercial C-
RAN deployment, several challenges need to be addressed.
Firstly, the front-haul technology used must support enough
bandwidth for delivering delay sensitive signals. Secondly,
the proper BBU-RRH assignment in C-RAN to not only
support collaboration technology like Cooperative Multi-
point Processing (CoMP) [5] but also enabling dynamic load
balancing and power saving in the network.

The main motivation of this paper is to exploit the capac-
ity routing ability of C-RAN by employing self-optimisation
for efficient resource utilisation with high levels of QoS and
a balanced network load. Inspired by the concept of cell
splitting in biological sciences, a two-stage design is pro-
posed for real-time BBU-RRH mapping and power saving
in C-RAN. The main contributions of the proposed scheme
is as follows:

1) The proposed mechanism monitors the load on
each cell in a given geographical area and di-
vides it into multiple small cells and vice versa
if the load in a cell exceeds or falls a certain
threshold.

2) The fitting number of BBUs required to serve all
RRHs in the given geographical area is assigned
based on the actual load on the network. A key
challenge of initial BBU-RRH mapping before
identifying an optimum BBU-RRH mapping is
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also addressed.

3) An Evolutionary Algorithm (EA) is proposed
to find the optimum BBU-RRH configuration
to balance the network load for enhanced QoS.
Therefore, the resources can be utilised effi-
ciently.

This paper is organised as follows: Section 2 presents
a survey of related work. Section 3 presents the system
model. Section 4 illustrates the formulation for dynamic
BBU-RRH allocation problem; Section 5 presents the RRH
clustering constraint; Section 6 presents the proposed C-
RAN power model; Section 7 defines the CDI algorithm.
Computational results are discussed in Section 8. Finally,
the paper is concluded in Section 9.

2 RELATED WORK

Artificial Intelligence (AI) techniques facilitate a network
to automatically re-configure system parameters for opti-
mum network performance and adaptively learn necessary
system parameters to perform upgrades and maintenance
routines along with recovering from failures. Since Al, is
the basis of self-organising and machine learning network
technologies, it can lead to a significant paradigm shift
by driving the ongoing efforts in next-generation wireless
network (5G) standardisation [6].

Most recent studies on resource management in C-RAN
mainly focus on schemes related to RRH-UE mapping and
only limited work addresses the BBU-RRH configuration
schemes. Some related works on the former schemes are
briefly discussed in [7]-[9]. In [7], the authors propose a
QoS-aware radio resource optimisation solution for max-
imising downlink system utility in C-RAN. User group-
ing, virtual base stations clustering, and beamforming for
multiuser, multicell distributed MIMO networks were in-
vestigated. In line with this work, the authors of [8] pro-
pose an efficient resource allocation scheme in heteroge-
neous C-RAN. A weighted minimum mean square error
(WMMSE) approach is used to solve network-wide beam-
forming vectors optimisation and identify proper RRH-UE
clusters. Moreover, minimising the number of active BBUs
is formulated as a bin packing problem for energy saving.
The work of [9] expresses a mixed integer non-linear pro-
gramming (MINLP) problem aiming joint RRH selection to
minimise power consumption via beamforming, where the
transport network power is determined by the set of active
RRHs. Regarding the BBU pool in C-RAN, some studies
are described in [10]-[13]. A joint-scheduling strategy for
resource allocation in C-RAN is proposed in [14] where
the time/frequency resources of multiple base stations are
jointly optimised to schedule network users concurrently for
network throughput improvement. However, the authors
did not consider BBU-RRH mapping and focused mainly
on joint scheduling in C-RAN .The authors of [10] initially
investigated semi-static and adaptive BBU-RRH switching
schemes for C-RAN. The authors of [11] then proposed a
lightweight, scalable framework that utilises optimal trans-
mission strategies via BBU-RRH reconfiguration to cater dy-
namic user traffic profiles. A dynamic BBU-RRH mapping
scheme is introduced in [12] using a borrow-and-lend ap-
proach in C-RAN. Overloaded BBUs switch their supported

RRHs to underutilised BBUs for a balanced network load
and enhanced throughput. The authors of [13] propose a
load balancing technique which considers load fairness as
an optimisation problem. When the load fairness exceeds an
alarming threshold, the given geographical area is divided
into small compact zones based on an infinite optimisation
formulation. The author’s previous work address a blocking
probability based load balancing problem in C-RAN via
evolutionary algorithms [15]. However, power saving in C-
RAN was not addressed.

Regarding other related work, there have been attempts
to develop Network Function Virtualisation (NFV) and Soft-
ware Defined Network (SDN) solutions for C-RAN [16]-
[18]. Although SDN and NFV are not the primary focus
of this paper, they are presented in this section for a
complete introduction of C-RAN. Moreover, an in-depth
review of the principles, technologies and applications of
C-RAN describing innovative concepts regarding physical
layer, resource allocation, and network challenges together
with their potential solutions are highlighted in [1], [19]

To sum up, the existing resource allocation mechanisms
does not take full advantage of the centralised BBU pool
concept in C-RAN. This paper extends the scope of C-
RAN by introducing the concept of Cell Differentiation
and Integration (CDI) with dynamic BBU-RRH mapping for
load balancing and efficient resource utilisation. The system
model in this article allows combining self-optimising fea-
ture of SON and capacity routing ability of C-RAN for a
more centrally managed network operations.

3 SYSTEM MODEL
3.1 Proposed C-RAN Architecture

A self-optimised C-RAN architecture is presented in Fig. 1.
The BBUs are decoupled from the RRH and migrated to
a centralised BBU-pool, whereas the RRHs are left on the
cell sites. A SON controller is introduced inside the BBU
cloud which monitors the BBU-pool resource utilisation as
well as controlling the switch. Since an optical switch can
only support one-to-one switching, soft switching (one-to-
one and one-to-many) is enabled indirectly by using optical
splitters and multiplexers [11]. The SON controller dynam-
ically assigns BBU pool resources to the independent RRHs
based on traffic demands. However, each BBU allocates its
radio resources (PRBs) only to the RRHs assigned to it at a
particular time.

At extremely low traffic load conditions, only a high
power macro-BS serves the given geographical area. As the
traffic load increases and the macro cell reaches its load
limit, the geographic area is differentiated into C equally
sized small cells serving the same coverage area. Each C cell
can further differentiate into ¢ more small cells by activating
the CDI supporting RRHs deployed to accommodate capac-
ity demands. The actual number of RRHs are determined
by the coverage area, users density, and other environment-
related factors. However, both C and ¢ are considered to be
seven as a reasonable example.

Furthermore, the CDI concept is realised by considering
three tiers of RRHs deployment as shown in Fig.2, ie.,
tier-3 RRH deployment imitates a high-power base station
serving a Macro cell as in traditional cellular systems.
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Fig. 1. Structure of a Cloud Radio Access Network represented as SON

Tier-2 and tier-1 represents a structure with universal fre-
quency reuse, where each cell is surrounded by a contin-
uous tier of 6 + E and 6 X [1 4 j] + E cells, respectively.
Where E represents the number of other external macro
cells and j accounts for the level of differentiation. A set
S; = {RRH;;, RRH;5, ..., RRH;.} is maintained for each cell
C; in tier-2 RRH deployment, which contains a group of
RRHs responsible for differentiating cell C; into ¢ small
cells provided that the sum of transmit powers of all RRHs
covers C; coverage area.The central RRH of each cell C; is
represented as RRH;;. Where ¢ represents the cell number
in tier-2 RRH structure. The SON server is responsible
for cell differentiation and integration with proper BBU-
RRH configurations, whereas the optical switch is in charge
of realising the settings via server commands. Note that,
with small cell deployment in C-RAN, a high inter-cell
interference is inevitable. Therefore, a clustering based in-
terference mitigation technique is adopted to avoid network
performance degradation. RRHs served by the same BBU
are grouped together based on a proximity property [15].

3.2 Channel model

In this paper, Guaranteed Bit Rate (GBR) users with QoS
requirements are considered. The frequency reuse factoris 1,
and the time-frequency resources are equal for all BBUs. The
basic unit of time-frequency resources that can be allocated
to users per time slot (0.5 ms) of an LTE subframe is known
as the Physical Resource Block (PRB). Each PRB consists
of 12 consecutive sub-carriers with a sub-carrier spacing of
15 kHz, corresponding to 0.5 milli-seconds in time domain
and 180 kHz in frequency domain. Let M and N represent
the number of active BBUs and RRHs in the network,
respectively, such that K;,, represents the total number of
users in cell ¢ served by RRH n. Each user reports Channel
Quality Information (CQI) to its serving BBU every two
subframes (i.e., 2 milli-seconds) for proper PRB assignment.
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Fig. 2. Cell differentiation and integration with multiple tiers of RRH
deployment.

The channel model considered in this paper is a composite
fading channel which involves path-loss and both small and
large scale fading, given as:

Hy,, =hj, b, [AD;’ ] (1)
where h; ~and I, represent the small and large scale
fading channel between the RRH n and user k in cell
1, respectively. The small scale fading is assumed to be
a Rayleigh random variables with a distribution envelog
of zero-mean and unity-variance Gaussian process. AD; °
reflects the path-loss between RRH n and user k in cell
i, where A is a constant which depends on the carrier
frequency f. and Dy, is the distance between user k£ and
RRH n in cell ¢ and a path-loss exponent of §. In this paper,
a path-loss of (A,d) = (1.35 x 107, 3) is considered [20] .
The large scale fading is assumed to be lognormal random
variable with a standard deviation of 10dB and is typically
modelled with a probability density function of [21]:

2
¢ exp | - (10log, ol — 1)
V2ol 202

where ( = 10/In 10, and u; and o; are the mean and the
standard deviation of I, both expressed in decibels.

The instantaneous Signal-to-Interference-and-Noise-
Ratio v based on CQI received from user k in cell ¢ served
by RRH n at time-slot ¢ is expressed as

in in

p(l) = 2)

_ Hy,,, (t)Pln (t)
NO + Z]EC Zaec7a7$n ija (t)P]a (t)

where P;,,(¢) and Hy,, (t) are the transmit power and chan-
nel gain between the serving RRH n of user k at time-slot ¢
in cell ¢ . Ny is the power of Additive White Gaussian Noise
per PRB and ;o> uccarn Hi,o (t)Pja(t) represents the

Vin (1) ®
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inter-cell interference power received from all other active
RRHs a at time-slot ¢ in cells j except the serving RRH n of
user £ in cell 7.

Assuming the best modulation coding scheme, the high-
est data rate achieved by user k served by RRH,, in cell ¢
for a given SINR at time-slot ¢ can be expressed by Shannon
formula:

ﬁkm (t) = 1Og2(1 + Yk, (t)) 4)

where a is the constant bit error rate (BER) defined as a =
—1.5/In(5 x 107%) [22]. The total PRB required by the user
can be now be determined by the achievable throughput of
the user k at a given SINR, the demanded data rate ¢ of
user k, and the bandwidth Pgw of a single PRB (i.e., 180
KHz) from the following:

Pr(t) -‘
NE (1) = ’77 5
where pp,, represents the bandwidth of a PRB and the
notion [.] is the ceil function.

4 DyNAMIC BBU-RRH CONFIGURATION AND
FORMULATION

For a Self-optimising C-RAN architecture shown in Fig.1,
it is essential to balance the network load amongst the
active BBUs by proper BBU-RRH configuration. After each
CDI cycle, the network may reconfigure itself by scaling
the BBUs and RRHs with respect to traffic load. However,
during the process, the BBU-RRH mapping might not satisfy
the QoS requirement. Therefore, If the BBU-RRH config-
uration at time ¢ is known then it is necessary to adjust
the BBU-RRH configuration at time ¢ + 1 to adaptively
balance the variance in traffic demands. Note that, the time
between ¢ and ¢ + 1 is longer than that of a subframe (i.e.,
one millisecond) and is called the load balancing cycle.
A user location indicator vector u = {uj,us,...,ux} is
defined which shows users association with RRHs such that
u = {rin|tin €ZT :i,n=1,2,3,..C}, where ux = r;,
if user k is associated with RRH,, of cell C;. To indicate
RRHs association with BBUs, a vector r = {r11,112, ..., lin }
is defined, where r;,, € {1,2,...,M} and r;, = m indicates
RRH,, of cell C; is being served by BBU,,,. Whereas, r;,, =0
indicates that RRH,, of cell C; is not active. If the user
location indicator vector u is given, then the problem is to
identify the new RRH allocation vector r.

4.1 Number of BBUs required in the network

The required number of BBUs to serve the offered traffic
load at a particular time ¢ can be calculated using actual
load 7)(t) on the network. Let 7,,,(¢) be the load on BBU,,, at
time period ¢, which is represented as

SR Lk (ONE (1)
PRB

Where I,, . is a binary indicator such that I,,, , = 1 if user
k is served by BBU,,. However, an important constraint
Z%:l L, x» = 1,Vk defines that each user k is served by
only one BBU at time period ¢. Note that, all BBUs are

Nm (1) (6)

assigned the same number of PRBs (Pg;). Another important
constraint is that ZI;:I Lk (t)N]’fB(t) < Pgs, Vm, which
states that the number of PRBs assigned to users served by
the same BBU should not exceed the BBU PRB limitation.
The total load on the network at time ¢ is represented as the
aggregated load on each active BBU at time ¢, which is given

by
n(t) =Y nm(t) @)
m=1

Now the number of required BBUs (M) in the network
at a particular time ¢ can be given as:

Z.f U(t) < Mtotal
Zf U(t> 2 Mtotal

where My is the total number of BBUs available in the
BBU pool and the notation [.] is the ceil function. Moreover,
the load contributed by an active RRH,, of cell 7 in the
network is given by

®)

No. of BBUs= M — 4 |7(®)]
|Mtota1|

K
My, (1) = Z Ik in (t)NlI::B(t) &)
k=1

Network performance determined by Key Performance
Indicators (KPIs). Based on these KPIs, the SON server
identifies optimum BBU-RRH conguration by utilising the
existing number of active BBUs and RRHs, to achieve a
highly stable network with highest achievable QoS with
respect to load demand. Following are the important KPIs
considered for BBU-RRH mapping problem;

4.2 Key Performance Indicator for Load Fairness Index

In this paper, a Jains fairness index % is monitored, which
determines the level of load balancing in the network at a
particular time ¢ and is defined as:

(S ()
M (le\::l U (t))

where M is the number of active BBUs. The range of 1 is
in the interval [4;,1], with a higher value representing a
highly balanced load distribution amongst all active BBUs.
Therefore, maximising v is one of the objectives to achieve

a highly balanced load in the C-RAN.

Y(t) = (10)

4.3 Key Performance Indicator for Average Network
Load

Minimising the average network load can avoid handovers
of users with poor channel conditions in the system. A
user(s) associated to an RRHs may have imperfect channel
conditions with more PRBs requirement to meet desired
data rate. Failure to meet the user’s PRB demand, the BBU
has to perform a handover operation. Therefore, to avoid
unnecessary handovers, minimising the average network
load is considered as a second objective and is given as

_ Yt ()
Nave(t) = IT

where 7,,,(t) is the load on a BBU,,, defined in (6) and M is
number of active BBUs calculated from (8).

(11)
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4.4 Key Performance Indicator for Handovers

Network transition to a new BBU-RRH configuration may
require significant forced handovers. An increased number
of forced handovers in the system is undesirable and leads
to performance degradation. Allocating an RRH to a new
BBUs at a particular time results in forced handovers of all
users associated with the RRH. Since inter-BBU handovers
not only involves BBUs but a signalling overhead between
the Serving Gateway (S-GW) and Mobility Management
Entity (MME). Therefore, it is desirable to achieve a new op-
timum BBU-RRH configuration with a minimum required
handovers. A handover index h(¢) is monitored as a third
objective for load balancing problem and is given as:

- Ifn,k(t”) (12)

where I, (t) is a binary variable that indicates a user’s
association to BBU in previous BBU-RRH configuration i.e.,

m.k(t)=1,if user k is served by BBU,, in previous BBU-RRH
configuration.

h(t) = L (Z%—l PO |I'iz,k(t)

5 RRH CLUSTERING

Proper BBU-RRH allocation can provide enhanced flexibil-
ity in C-RAN network management. However, an important
limitation to consider is the reliable operation of C-RAN re-
garding BBU-RRH mapping for high system performances.
Neighbouring RRHs must be assigned to the same BBU
[12] to support advance LTE-A features like Coordinated
MultiPoint transmission (CoMP) and to avoid unnecessary
handovers among network cells. RRHs clustering is an
approach to support CoMP for interference mitigation in
LTE-A and C-RAN [23]. Therefore, this paper considers that
the RRHs served by the same BBU forms a compact cluster.
This compactness and consistently connected RRHs in a
cluster, not only minimises frequent handovers among cells
but also reduces the inter-cell interference among them. This
is because compact an RRH group shares fewer common
boundaries with other RRH groups. Therefore, the RRHs
proximity is defined by introducing a binary variable A;;,
where A;;= 1, if RRH; and RRH; are adjacent else A;;=
0. If a cluster has multiple RRHs, then the RRHs in that
cluster must be adjacent and connected. To formulate the
connectedness of a cluster and proximity of the RRHs, let
S1 be any proper subset of the set of RRHs served by BBU,,
(Z.), such that S1 C Z,,, S1 # 0, and S1 # Z,,. Let S2 be
another subset of Z,,, such that, S2 = Z,,, — S1, i.e., S2 is the
complementary set of S1. To confirm that the RRHs in Z,,
are connected, the following property must be satisfied.

PIPIES

i€S1 jes2

(13)

For proper BBU-RRH configuration, a QoS function is
needed which is the weighted combination of KPIs de-
fined in (10), (11), and (12). The multiple objectives are
combined into a single QoS objective function. This paper
represents QoS as the following maximisation problem with
constraints:

Max QoS(t) = atp(t) — Bave(t) — (1 — a — B)h(t)

st. Cr:Y > Ay >1VYS1,82€Z,,Vm € {1,2,..M}
1€S1 ;€S2

K
Cy: > Ini(t)NF, < Prp,¥m € {1,2,..M}
k=1

M
Cs: Y Ini(t)=1Vke{1,2,.. K}
m=1

(14)
Both o and /3 are control parameters of the QoS function.
The main objective is to maximise the QoS function.

6 PoOweR MoDEL FOR C-RAN

This section explains the necessary aspects needed to assess
the power consumption of C-RAN. However, a more de-
tailed description of the components involved in a C-RAN
power model is given in [24]. The three most important
parts considered for the power model are described as
follows.

6.1 BBU Power estimation model

The BBU performs a different set of functions (/3;) which
includes scheduling of PRBs, Forward error correction,
FFT and OFDM specific processing, filtering, modula-
tion/demodulation, and transport link related functions,
etc. These features can be measured in Giga Operations
per Second (GOPS) and then translated into power figures.
About 40 GOPS per Watt is estimated as the power cost of a
large BBU [25]. The power model for the BBU can be given
as:

w

Py = > PIf AT W

i,BBU
i€ Ipp

(15)

where PféBU in Watts represents the power consumption of
BBU with respect to BBU functions. A is the number of
antenna chains/RF transceivers with x{' scaling exponent.
W is the bandwidth share used in transmission with a
scaling exponent x;’. In [26], the authors model BBU opera-
tions with exact scaling components and reference values to

calculate BBU power consumption, shown in Table.1

6.2 RRH power estimation model

An RRH consist antenna chains/ RF transceivers, each with
its own power amplifier (PA). The PA is main element of
consideration as it consumes most of the power within an
RRH. The power consumption of a PA is affected by its
power efficiency (7,,). The power consumed by the PA can
be given as Py, = nPAIZ;X , where P, is the output power
feed)
of the PA, which depends on the bandwidth share (), i.e.,
the actual number of physical resource blocks (Ngp) used
for transmission and the output power of the antenna Py
(Prx = PoutX). Oteed represents the feeder loss. Moreover, the
RF transceiver units of an RRH are responsible for functions
like signal modulation/demodulation, voltage controlled
oscillation and mixing, AC-DC and DC-AC conversions,
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TABLE 1

BBU operations and their scaling values with transmit antennas and

bandwidth
Processing type, % GOPS | Pref.  [W] | z¥
Time Domain Processing 360 9.0 1 0
Frequency Domain Processing 60 1.5 2 1
Forward Error Correction 60 1.5 1 0
Central Processing Unit 400 10.0 1 0
Common Public Radio Interface 300 7.5 1 0
Leakage 118 3.0 1 0

and low noise, gain amplification. The power consumed by
an RRH can be modelled as:

A
PRRH = Z(PPA + PRF)

a=1

(16)

where a € {1,...,A} denotes the number of antenna/RF
chains.

6.3 Optical transceiver power estimation model

In C-RAN architecture, the front-haul connectivity with high
bandwidth, low cost, and low latency requirements for
transport networks is challenging. Several factors influence
the operation of optical transceivers such as the technology
used, the operating conditions, and the output power re-
quired, which in turn affect the power consumption. From
a power consumption perspective, the optical transceivers
can be divided into two modules. The optical transmitter
module, in which the OFDM electrical signals are mod-
ulated over optical carriers using an external or direct
modulated lasers. And a receiver module which detects the
optical OFDM signals either by direct detection or coherent
detection. The power consumption of the optical transceiver
as described in [27] can be given as:

Prrans = (Plaser + Pariver + PI/O)TX + (PPD + Pamp + PI/O)RX
17)
where Plaser, Pariver, P1/0, Ppp, and Payp are the powers con-
sumed by direct-modulated laser, electronics driving the
laser, the electrical input/output interface, photodetector,
and the trans-impedance and limiting amplifiers. This pa-
per consider a point-to-point (PtP) transceivers rather than
point-to-multipoint, because the PtP link loss is driven by
distance and used operating wavelength only, i.e., the link
loss of PtP is as low as 6dB with a 20 km network reach [28].
The total power consumption of a C-RAN (P, ) can be
estimated by summing the power consumed by three main
parts of the network along with power consumed by other
components P, such as power conversions(AC-DC, DC-
DC) and cooling, i.e.,

PC-RAN = Z(PBBU + PTRANSB) + Z(PRRH + PTRANSR) + POTHF.R

(18)
Where Prrans, and Prrans, indicates the power consump-
tion of PtP transceivers located at each BBU and RRH,
respectively. According to [29], base stations with a total
power consumption < 500 Watts do not require a cooling
system. This can be applied to RRH in C-RAN if its compo-
nents (i.e., PA, RF, and optical transceiver) require an overall

Py

load dependent
consumption

Psnpply w
>
e

Po

Pslccb*

o

Idle consumption

Prmax

XPmax /w

Fig. 3. Structure of a Cloud Radio Access Network represented as SON

power less than 500 Watts. In this paper, the cooling power
for RRH is ignored considering supply power as the only
overhead.

From [24], the supply power required for a base sta-
tion can be estimated as an affine function of transmitting
power. The power consumption can be expressed by a
load-dependant part that linearly increases with a power
gradient (slope) Ap and a static load independent part Pstasic
as shown in Fig.3. Moreover, the supply power reaches
a maximum P; when the transmitting power reaches the
maximum limit Pp,«. A base station may enter an idle mode
(sleep mode), with minimum power consumption (Psjeep)
when it is not transmitting. The total supply power for a
base station can be formulated as:

P14+ Ap Prax(x — 1)
Psleep

if0<y<1

19
ifx=0 (19)

Psupply(X) = {

where P1 = Pypatic + AP Prax- X is a scaling parameter which
indicates the bandwidth share, i.e., x = 1 indicates that
the system is transmitting with full power and bandwidth
whereas x = 0 represents an idle system. The basic power
model presented in (19) is parameterised to understand the
contribution of different parameters. Parameters which are
assumed to be constant or having negligible effects are also
highlighted. The following approximations are made:

e Both the BBU and Radio Frequency (RF) power con-
sumption, linearly scales with the number of Antennas
(A) and bandwidth (W), i.e., Pyy = A(%)Pg‘f& and
Prr = A( BW‘TAZ)TAI )PRr . Where Phy, and Pk, are parameterised
power consumption of BBU and RF, respectively.

e Each antenna unit of an RRH has a power ampli-
fier (PA). The power consumed by a PA depends on the
maximum power transmission per antenna unit (%) and
its efficiency (7,,). Losses between the antenna and PA are
known as feeder losses (0feeq) which may be ignored since
PAs are placed close to the antennas [30].

e The loss factors of DC-DC, AC-DC conversions, main
supply units (MS), and cooling power consumption for the
BBU pool are approximated by o'nc roor, Oms roors A Teoor, poor -
Whereas for the RRHs, the loss factors are approximated
by Opcrrn and oysgen- Moreover, the optical fibre losses
between BBUs and RRHs are approximated by a loss factor

Ooptical -
e Power consumption of the optical transceivers linearly
scales with the number of BBUs and RRHs.



IEEE TRANSATIONS ON NETWORK SCIENCE AND ENGINEERING, TNSE-2017-07-0086.R1 7

If the power consumed by a single BBU serving a single
RRH is:

Pl = PBBU + PRRH (20)
A pm
P, — A(w,o— )Prsu + Prrans;
! (1 - UDC,POOL)(l - UMS,POOL)(l - UCOOL,I’OOL) (21)
+A(BW‘:>TAL )PRE + (Pmax/A-7) + Prrans,

(1 - JDC,R)(l - UMs,R)(l — Oy tical)
P

Then the total power consumed by all active BBUs and
RRHs in a C-RAN network can be modelled as

M
Psupply = Z Pygy + Z Preu (22)
m=1 n€Zm

where M represents the number of active BBUs in the
network and Z,, represents the list of RRHs handled by
BBU,,

7 CELL DIFFERENTIATION AND
(CDI) ALGORITHM

According to the intuitive analysis above, a CDI algorithm
is proposed in this section and Fig.4. Network informa-
tion is collected in the first step and analysed for proper
cell differentiation and integration. The algorithm seeks to
utilise the network resources efficiently by calculating the
necessary number of BBUs and RRHs to serve capacity
demands at the end of each CDI cycle. Apart from a single
BBU required to serve load requirements, proper BBU-RRH
configuration is adjusted at the end of optimisation step
by comparing the analysed and optimised QoS values.Note
that the QoS metrics can be different depending on load
intensity and the number of active BBUs and RRHs in
the network. For the optimisation part of the algorithm, a
Discrete Particle Swarm Optimisation (DPSO) algorithm is
developed as an Evolutionary Algorithm (EA) to solve the
BBU-RRH configuration problem and is explained in the
next section. The optimisation process continues until the
CDI cycle is completed. Note that, the CDI algorithm shown
in Fig. 4 is triggered at the beginning of each CDI cycle.
The pseudo-codes for semi-static cell differentiation and
integration are given in Algorithm 1 and Algorithm 2,
respectively. An important consideration is the first asso-
ciation of RRHs to the required number of BBUs during cell
differentiation and integration, before identifying a proper
BBU-RRH mapping in the optimisation phase. Algorithm
4 and 5 are supporting algorithms for Algorithm 1, and 2
which covers all possible cases of initial BBU-RRH assign-
ment during differentiation or integration of cells along with
cases where the number of BBUs are increased, decreased
or remain unchanged. The initial BBU-RRH mapping is
necessary for utilising the available BBU resources in an
efficient manner so as to prevent high blocking rate. The
blocking rate of the network at time ¢ can be measured as

ZI’:T/IL:1 lej:l Im,k(t)
K

where I,,, 1.(t) as discussed earlier, is a binary indicator such
that I,,, ,, = 1, if user k is served by BBU,, at time ¢. Note
that, users are served based on the choice of scheduler used

INTEGRATION

Blocking rate = |1 — } %100 (23)

s ,/ Collecting Network Information by calculating

—User location indicator u
—BBU — RRH mapping vector r

I

Analyse network information for cell differentiaf
integration using Algorithm 1 and 2

Ts a single BBU required to serve
rrrrrrr tload demands?

Analyse QoS in
— RRH config:
QoS = ay(t) — B

Optimise QoS in C — RAN and find new BBU — RRH «
configuration using Algorithm 3

a2
=
E
g
=
<
=
o
2
s
=
E
g
|
o
=

Re — configure the network

1

CDI cycle ? No

Yes
PR L ==

Fig. 4. Block Diagram of CDI Algorithm for one CDI cycle

by a BBU. Moreover, the amount of resource shortage (or
PRB shortage) in the network based on users PRB demand
can be estimated as follows

M
Resource Shortage = Z max[(nm(t) -1, 0} x 100 (24)

m=1

Note that, the CDI algorithm triggers Algorithm 1 and
Algorithm 2 sequentially, i.e., Algorithm 2 is triggered im-
mediately after the Algorithm 1 is executed. In the interest of
simplicity and understanding, the CDI algorithm is divided
into separate pseudo-codes.

7.1 Discrete Particle Swarm Optimisation (DPSO)

PSO utilises a population (or swarm) of particles, where
each individual particle represents a solution [31], namely
BBU-RRH association vector r defining the BBU-RRH con-
figuration. As the QoS represented in (14) is considered as
the main objective function, PSO seeks to maximise the QoS
function by finding the best solution vector {r11, r12, ..., I }.
PSO utilises a group of particles (or solutions) to probe the
solution space in a random way with different velocities. To
direct the particles to their best fitness values, the velocity of
each particle is changed stochastically at each iteration. The
velocity update of each particle j depends on the historical
best position experience (pbest) of the particle itself and the
best location experience of neighbouring particles i.e., the
global best position (gbest) [32] and is given as

I -1

Vj = ’U)Vj

1<j <A

+ c1e1 (pbest; — xz) + coe9 (gbest; — CCE)

(25)

where |A| represents the population (or swarm) of particles
and I represents the Iteration number. z! is the current
position of particle j in iteration I and €y, &2 are random
numbers between 0 and 1. Both ¢; and ¢y are acceleration
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Algorithm 1: Pseudo-code for Semi-static Cell Differ-
entiation
Input : Current network load 7 (¢) from (7)
BBU-RRH mapping vector r
Required number of BBUs from (8)
if No. of active BBUs =1 then

1
2 if 7 (t) > |Pgg| then
3 -Activate required No. of BBUs
4 -Differentiate cell into tier-2 RRH structure by
BBU-RRH mapping using Algorithm 4
5 -Update BBU-RRH mapping vector r
6 fori=1to C do
7 -Select set S}
8 -Compute 7ggy;, () from (9)
9 if Mrge, (8) > |Prg| then
10 -R+ S; {Add S; to R}
1 -Diffentiate cell C; by activating all
RRHs in S; an map them to BBUs
according to Algorithm 4.

12 -Update BBU-RRH mapping vector r.

13 end

14 end

15 else

16 -No cell differentiation required.

17 -Tier-3 RRH structure remains.

18 end

19 else

20 if No. of active BBUs < No. of required BBUs then

21 if All possible RRHs deployed in the network are

active then

22 -Activate the required No. of BBUs.

23 -Cells can not be differentiated further.

24 -Update BBU-RRH mapping vector r

25 else

26 -Activate required number of BBUs

27 fori=1to Cdo

28 -Select set S}

29 -Compute 7ggy;, () from (9)

30 if Mgge, (8) > |Prg| then

31 -R+ S; {Add S; to List R}

32 -Differentiate cell C; further to tier-1
RRH structure by mapping newly
activated RRHs to active BBUs
using Algorithm 4

33 -Update BBU-RRH mapping vector r

34 end

35 end

36 end

37 end

38 end

constants that pulls the particle towards best position. Val-
ues in the range 0-5 are chosen for ¢; and cy. The inertial
weight w represents the effect of preceding velocity on
the updated velocity. Choosing an optimum value for w
can assist a balanced proportion between global and local
exploration of the search space. Usually values between 0-1
are selected for w [33]. A value of 0.9 for w is selected in this
paper. The new position of particle j for the next iteration

I+ 1 will be:
eS|

! (26)

R | 1
=Z;+V;

PSO terminates if a stopping criterion is satisfied, e.g. after
reaching a predefined number of iterations I,,q,. Since
the solution vector, r (or particle) should be real-valued,
the standard PSO algorithm can not be applied to solving
this discrete optimisation problem. In this paper, a Discrete
Particle Swarm Optimisation (DPSO) is developed to solve
the QoS maximisation problem defined in (14). The pseudo
code of DPSO is given in Algorithm 3

Algorithm 2: Pseudo-code for Semi-static Cell Integra-
tion

Input : Current network load 7 (¢) from (7)
BBU-RRH mapping vector r
Required number of BBUs from (8)

if No. of active BBUs =1 then

1
2 -No cell integration required.
3 -A high-power BS serves the geographical area.
4 else
5 if No.of required BBUs=1 then
6 -Integrate all cells into tier-3 RRH structure,
i.e., a high power BS should serve the
geographical area.
7 -Switch-off remaining BBUs.
8 -Update BBU-RRH mapping vector r.
9 else
10 fori=1to C do
11 -Select set .S;
12 for j=1 to end of S; do
13 -Compute load 7ggs,; (t) from (9)
14 -Sum=Sum-+1ggs,; (t)
15 end
16 if Sum < Py then
17 -Integrate all cells by switching-off all
RRHs in set S; except RRH;; .
18 -Offload RRHs to required number of
BBUs according to Algorithm 5.
19 -Update BBU-RRH mapping vector r.
20 end
21 end
22 -Run Algorithm 5
{Case of BBU reduction and no integration}
23 end
24 end

8 COMPUTATIONAL RESULTS AND ANALYSIS

To make the simulation more realistic, the user arrivals in
Fig. 6 follows a Poisson process with rate A\. However, due
to the dynamic spatial and temporal nature of user traffic,
the user arrival is modelled as a time-inhomogeneous pro-
cess. This is achieved by multiplying the time-homogeneous
Poisson process with traffic intensity parameter A and the
rate function f(t) shown in Fig.5. The rate function is
unit-less and reshapes the traffic from constant intensity
to an analogous time varying profile that reflects typical
traffic patterns in a real cellular network. If users arrive
in the system following a Poisson process with intensity A
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Algorithm 3: Discrete Particle Swarm Optimisation
(DPSO) Algorithm

1 -I1=0;
2 -Generate initial Swarm with random position and
velocity (r{,rd, ..., r‘IA‘).

fori =1to|A| do
{Initialise best positions of each particle}
pbest; =r!

end

-Qo0S5=0;

-{Find QoS of each particle using (14) i.e.,}

for i=1 to |A| do

10 -Select r! from pbest;

u | if f(r]) > QoS then

2 | | QoS=f(r])

13 end

14 end

15 gbest=QoS;

16 -Update positions and velocities of all particles in the
swarm using equation (25) and (26)

17 while I < I,,,,. do

O 0 N Ul e W

18 for i=1 to |A| do

19 -Select r! from the swarm

20 Fi=f(r})

21 -Select 7! from pbest

2 Fy = f(rh

23 if F} > F5 then

2 pbest, = r!

25 QoS=F,

26 if QoS>gbest then

27 gbest=QoS;

28 T =1

29 end

30 end

31 -Update positions and velocities of all particles
in the swarm using equation (25) and (26)

32 end

33 I=1+1;

34 end

users/min, with a constant service time of h (60 sec), then
the number of users at time ¢ is calculated as K(t) = xhf(t).
Where y ~ Poiss ()) is a random variable with mean A (i.e.,
A = 200). Moreover, different data rate requirements are
assumed for end users based on 3GPP standard simulation
parameters [34] i.e., 4-25 kbps for audio, 32-384 kbps for
video, 28.8 kbps for data, and 60 kbps for real-time gaming
services. Based on uniform user distribution and network
load shown in Fig. 6, an actual number of active BBUs and
RRHs with respect to time is shown in Fig.7.

The BBU-RRH association vector r = {ri1,r12,...,Tin}
is maintained and updated after each CDI cycle. Newly
activated RRHs and BBUs in the network are mapped
according to Algorithm 4 and 5. In this paper, a maximum
of 49 RRHs and 5 BBUs are deployed in the network to
support semi-static cell differentiation and integration. The
initial BBU-RRH mapping at the beginning of a CDI cycle
might degrade the network QoS. Therefore, dynamic BBU-

Rate function, f(t)
© o o o o o o
w iN o ) N » © -

o
N

0.1

00:0002:0004:0006:0008:0010:0012:0014:0016:0018:0020:0022:0000:00
Time [Hours]

Fig. 5. Rate function for time in-homogeneous user arrivals

RRH mapping is proposed to identify proper BBU-RRH
mapping.

Before going to a more thorough analysis of the pro-
posed CDI concept, the efficiency of DPSO over two differ-
ent problem scenarios, P, P2, and compared with Exhaus-
tive Search (ES) algorithm . Both scenarios consists of 5 ac-
tive BBUs with 19 active RRHs including two differentiated
cells (Tier 1, level 2, RRH structure) for Py, and 49 active
RRHs (Tier 1, level 7, RRH structure) for Ps, respectively.
The aim is to analyse DPSO performance for small and
large networks. User distribution within each cell is uniform
where 6 and 25 users are considered for non-dense and high
dense cells, respectively.

40

—=— Initial load before CDI
-8~ Actual load after CDI

351

Network Load

0
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00
Time [Hours]

Fig. 6. Actual network load with respect to time

For Monte Carlo analysis, the DPSO and ES algorithms
are repeated 50 times with different initial BBU-RRH set-
tings for each problem and results obtained are averaged.
The load fairness index, averaged network load, and han-
dover index are represented in Figs 9, 10 and 11, respec-
tively, over 200 iterations for both P; and P5. The optimum
values shown in the figures and Table.2, are achieved by
exhaustively searching for all possible solutions N™) using
ES algorithm, which helps in demonstrating the improve-
ment in each iteration of the DPSO algorithm. Note that, ES
algorithm is independent of iterations.

Fig.8 shows that the DPSO algorithm converges to the
optimum solution in P; with a Convergence Rate (CR) of
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TABLE 2
Computational Results for DPSO and ES
P (19RRH) | P, (49 RRH)
Quality of Service DPSO 0.599142 0.588970793
ES 0.599142 0.592940793
Load Fairness Index DPSO 0.984797 0.97168
ES 0.984797 0.97556
DPSO 1.506 1.4962
Average Network Load ES 1506 14663
Handover Index DPSO 0.38095 0.38748
ES 0.38095 0.383659

0.825. Where CR is defined as the number of times, the
DPSO finds a best or optimum solution during the entire
number of iterations. This implies that over 200 iterations,
the optimum solution is achieved 165 times for P;. For
P, the CR of DPSO algorithm is 0.12. However, the opti-
mum solution is not reached over 200 generations. DPSO
algorithm achieves the best value 24 times i.e., after 176
iterations and 176x|A| fitness evaluations, which is still
99.53% of the optimum value achieved by ES algorithm after
an enormous 5% (MV) fitness evaluations.

0.6 — — — — — . — - -
:
H
H
H
0.55 1
H
— H
w '
o l
S H
@ 05,
3
H
3 i --- DPSO: 19 RRHs, 5 BBUs
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Zoasp —— DPSO: 49 RRHSs, 5 BBUs| -
E] —— ES: 49 RRHs, 5 BBUs
S
0.4 i
0.38 . . . . . . . . .
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Iterations

Fig. 8. QoS values for DPSO and ES

Fig.9 shows that the DPSO algorithm converges to the
optimum load fairness index value after 13 iteration in
P,. However, in Py, the optimum value can not be found
over 200 iterations, and the best load fairness index value

is achieved after only 176 iterations and 176x|A| fitness
evaluations, which is 99.57% of the optimum value found by
ES algorithm. ES algorithm performs 5 fitness evaluations
to find the optimum value which is a considerable amount
of fitness evaluations.

0.95
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— DPSO: 49 RRHs, 5 BBUs
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Load Fairness Index
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Fig. 9. Load fairness index values for DPSO and ES.

Figs 10 and 11 displays the convergence of DPSO algo-
rithm to the optimum value for average load value and han-
dover index in both Py and P5 . In Py, optimum are achieved
after 12 and 38 iterations for average network load and
handovers, respectively. For Py, the DPSO algorithm could
not find the optimum value over 200 iterations. However,
the best possible value achieved for average network load
and handover index are 98% and 99.01% of the optimum
value found by ES algorithm, respectively. ES algorithm de-
termines the optimum value after performing 549 enormous
fitness evaluations whereas the DPSO algorithm performs
67x|A| and 145x|A| to find the best value for average
network load and handover index, respectively. Note that,
the o and S control parameters in (14) are selected by
performing an exhaustive search (ES) algorithm to identify
the optimal BBU-RRH setting for P;. Both a and 8 values
are orderly set to 0, 0.1, ..., 1 with a constraint o + 8 < 1 as
shown in Fig. 12. An optimal BBU-RRH setting is found us-
ing ES algorithm for each pair of a and 3. It is observed that
setting a higher value for load fairness index (until o = 0.8)
not only reduces the resource shortage but also improves
network balance. Setting values for o > 0.8 results into
improper BBU-RRH mapping which implies that maximis-
ing network load balance is overly considered compared to
minimising average network load and handovers, resulting
into an increased resource shortage. This paper considers
a = 0.8 and 8 = 0.1 which means assigning a 10% weight
to handover minimisation.

For a more thorough analysis, the proposed CDI concept
is compared to a fixed C-RAN scenario (F-CRAN). The BBU
cloud holds five BBUs in both cases. However, the fixed
C-RAN scenario does not support cell differentiation or
integration, and only 7 RRHs serves the entire macrocell
coverage area. The dynamic BBU-RRH mapping is enabled
in the fixed C-RAN scenario which shows 57 possible BBU-
RRH mapping solutions to choose from at the beginning of
each CDI cycle. The number of possible BBU-RRH mapping
solutions for CDI scenario at the start of each CDI cycle
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Fig. 10. Average network load for DPSO and ES.

is MY, where M and N represents the number of active
BBUs and RRHs, respectively. Moreover, an increasing user
arrival is considered in the network with random data rates
requirement as explained earlier. However, a Monte-Carlo
analysis is performed, where 100 uniformly distributed
users are envisaged for each instance, and the average of all
distributions are taken into account regarding network load,
throughput, blocked users, and resource shortage analysis.
Figs 13 and 14 shows the relative performances regarding
average blocked users and average network throughput
with Proportional Fair (PF) and Round Robin (RR) schedul-
ing techniques. Since the CDI algorithm includes 2 phases
of BBU-RRH mapping, i.e., the initial BBU-RRH assignment
during cell integration/differentiation and the optimum
BBU-RRH setting achieved by DPSO in the second step, the
results of both phases are analysed.

Y L DPSO: 19 RRHs, 5 BBUs
042 - - ES:19 RRHs, 5 BBUs
i —— DPSO: 49 RRHs, 5 BBUs
04154 Y e ES: 49 RRHs, 5 BBUs 4
i

Handover Index
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Fig. 11. Average handovers for DPSO and ES.

The simulation results demonstrate the advantage of
using CDI-enabled C-RAN (CDI-CRAN) instead of a F-
CRAN setting. When a fixed C-RAN is considered, the
average blocked users in the network are much higher
with significantly lower average throughput, using any
scheduling technique, as shown in Figs 13 and 14, pro-
vided that the dynamic BBU-RRH mapping is also enabled.
However, an interesting observation is the significant drop
in the averaged blocked users and the necessary increase
in average network throughput in CDI-CRAN compared

Algorithm 4: Initial RRH association to active BBUs
during cell differentiation.

Input :List A of newly activated BBUs
List R containing sets of RRHs supporting cell
differentiation

1 if A is not empty then

2 for m=1 to No. of active BBUs do

3 -Compute 7, (t) from (6)

4 if 0, (t) < lower limit then

5 | A« BBU,,{Add BBU,, to List A}

6 end

7 end

8 1=1;

9 while not the end of List R do

10 -Select It" set from list R

11 m=1;

12 for j=1 to end of set S; do

13 if m> |A| then

14 ‘ m=1

15 end

16 BBU,, - RRH;j{Map RRH,; to BBU,,
except Ry }

17 m=m—+ 1;

18 end

19 1=1+1;

20 end

21 else

22 for m=1 to No. of active BBUs do

23 -Compute 7, (t) from (6)

2 if lower limit < n,,,(t) < Upper limit then

25 | A« BBU,,{Add BBU,, to A}

26 end

27 end

28 if A is still empty then

29 | A < All active BBUs

30 end

31 -Sort A in increasing order of BBU loads

32 1=1;

33 while not the end of List R do

34 -Select I*" set from List R

35 m =1

36 for j=1 to end of set S; do

37 if m> |A| then

38 | m=1;

39 end

10 BBU,, + RRH,,;{Map RRH,; to BBU,,
except RRH;; }

a1 end

42 I=1+1;

43 end

44 end

to F-CRAN. This indicates that during cell differentiation,
an overloaded cell divides into multiple smalls cells, and
not only reduces the user to RRH distances but also the
PRB demands resulting from high SINR and low path
loss values. A further decrease in average network load
is observed after proper BBU-RRH mapping, providing a
balanced network load across the active BBUs. Note that,
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Algorithm 5: Initial RRH association to active BBUs
during cell integration.

Input :List A of No. of active BBUs
No. of required BBUs
BBU-RRH mapping vector r

1 if No. of required BBUs < |A| then
2 for m=1 to |A| do
3 for i=1to C do
4 for j=1 to c do
5 -Select RRH;; from BBU-RRH vector r
6 if RRH;; = m then
8 {Z,, is a List of RRHs handled by
BBU,, }
9 end
10 end
1 end
12 end
13 -Sort List A in decreasing order of BBU loads
14 for m=1 to end of List A do
15 if m # |No. of required BBUs| then
16 | A+ BBU,,{Ais a List of required BBUs}
17 else
18 B + BBU,,
19 {B is a List of BBUs to be switched off}
20 end
21 end
22 | -Sort List A in increasing order of BBU loads
23 for i=1 to end of List B do
24 -Select i*" BBU from List B
25 -Select List Z,,, of the i*" BBU
26 m=1;
27 for j=1 to end of Z,, do
28 if m> |A| then
29 ‘ m=1;
30 end
31 -Select RRH at j'" index in List Z,,,
32 -Select BBU at m*" index of List A
33 -BBU,,, +~ RRH’{Assign RRH j to BBU m}
34 m++
35 end
36 end
37 -Switch off all BBUs in List B
38 end

cell differentiation increases the number of RRH interferers
in the network. However, RRHs served by the same BBU
does not contribute to the overall interference experienced
by users served by the same BBU.

From the results shown in Fig.14, it is observed that
the average network throughput increases by 45.53% in
the CDI-CRAN compared to F-CRAN, both enabled with
PF schedulers. Whereas with RR schedulers, an increase
of 42.102% is observed. Moreover, the average throughput
difference between initial and optimum BBU-RRH mapping
in a CDI-enabled C-RAN, with PF and RR scheduling is
4.0219% and 4.126%, respectively. This indicates efficient
resource utilisation during cell differentiation and integra-

Resource shortage [%]

Fig. 12. Resource shortage for different « and .

TABLE 3
Comparison results for fixed and CDI-enabled C-RAN
Blocking Resource
Rate[%] Shortage
Initial Proper Initial Proper
PF | RR PF RR
F-CRAN [35.99]81.66| 35.34 | 81.10 | 16.44 x 103 | 16.42 x 103
CDI-CRAN | 26.87 | 67.33 | 25.809 | 62.13 | 38.79 x 102 | 38.47 x 102

tion, ensuring minimum blocked users until a proper BBU-
RRH setting is identified. Note that, the initial BBU-RRH
mapping supported by Algorithm 4 and 5, is an important
consideration in the overall CDI concept (as explained ear-
lier). About 23.149% reduction in the average number of
blocked users with PF scheduler and 20.903% with RR is
observed in Fig. 13. Moreover, the average resource shortage
drastically decreases in the CDI-CRAN, compared to fixed
C-RAN as shown in Table.3 provided that both scenarios
have an equal amount of resources available (i.e., 5 BBUs,
5x100 PRBs). A 76.57% decrease in average PRB shortage is
estimated with CDI-CRAN compared to F-CRAN.

-%-- F-CRAN initial(PF)

a0 -| 8-~ F-CRAN proper(PF) ’/
—o- CDI-CRAN initial(PF) ad
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Average blocked users

w00 500 00
Number of users

Fig. 13. Average blocked users for fixed and CDI-enabled C-RAN.

Fig.15 shows the average power consumed by the C-
RAN network for both CDI and fixed setting for different
schedulers. Despite the fact that the geographical area is
served with more RRHs in CDI-CRAN, the total power
consumed by the network is still lower. An average de-
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Fig. 15. Average power consumed by fixed and CDI-enabled C-RAN.

crease of ~ 15.28% and ~ 16.02% in the average power
consumption is estimated in the CDI-CRAN with PF and RR
schedulers, respectively, compared to a fixed C-RAN setting.
Fig. 16 shows the SINR thresholds versus the probability of
coverage results. The CDI activated C-RAN performs well
compared to fixed C-RAN regarding coverage performances
for 1000 users, provided that no interference mitigation
techniques are applied in this work. Note that, the path-
loss models for different tiers of cell differentiation are
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Fig. 16. Probability of coverage versus SINR threshold

not identical, the probability of coverage still has a linear
behaviour for SINR thresholds within the range of 0dB to
5dB for both cases.

9 CONCLUSION

The concept of cell differentiation and integration in C-RAN
is examined with an objective to utilise network resources
efficiently without degrading the overall network QoS. An
energy efficient C-RAN network is considered to accommo-
date traffic by scaling the BBUs and RRHs as well as main-
taining a balanced network via proper BBU-RRH mapping,
formulated as a constrained integer programming problem.
A CDI algorithm is developed for C-RAN and tested for
comparison with a fixed C-RAN setting. Computational
results based on Monte Carlo analysis shows an average
throughput increase of 45.53% with 23.149% decrease in
average blocked users and 76.57% reduction in average
resource (PRBs) shortage. The CDI algorithm hosts a DPSO
algorithm which is developed to find optimum BBU-RRH
configuration dynamically. The performance of DPSO is
tested and compared to ES. Using two benchmark problems,
the DPSO delivered noticeably faster convergence compared
to ES, which makes the CDI algorithm more reliable for a
self-organised C-RAN. Moreover, the power model for C-
RAN is proposed to estimate the overall network power
consumption. It is noticed that despite deploying a higher
number of RRHs (49) in a given geographical area for CDI
enabled C-RAN, the power consumption of a fixed C-RAN
for the same geographic area is still higher by ~ 15.28% and
16.02% for PF and RR schedulers, respectively.
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