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Abstract

Active thermography provides infrared images that contain sub-surface defect

information, while visible images only reveal surface information. Mapping in-

frared information to visible images offers more comprehensive visualization for

decision-making in rail inspection. However, the common information for regis-

tration is limited due to different modalities in both local and global level. For

example, rail track which has low temperature contrast reveals rich details in

visible images, but turns blurry in the infrared counterparts. This paper pro-

poses a registration algorithm called Edge-Guided Speeded-Up-Robust-Features

(EG-SURF) to address this issue. Rather than sequentially integrating local and

global information in matching stage which suffered from buckets effect, this al-

gorithm adaptively integrates local and global information into a descriptor to

gather more common information before matching. This adaptability consists of

two facets, an adaptable weighting factor between local and global information,

and an adaptable main direction accuracy. The local information is extracted

using SURF while the global information is represented by shape context from
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edges. Meanwhile, in shape context generation process, edges are weighted ac-

cording to local scale and decomposed into bins using a vector decomposition

manner to provide more accurate descriptor. The proposed algorithm is qual-

itatively and quantitatively validated using eddy current pulsed thermography

scene in the experiments. In comparison with other algorithms, better perfor-

mance has been achieved.

Keywords: Rail inspection; infrared and visible image registration; local

feature; global feature

1. Introduction

Rails are exposed to intense train loading and dynamic weather/geographic

conditions, resulting in safety hazard like plastic deformation, wear, flaking,

head checking, cracks, squats, corrugation etc. Some hazards also bring pollu-

tion to the environment. For example, rails with heavy corrugation not only5

cause train vibration but also make serious traffic noise pollution to the sur-

roundings [1, 2]. Routine rail inspection is vital for rail operation. And for the

benefit of both customers and railway companies, inspection techniques cannot

bring serious disruption for transport line [3, 4]. To this end, inspection vehicles

running on-line with on-board non-destructive testing and evaluation (NDT&E)10

techniques are cost-effective [5]. These techniques test the integrity and service-

ability of rails based on different physical parameters. When equipped with

cyber-enabled ability, these techniques play an important role in intelligent

transport systems [5, 6].

Generally, the widely used NDT&E techniques in rail industry are from (a)15

visual, (b) electromagnetic, (c) vibration, and (d) thermal perspective. (a) From

visual inspection perspective, on-board track inspection systems based on com-

puter vision are widely applied [6, 7, 8, 9]. These visual inspections conduct fast

assessment to the surface condition of rail tracks. Such visual inspection sys-

tems usually use high-speed cameras to search for broken clips in real-time with20

advanced pattern recognition algorithms. But visual inspection can only obtain
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surface defect information. (b) From electromagnetic inspection perspective,

eddy current inspection is one of several NDT methods that use the principal

of electromagnetism. This method is sensitive to the surface and subsurface

cracks, but the penetration depth is limited due to skin effect [10, 11]. Eddy25

currents are created through a process called electromagnetic induction. When

alternating current is applied to conductors, such as copper coil, a magnetic field

develops in and around the conductor. Other electrical conductors which locate

in the proximity of this changing magnetic field will induce current. Variations

in the electrical conductivity and magnetic permeability of the test object result30

in changes in eddy currents. Measuring these changes can test the presence of

defects [12]. Besides eddy current, another method in this category which used

in rail inspection is magnetic flux leakage (MFL) [10, 13]. Magnetic flux lines

generated by a magnetizer are coupled into test objects simply by air. Any ge-

ometrical discontinuity or local anomalies are manifested as an abrupt change35

of magnetic permeability and force magnetic flux to leak out of the object in

the poles of yoke in the air. Leakage magnetic field which contains information

of defect can be collected by magnetic field sensors. For the advantages of its

air coupling, MFL testing is suitable for automatic in-line and real time defect

inspection. (c) Vibration-based techniques can test the surface and inner defect.40

They normally use piezoelectric transducers configured with different angles and

positions to generate and receive vibration signals. The popular technique in

this category is ultrasonic guided waves (UGW) [14, 15]. UGW employs me-

chanical stress waves that propagate along an elongated structure (e.g., rails and

pipelines) while guided by its boundaries. The waves carry defect information45

when captured by sensors. This method can detect very long distance in a sin-

gle test. Traditional ultrasonic inspection normally requires a coupling medium

to promote the transfer of sound energy into the test specimen, which leads to

low efficiency in rail inspection. Couplant free transduction can be achieved

using electromagnetic acoustic transducers (EMATs) [16]. EMATs also make50

use of eddy current and the current is at the desired ultrasonic frequency. If

a static magnetic field is present, these eddy currents will experience Lorentz
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forces, thus eliminating couplant. But ultrasonic inspections are difficult to de-

tect the defects in an acoustic shadow of rails and have low scan speed do to

excitation complexity [17]. Another two techniques in rail inspection which do55

not need excitation are acoustic emission testing (AET) [17] and axle box accel-

eration (ABA) [18, 19]. Acoustic emission is transient elastic waves produced

by a sudden redistribution of stress. Sources of AE vary from natural events

like earthquakes and rock bursts to the initiation and growth of cracks, slip and

dislocation movements etc. AE systems can only qualitatively gauge how much60

damage is contained in a structure [20]. ABA measures the vibrations of the

wheel in the vehicle-track system, excited during the wheel-rail interaction, it

can give an indication of an irregularity at the wheel-rail interface. ABA has

the ability to measure the irregularities (usually short track defects) of the rail

at line speeds. (d) From thermal inspection perspective, infrared/thermal NDT65

methods measures surface temperatures of rails. The use of thermal imaging

systems allow thermal information to be very rapidly collected over a wide area

and in a non-contact mode. This makes it promising in pantograph-catenary

system inspection in high-speed train system [21]. Infrared information can be

captured by bulky infrared cameras which offer high-resolution infrared images,70

or by small-size infrared sensors which connected to wireless sensor networks for

long-term and remote monitoring [22, 23].

As discussed above, all these NDT techniques have its strength and weak-

ness. To reduce the maintenance cost, integrating them together is necessary

[4]. For example, EMATs integrates magnetic and ultrasonic testing to provide75

a non-contact solution. Eddy current pulsed thermography (ECPT), which in-

tegrates eddy current and thermal testing, can reveal surface and subsurface

defect information quickly according to temperature distribution [10, 24]. To

integrate the strength of visual inspection and thermal testing or even eddy

current from the ECPT in rail inspection, this paper seeks for solution from80

computer vision perspective. Visible images from visual inspection and infrared

images from thermal/ECPT testing are supposed to be fused.

Image fusion schemes can be classified into pixel-level, feature-level and
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decision-level fusion [25, 26]. The major difference among them is the sequence

of information extraction. For pixel-level fusion, each image is combined in a85

pixel-by-pixel basis followed by the information extraction step. Many spare

representation methods are in this category. A review of sparse representation-

based multi-modality images fusion can be found in [27]. For feature-level fusion,

the information is extracted separately from source images and then combined.

As for decision-level fusion, the information is extracted from source images sep-90

arately and then making decision on which content to be combined. This paper

follows a feature-level fusion route. The general processing routines for feature-

level methods are [28, 25] find features, extract features, match features, image

transform and fusion. There are some widely used algorithms to find and extract

features [29, 30], e.g., Harris corner detector, Scale-invariant feature transform95

(SIFT) [31], Speeded-Up-Robust-Features (SURF), and some improved version,

e.g. GA-SIFT [32], among which SURF has faster speed than SIFT methods.

The above-mentioned methods extract features from pixels in local area (a

sub-area around interest points), however, local information for infrared and

visible images in active thermography rail inspection have obvious difference as100

illustrated in Figure 1(a) to Figure 1(d):

• Different contrast level. Thermal images only sensitive to temperature

difference. The contrast is very low for small temperature difference. Un-

fortunately, this is the case for ECPT-based rail inspection. The contrast

of visible image is much higher under sufficient illumination. This contrast105

difference results in little common interest point between them.

• Different intensity distribution. For example, the part with lowest inten-

sity is area A for Figure 1(a), but it is area B for its counterpart. The

difference in intensity distributions leads to different descriptors for cor-

responding interest point.110

• Different defect visibility due to different modality. The enlarge part in

Figure 1(d) shows an obvious scratch while the thermal counterpart not.
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This kind of complementary information is the motivation to fuse them,

but brings difficulty for registration.

A

B

(a) (b)

(c) (d)

(e) (f)

Figure 1: Rail track images. (a)∼(b) Infrared images; (c)∼(d) Visible images; (e) Canny edge

for infrared image (b); (f) Canny edge for visible image (d). The infrared image is captured

by a Flir SC650 infrared camera, and the visible image is captured by phone camera.

Given the highly polluted local information, consulting global information115

is an intuitive route. S. Raza et al. [33] use silhouette as global information for

thermal and visible images registration of diseased plants, which is not applica-

ble here because the low-contrast thermal images in rail inspection do not have

robust silhouette. There are some literatures explore salient features [34, 35] for

fusion, but it is very difficult to find salient feature in rail inspection as illus-120

trated in Figure 1. Large amount of literatures explore edges/lines as relatively

robust global or local information. In consulting edges as local information,

C. Aguilera et al. [36] propose EOH-SIFT which uses edge oriented histogram
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(EOH) to characterize SIFT interest points. M. I. Patel et al. [37] use edge

direction to characterize SURF interest points. In consulting edges as global125

information, J. Lpez et al. [38] use line segments in low-textured images regis-

tration. Shape context [39] is another category which making use of edge of the

whole image rather than a sub-area around interest points. Descriptor is formed

in a log-polar space which centres on each interest point. Y. Gu et al. [40] use

shape context based on interest points that extracted using polynomial fitting.130

Only using edges as global information is suitable for scenes where there are

robust edges, such as satellite remote sensing image where there are coastlines,

rivers etc. There are no robust edges in rail inspection unfortunately. Figure

1(e) and Figure 1(f) are one set of Canny edges based on the preprocessed image

of Figure 1(b) and Figure 1(d) respectively. These two edges images have much135

difference even extracting from preprocessed input images (The detail discus-

sion of pre-process is given in section 3.1), which indicate that the performance

of solo edge-based algorithms (no matter local or global) is poor in our case.

The shortcomings of solo local or global information based algorithms mo-

tivate us to consult methods that integrate local and global information. H.140

Jin et al. [41] propose a coarse-to-fine method for registration of multispec-

tral images. Their method adopts SURF as local information and performs an

initial matching in the first stage. In the second stage of matching in the ref-

erence, the whole edge image is divided into blocks. Each block of edges are

represented using histogram of edge orientations. A similarity metric is used145

to refine the initial matching, a test point contributes most to the similarity

metric if it has the same orientation as the edges. Y. Li et al. [42] also adopt

a two stage matching process, an initial matching screens out some potential

matching descriptor pairs, then followed by a second matching based on over-

lapped edge pixels. J. Han et al. [43] incorporate straight line as global feature150

and Harris corner detector as local information for infrared and visible image

registration. All these three methods have shortcomings in our case. If divided

entire edge image into small blocks, the edge in most blocks is different because

the edge images have significant difference as shown in Figure 1(e) and Figure
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1(f). The local difference in edge image also brings trouble for overlapped edge155

pixels method and straight line method. This means edge image must take as

a whole in our case, shape context can achieve such goal. Y. Gui et al. [44]

propose a matching method using SURF and shape context. In their method,

initial matching is based on SURF descriptor then shape context descriptor is

used to refine the matching. However, the overall performance for all algorithms160

which sequentially integrate local and global information subjects to the match-

ing quality in the first stage. Apparent difference in either local or global level

will seriously decay the registration performance, which is a buckets effect.

This paper proposes an EG-SURF algorithm for infrared and visible im-

age registration in rail inspection. Rather than sequentially integrating local165

and global information in matching stage which suffered from buckets effect,

this algorithm integrates local and global information into a descriptor with

adaptable weighting before matching. The adaptability consists of an adapt-

able weighting factor between local and global information and an adaptable

main direction accuracy. The local information is extracted using SURF while170

the global information is represented by shape context from edges. Meanwhile,

in shape context generation process, edges are weighted according to local scale

and decomposed into bins using a vector decomposition manner to provide more

accurate descriptor.

The rest of this paper is organized as follows: Section 2 gives a detail intro-175

duction to the proposed EG-SURF. The experimental validations are conducted

in section 3 before the conclusions in the last section.

2. Proposed registration algorithm

This section proposes an algorithm called Edge-Guided Speeded-Up-Robust-

Features (EG-SURF) to gather common information in local and global level.180

Figure 2 shows the overall diagram. This algorithm contains three major pro-

cesses, i.e., SURF interest point detector, main direction assignment & global

information extraction, descriptor construction. Compared to traditional SURF
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Figure 2: Diagram for EG-SURF. This algorithm contains three major process, i.e., (a) SURF

interest point detector; (b) main direction assignment & global information extraction; (c)

descriptor construction.

or shape context descriptor [40] or sequential combination [44], this algorithm

combines local and global information into a descriptor before matching with185

adaptable weighting factor, which adapts to various inspection scene in rail in-

spection. The local information is extracted using SURF. Shape context from

edges is used to represent global information, because edges and cracks in speci-

mens show higher temperature contrast than other areas in active thermography.

It is worth noting that the primary global descriptor is concurrently extracted190

with main direction assignment in our design, which improves efficiency. Mean-

while, the scale and location of SURF interest points are used to generate shape

context descriptors, which improves the descriptor accuracy. Detail discussions

are given in the following subsections.

2.1. SURF interest point detector195

We use same interest point detector as SURF, which is based on the Hessian

matrix. For a point (x, y) in an image I with size a × b, the Hessian matrix

H (x) in (x, y) at scale σ is:

H (x) =

 Lxx (x) Lxy (x)

Lxy (x) Lyy (x)

 (1)
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where x =
[
x y σ

]T
, Lxx (x) is the convolution of the Gaussian second

order derivative ∂2g (0, σ)
/
∂x∂y with the image I in point (x, y), and similar

for Lxy (x) and Lyy (x). Interest points are found by thresholding the deter-

minant of Hessian matrix. To achieve scale invariant, SURF also making use

of Laplacian of Gaussian (LoG) approximation Dxx, Dxy, Dyy with box filters.

Thus, the determinant yields,

det (H) ≈ DxxDyy − (αDxy)
2

(2a)

α =
‖Lxy (1.2)‖F ‖Dxx (9)‖F
‖Lxx (1.2)‖F ‖Dxy (9)‖F

≈ 0.9 (2b)

where ‖·‖F is the Frobenius norm. The filter responses are normalized with

respect to the mask size, L× L, which is

L = 3
(
2o+1 (s+ 1) + 1

)
(3)

where o, s ∈ N+ are the octave number and layer number respectively. Even

though α is dependent on the scale size σ (which relates to L and initial scale

size (σ0) as σ = σ0L/9), it turns out that in practice α can be approximated

using a static constant of 0.9. Once located a set of potential interest points

within each octave, 3D quadratic interpolation is necessary to get more accurate

interest point using 2nd order Taylor series approximation:

det (H) |x ≈ det (H) |x0 +
∂[det (H) |x ]

T

∂x
· x

+
1

2
xT · ∂

2 det (H) |x
∂x2

· x
(4)

The interpolation position and scale is obtained by differentiating the Eq. (4)

and equating it to zero:

xmax =

[
∂2 det (H) |x

∂x2

]−1 [
∂ det (H) |x

∂x

]
(5)

By far, the location and size of each interest point are determined, we denote

them as p = [x y]
T

and σ respectively.
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Figure 4 Main direction assignment. 
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Figure 3: Graphical representation of main direction assignment. The rotation angle which

has the greatest Haar response (denote as arrow) is the main direction of current interest

point. Each red point stands for a unit of Haar response.

2.2. Main direction assignment & global information extraction

To ensure rotation invariant, every interest point are assigned a main di-

rection, θ. This is achieved firstly by convolving pixels within radius 6σ in its

neighborhood (denote as N6σ) in x and y direction with Haar wavelet filters,

FH . The filter response of every pixels are weighted using Gaussian function

with parameter 2σ according to their distance (denote as l) to the interest point

position, p. This process can be mathematically denoted as:

Rx = N
(x)
6σ ∗ FH ·G (l/6σ, 2σ) (6a)

Ry = N
(y)
6σ ∗ FH ·G (l/6σ, 2σ) (6b)

where G (x, λ) = exp
(
−x2

/
2λ2
)
.200

Then the weighted Haar responses are accumulated in a π/3 sector (denote

as Wk) which rotates with certain step size, ∆θ:

mWk
=
∑
Wk

Rx +
∑
Wk

Ry (7)

where 2π/∆θ ∈ N+, k ∈ N and k < 2π/∆θ. Figure 3 shows a graphical

representation for Eq. (7). Those red spots stand for Haar responses, more

spots covered by the sector means greater response and the longer of the arrow.

The rotation angle which has the greatest amplitude is the main direction of

current interest point:

θ = k ·∆θ (8)
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This equation indicates that the angle step size ∆θ will influence the accuracy

of main direction. Smaller step size leads to higher accuracy but improves

computation complexity on the other hand. ∆θ will also influence the length

of final descriptor according to the shape context generation in the rest of this205

subsection.

Meanwhile, this paper introduce the shape context in main direction as-

signment stage to involve global information. The shape context is based on

a binary edge image (denote as E) which should be prepared in advance. Let

r =
√
a2 + b2, similar to the main direction assignment, a neighborhood on E

with radius r (denote as Nr) is divided into bins in log-polar space. Note that

this neighborhood is wider than the image size. The overflow area is regard

as blank image. Then this neighborhood is weighted making use of the local

feature size, because corresponding interest point pairs on thermal and visible

images may have different size due to different scale. The edge within interest

point size should have more weight. Originally, all edge pixels are regarded as

1 while non-edge pixels as 0. We recall Gaussian function and plot different λ

values versus x in Figure 4. The function outputs decrease more rapidly with

smaller λ. This property makes it suitable for our weighting requirement. So

all edge in Nr are weighted using Gaussian function as shown in Eq. (9).

RE = Nr ·G (l/r, 6σ) (9)

The weighted edges (denote as RE) are then used to calculate histogram as

shown in Figure 5. Same step size as Figure 3 is used for histogram bins and

C ∈ N+circles are used. The red spots here stand for edge pixels on E. All RE210

are decomposed to its nearby bins in a vector decomposition manner as shown

in the right side of Figure 5. This vector decomposition manner provides more

accurate and robust shape context information than non-decompose methods,

because the non-decompose method [40, 39] simply accounts the number of edge

pixels in a bin. Finally, a K = C × 2π/∆θ dimension vector g′ (primary global215

descriptor) is obtained which contains global shape information.
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Figure 5 Guassian function with different  . 
Figure 4: Gaussian function under different λ. The Gaussian function is defined as G (x, λ) =

exp
(
−x2/2λ2

)
. The scale of local information is used as the input to weight edges as Eq.(9).

Figure 6 Edge information extraction. 
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Figure 5: Graphical representation of shape context descriptor. All edges pixels (denote as

red points) are decomposed into nearby bins using a vector decomposition manner as shown

on the right side, where A denotes a weighted edge pixel in RE .

It is worth noting that same angle step size as main direction assignment is

adopted, so the histogram creation of these two processes can perform concur-

rently in implementation.

2.3. Descriptor construction220

A primary global descriptor and a main direction are obtained for each inter-

est point in previous subsection. These information are used to construct local

descriptor and eliminate rotation influence for the primary global descriptor.

Ultimately, the final descriptor is formed by proposing a weighting factor be-

tween the global descriptor and local descriptor. The details of these processes225
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are introduced hereunder.

Based on a interest point location p, a neighborhood on I with radius 20σ

(denote as N20σ) is evenly divided into 4 × 4 subareas (denote as NS). Then,

filtering every subarea uses Haar wavelet filter and weighting with Gaussian

function in x and y direction:

R
(x)
S = N

(x)
S ∗ FH ·G (l/20σ, 2σ) (10a)

R
(y)
S = N

(y)
S ∗ FH ·G (l/20σ, 2σ) (10b)

The filter responses are rotated according to θ:

R′
(x)
S = −R(x)

S · sin (θ) +R
(y)
S · cos (θ) (11a)

R′
(y)
S = R

(x)
S · cos (θ) +R

(y)
S · sin (θ) (11b)

Subsequently, counting
∑
R′

(x)
S ,

∑∣∣∣R′(x)S

∣∣∣, ∑R′
(y)
S ,

∑∣∣∣R′(y)S ∣∣∣ obtains a 4×

4 × 4 = 64 vector to form the local information part descriptor (denote as l).

For the global part (denote as g), the only step is to shift g′ cyclically for k230

times in order to eliminate rotation influence. We denote l and g for all interest

points as L and G, and all normalized to 0∼1.

Finally, concatenating l and g together to get a K + 64 dimension vector as

the EG-SURF descriptor d using Eq. (12),

d =
[
ρl (1− ρ) ξg

]
(12)

where 0 ≤ ρ ≤ 1 is a weighting factor used to adjust the weight of local

information and global information. When ρ = 1, EG-SURF descriptor degrades

to ordinary SURF descriptor. Likewise, only global information is used when

ρ = 0. ξ is a normalization factor to guarantee same weight between l and g,

i.e. E [‖l‖F ] = E [‖g‖F ], where E [·] is the mathematical expectation. One can

empirically let ξ = ‖L‖F
/(√

card (G)‖G‖F
)

, where card (G) is the number of

14



  

elements in G. Given various of application scene, we assume each element of l

(denote as Li, i ∈ N+ and i ≤ 64) and g (denote as Gj , j ∈ N+ and j ≤ K) obey

independent and identically distributed uniform distribution, Li, Gj ∼ U (0, 1),

then we have:

E

[
64∑
i=1

L2
i

]
= E

[
K∑
i=1

(ξGi)
2

]

= ξ2E

[
K∑
i=1

G2
i

] (13)

ξ can be easily obtained as ξ = 8
/√

K, which only decided by the length235

of l and g, thus eliminating complex calculation.

As discussed in this section, a weighting factor ρ is proposed to make the

weighting of local and global information adaptable. The solo SURF and shape

context descriptors are given as two special cases in this algorithm. Besides this

weighting factor, the angle step size ∆θ and the circle number C are two critical240

parameters in this algorithm. The influence of the three parameters for fusion

performance will be discussed in more details in the next section.

3. Experimental validation

Rail track health inspection is an important field in rail inspection industry,

among which ECPT demonstrates good ability to reveal subsurface information.245

We build up a scene for ECPT as shown in Figure 6(b). In ECPT, coil is nec-

essary to excite the specimen under test. So we place a coil near the rail track

specimen but without imposing current. This is the initial setup for ECPT.

Infrared images are captured by a Flir SC650 infrared camera with resolution

of 640 × 480. RGB/visible images are captured by a phone which configured250

to the same resolution as the infrared camera. The infrared camera and RGB

camera take photos from similar view angle but have different scale. More than

20 sets of images with resolution 640 × 480 are obtained, each set contains an

infrared image and a corresponding visible image. Two of them are shown in
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Figure 1. The set which contains Figure 1(b) and Figure 1(d) is used to qualita-255

tively validate the proposed algorithm, because this set is a representative one.

Quantitative validation is based on the average performance of total datasets.

3.1. Qualitative validation

The thermal images are usually very blurry and have low contrast, which

cause problem to edge extraction. The root mean square (RMS) contrast, de-260

fines as

√∑
(I − E [I])

2
/
ab and 0 ≤ I ≤ 1, is -74.3 dB for the thermal im-

age, which is much lower than its visible counterparts with -33.7 dB. So, pre-

processing is necessary. We adopt the Perona-Malik anisotropic diffusion [45]

for the thermal image thus improving the RMS contrast to -27.1 dB. The pro-

cessed result in Figure 6(c) shows higher contrast and better smooth compare265

to the raw image in Figure 6(a). The visible images are pre-processed by edge-

preserving smoothing to remove local difference with thermal images as much

as possible.

Then, Canny edge detection is used to extract the edge of both images

because its superior performance [46]. The results are shown in Figure 1(e) and270

Figure 1(f). It is obvious that the two edge images have much difference, which

brings challenge to solo edge-based registration methods.

The above preparations are used to validate the proposed EG-SURF algo-

rithm. 38 and 44 interest points are found by thresholding the determinant

of Hessian matrix for the processed infrared and visible images respectively as275

shown in Figure 7. Relaxing the thresholding obtains more interest points on

the background than the track. This goes against the needs of rail track health

diagnostics, because the inspection cameras are supposed to focus on tracks

rather than the background. We set ∆θ = 22.5◦ and C = 4, then all descriptors

are in 128 dimension and the normalization factor ξ = 1. The weighting factor280

is set to be 0.5, thus the descriptors have same weight of local and global infor-

mation. The descriptor numbers are 38 and 44 for infrared and visible image

respectively.
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(a) (b)

(c) (d)

coil

Rail track
sample

Figure 6: Preprocessed images of ECPT scene for (a) infrared image and (b) visible image.

(c) Perona-Malik anisotropic diffusion for infrared image; (d) Edge-preserving smoothing for

visible image.

 

 

 

Figure 8 Interest points. (a) Thermal image; (b) Visible image. 

  

(a) (b)

Figure 7: Interest points. (a) Infrared image; (b) Visible image.

Based on the descriptors, the Euclidean distance between every pair of de-

scriptor from different images is calculated. Thresholding these distances ob-285

tains potential matching pairs. To ensure unique matching, only the pair with

shortest distance for same interest point is reserved. The registration results

are shown in Figure 8(a). 11 out of 12 pairs are correctly matched, which is

more than 4 pairs in order to apply affine transformation to fuse them. In-

correct matches are common for all registration algorithms, one can adjust the290

matching parameters to reduce wrong matches. In contrast, random sample
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(a)

(b)

Figure 8: Registration results using (a) the proposed EG-SURF and (b) after additional

RANSAC with ∆θ = 22.5◦, C = 4, ρ = 0.5. Our algorithm shows dominant percentage of

correct match for infrared and visible rail track health images, the minor wrong match can be

removed by RANSAC.

Figure 10 Fused image. 
Figure 9: Fused image.

consensus (RANSAC) is a powerful technique to refine the matching without

loss of generality [47, 48, 49]. In this technique, an initial affine transform ma-
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trix is formed by randomly choose several matched pairs. Then other matched

pairs which fitting with the matrix are used to iteratively refine it. However,295

this technique is on the foundation that most of matched pairs are correct. Our

proposed algorithm achieves this as shown in Figure 8(a). The matching results

after RANSAC in Figure 8(b) already remove the wrong match pair. The fused

image using this match results is shown in Figure 9, both visible and thermal in-

formation are presented in it. These results qualitatively validate the proposed300

algorithm.

3.2. Quantitative evaluation

To quantitatively evaluate the algorithm, the widely used precision [32, 50]

is chosen as evaluation metric. We briefly introduce the definition here. Suppose

a registration algorithm matches u pairs for two set of descriptors. If w pairs in

u are correct, but u − w pairs are actually wrong, the algorithm’s precision is

[51],

precision = w/u (14)

The precision indicates how useful the search results are. In image registration,

if precision is high enough, there is high probability to obtain correct transform

matrix using RANSAC if the matching number is greater than 4, which already305

qualitatively illustrated in Figure 8. Note that all the following quantitative

validations are based on the average results of datasets. Because different im-

age set has different level of common local/global information, which leads to

different optimal parameter settings. Automatically optimize these parameters

is part of our future work.310

Based on the above definition, the precision vs. distance threshold under

different ρ is shown in Figure 10. Only precision when matching number greater

than 4 are reserved, this is why there are sharp jumps in low distance threshold

region in Figure 10 and Figure 13. Different ρ shows different precision, but all

converges to a constant with distance threshold increasing, because the potential315

match pairs for two sets of descriptors are constant. As discussed previously,

ρ is weighting factor between local information and global information. The
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Figure 11 Precision vs. distance threshold under different   with =22.5 , 4C  . 

Distance threshold
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Figure 10: Precision vs. distance threshold under different ρ with ∆θ = 22.5◦, C = 4.

curves under low ρ have the worst precision, which means relying too much

on global information cannot get good matching results. Because the edges for

thermal and visible rail track health images are so different. The high ρ region320

curves show better performance comparing with their low ρ counterparts, which

means that the local information is a relatively reliable feature in rail track

health images.

Figure 12 Precision vs.   under different   with 4C  . 
Figure 11: Precision vs. ρ under different ∆θ with C = 4.
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Figure 13 Precision vs.   under different C  with =22.5 . 

 

Figure 12: Precision vs. ρ under different C with ∆θ = 22.5◦.

In order to further analyzing the influence of ρ and also investigating the

influence of ∆θ, the average precision vs. ρ under different ∆θ are plotted in

Figure 11. Curves with different ∆θ all start from small precisions in low ρ325

region and end at a constant, which means only rely on global information will

lead to poor results. There is a constant at ρ = 1, because only local information

is used, different ∆θ do not have any influence. It is also obvious that every

curve have a peak at certain weighting factor, which means properly combining

local and global information outperforming solo local or global based methods.330

For thermal and visible rail track health images in ECPT, this weighting factor

distributes between 0.6∼0.7 under 4 circles in log-polar space.

To investigate the influence of circle number, the average precision vs. ρ

under different C is shown in Figure 12. These curves show similar trend as

Figure 11, anther observation is that the peak shifting towards larger ρ for335

smaller C generally. Because smaller C has less bins leading to more global

information in some sense, more weighting on local information will balance

this effect.

The above discussions quantitatively show the influence of parameter ρ, C
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Figure 14 Precision vs. distance threshold for different algorithms. 
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Distance threshold

Figure 13: Precision vs. distance threshold for different algorithms.

and ∆θ. Trade-offs are necessary in practical application. Smaller ∆θ and C340

increases both descriptor generation time and registration time, which increases

in-situ inspection time as a results. If the computation ability of rail inspection

system is powerful enough, this is not a vital issue. Besides, Smaller ∆θ and

C not necessarily leads to better precision as already discussed. Automatic

optimization of all these parameters is part of our future work.345

To further validate the performance of proposed algorithm, a horizontal

comparison between different registration methods is plotted in Figure 13. Only

precision when matching number greater than 4 are reserved. Same amount

of interest points are obtained for different methods. The proposed method,

which includes SURF and shape context as special case, shows best precision350

curves. The precision of SIFT, shape context and EOHSIFT all drops below

0.5 for all distance threshold, which means these methods almost unacceptable

in registration of cross-spectrum rail track health images.

4. Conclusions & Future works

This paper proposes a registration algorithm called Edge-Guided SURF355

(EG-SURF) about feature-level fusion of infrared and visible images for rail
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inspection. Rather than sequentially integrating local and global information

in matching stage which suffered from buckets effect, this algorithm adjustably

integrates local and global information into a descriptor to gather more com-

mon information before matching. This adaptability reflected in an adaptable360

weighting factor between local and global information and an adaptable main

direction accuracy. The local information is extracted using SURF while the

global information is represented by shape context from edges. Meanwhile, in

shape context generation process, edges are weighted according to local scale

and decomposed into bins using a vector decomposition manner to provide more365

accurate descriptor. During the main direction assignment, a primary global de-

scriptor is formed concurrently. This primary global descriptor only needs to

cyclically shift for direction adjustment. This character makes the algorithms

easy to implement. The experimental results using infrared and visible im-

ages of normal temperature rail tracks illustrate better performance than other370

state-of-the art algorithms.

Furthermore, this work paves the way for a 3D fusion model [52] of infrared

and visible/RGB-D images. In this model, 2D thermal images need to corre-

spond to 2D visible images which project from RGB-D image. After this process,

every pixel in the 2D visible images have both RGB-D and temperature infor-375

mation. Thus 2D temperature distribution could be mapped to corresponding

position in 3D model. This paper solves the 2D registration process, which laid

the foundation for future investigation.

It should be noted that current weighting factor between local and global

information (ρ), circle number of shape context (C), and angle step size (∆θ)380

in main direction assignment are empirically set, which is a limitation of this

method. Self-adaption ability of these parameter settings which fully consider

the trade-off between fusion accuracy and in-situ inspection efficiency is part

of our future work. We also plan to extract defects such as crack depth/width

with 3D visualization.385
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1) Registration and fusion of an infrared and visible image registration algorithm for rail 

defect inspection. 

2) Local and global information are integrated into a descriptor. 

3) Adaptable weighting between local and global information. 

Edge-Guided Speeded-Up-Robust-Features 

4) (EG-SURF) to address this issue. 

5) Local information is used to guide global information extraction. 

6) The experimental results illustrate better performance than other algorithms. 

 

Highlights


