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Abstract 

Three–dimensional nonlinear finite–element models have been developed to investigate 

the loading–unloading–reloading behaviour of two reinforced–concrete beams under four–

point bending using explicit dynamics in ABAQUS. The damaged–plasticity model proposed 

by Lubliner and collaborators was employed for the plain concrete, and elastic–perfectly plastic 

models were employed for the steel reinforcement. A perfect bond was assumed between the 

steel rebars and concrete, whereby the bond–slip behaviour, as well as damage along crack 

patterns, were modelled through concrete damage. The influence of the shape of the tension–

softening law on the numerical load–deflection response was studied by considering bi–linear, 

exponential and linear post–failure stress–displacement and stress–strain relationships. The 

effect of modelling steel rebars with truss or beam elements was also investigated. Structured 

meshes of linear hexahedral elements either with incompatible modes or with reduced 

integration, and unstructured meshes of either linear or ‘modified’ quadratic tetrahedral 

elements were considered. In terms of load–deflection curves, both the structured and the 

unstructured meshes gave results in very good agreement with test results. In terms of crack 

patterns, results predicted by the structured meshes exhibited some mesh bias, which was less 

pronounced with the unstructured meshes. In the post–yield phase, if a geometrically nonlinear 

model is used, discrepancies were found when truss elements were used for steel rebars, 

whereas good agreement was found if the bending stiffness of the rebars is included using beam 

elements. This is a non–obvious result that may be important to consider when studying the 

progressive collapse of RC structures.       

Keywords: Nonlinear FEA; reinforced–concrete beams; ABAQUS/explicit; embedded 

reinforcement; damage–plasticity coupling.  
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1. Introduction 

The structural analysis of reinforced–concrete (RC) beams can be conducted with a great 

variety of methods, from simplified and well–established methods of RC design suggested in 

the codes of practice to other more sophisticated methods, which account for damage, 

plasticity, cracking, bond–slip interaction between steel rebars and concrete. The latter models 

typically require a numerical solution. For ordinary applications, the complexities entailed by 

detailed three–dimensional (3D) numerical simulations may make the analysis too expensive 

in terms of time for setting up the model and obtaining the solution, cost of determining all 

material parameters and also level of knowledge and expertise required. On the other hand, for 

special applications, such as in nuclear engineering or in forensic investigations, this increased 

cost of the simulation can be acceptable (Gentili, Petrini 2016, Solomos, Casadei et al. 2011, 

Oliveira 2009). Furthermore, for research purposes, detailed and accurate finite–element (FE) 

models can replace experimental testing and enable the exploration of a much broader range of 

innovative design solutions, e.g. for strengthening RC beams with fibre–reinforced plastics 

(FRPs). In all these cases, priority is given to the predicting ability of the models and the 

accuracy of the solution, but of course the analyses still need to be feasible and the 

computational cost is an important issue.  

To achieve an accurate depiction of the behaviour in modelling RC beams, it is important 

to consider a large number of complex phenomena including the inelastic and fracture process 

of concrete and the ‘bond–slip’ interaction between the steel rebars and surrounding concrete. 

In turn, an effective bond–slip law should consider a number of complex mechanisms, 

including but not limited to adhesion, friction, geometry of the ribs of the rebars, if any, 

localised concrete crushing and damage, and localised cracks.  

The complexity of the problem explains the great amount and variety of models proposed 

in the last three to four decades and their various level of sophistication. The underlying physics 

of the concrete fracture, induced mainly by tensile cracking, can be better understood using a 

micromechanics approach, yet at high computational costs especially for large structures and 

3D analyses (Gentili, Petrini 2016, Oliveira 2009). On the contrary, the macroscopic approach, 

in which the principles of continuum mechanics are employed, is widely used to analyse a 

variety of concrete structures subjected to different types of loading. Elasticity, nonlinear–

elasticity, plasticity, fracture mechanics, damage theories have been widely used in this regard. 

Plasticity–based models allow the modelling of the unrecoverable deformation in concrete 
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loaded in compression. Developing a plasticity–based model requires defining (a) a 

yield/failure surface to determine the onset of plastic deformation, (b) a flow rule to determine 

the rate of plastic strains, and (c) a hardening/softening rule to define the evolution of the yield 

surface with plastic deformation. Many yield criteria, including but not limited to Mohr–

Coulomb, Drucker–Prager (1952), Bresler–Pister (1958), William–Warnke (1975), Ottosen 

(1977) and Hsieh–Ting–Chen (1979), have been proposed to this end. A few studies (Zhu, 

Tang 2002, Ziraba, Baluch et al. 1995, Buyukozturk 1977) utilised the Mohr–Coulomb model. 

This is partially because of the irregular hexagon failure surface used in this model, a feature 

that causes some numerical difficulties. On the contrary, the smooth yield surface of the 

Drucker–Prager (D–P) model and the simplicity of its implementation make it more desirable 

in FE studies. Arslan (2007) investigated the sensitivity to the D–P parameters in the case of 

the shear design of RC beams. Park and Klingner (1997) employed multiple plasticity failure 

criteria to model the nonlinear behaviour of RC in plane stress. Yu et al. (2010a) conducted a 

critical review on the capability of existing D–P plasticity models to predict the behaviour of 

actively– and passively–confined concrete. The review concluded that an accurate prediction 

for the aforementioned types of concrete could not be achieved using existing D–P models 

unless three modifications were introduced, which comprised (i) the inclusion of the third 

deviatoric stress invariant in the yield criterion, (ii) the dependence of the hardening/softening 

rule and flow rule on the confining pressure and (iii) the dependence of the flow rule on the 

variation of the confinement.  

As for the simulation of cracks in concrete, two approaches are normally used, the 

discrete–crack approach and the smeared–crack approach. In the former, cracks are modelled 

as geometrical entities where a displacement discontinuity is allowed. To this end, the size of 

the fracture process zone (FPZ), the zone of inelastic material behaviour at the crack tip, needs 

to be considered. Since this size is larger than or comparable with the dimensions of the 

majority of concrete structures, concrete should be treated as a quasi–brittle material, which 

requires nonlinear fracture–mechanics methods. For this purpose, cohesive–zone models 

(CZMs) are typically used, which include the fictitious crack model (FCM) (Hillerborg, 

Modéer et al. 1976), the first CZM implemented in a FE analysis.  

The incorporation of CZMs into a FE analysis can be achieved using, for example, ‘zero–

thickness’ interface elements (Manzoli, Gamino et al. 2012, Yu, Ruiz 2006, Ožbolt, Lettow et 

al. 2002). Early applications of this approach to the FE analyses of RC were attempted by 
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Nilson (1968) and Ngo and Scordelis (1967), by introducing interface elements on all inter–

element boundaries, although this introduces a spurious compliance that can become an issue 

for very refined meshes. Furthermore, this approach also forces cracks to follow element 

boundaries. The introduction of a displacement discontinuity independent of the boundaries of 

the finite elements, a concept also known as ‘strong discontinuity’, can be used to alleviate the 

issue of mesh–dependency encountered when using the discrete crack approach.  This idea led 

to the development of finite–elements with embedded strong discontinuity (E–FEM) (Dvorkin, 

Cuitiño et al. 1990, Lotfi, Shing 1995, Oliver 1996) and the ‘extended finite–element method’ 

(X–FEM) (Belytschko, Moës et al. 2001, Wells, Sluys 2001), which have been used to capture 

the initiation and propagation of arbitrary cracks in concrete (Unger, Eckardt et al. 2007, Yu, 

Huang 2008). 

The smeared–crack approach (Rashid 1968) treats cracked concrete as a continuous 

medium, and approximates the discontinuity in the displacement field induced by cracks as 

localised inelastic strains, whose appearance and evolution are the result of the material 

nonlinear constitutive relationship.  In essence, the material stiffness in the direction of the 

principal tensile stress (i.e. orthogonal to the crack) at the cracking location is progressively 

reduced down to or close to zero. Cracks can be represented by using the ‘fixed crack’ model 

(Rashid 1968) or the ‘rotating crack’ model (Jirásek, Zimmermann 1998, Gupta, Akbar 1984, 

Cope, Rao et al. 1980). In the former representation, once the principal tensile stress exceeds 

the concrete tensile strength, a crack, whose direction remains unchanged during subsequent 

loading, forms perpendicular to the direction of the principal tensile stress. Conversely, in the 

rotating crack model, crack re–orientation with the loading history or material response is 

allowed, and the crack orientation is assumed normal to the principal tensile strain (Milford, 

Schnobrich 1985, Foster, Budiono et al. 1996).  

One issue associated with the use of the smeared–crack concept is the tendency of inelastic 

strains to localise along one row of finite–elements (Bažant 1976). If this is not taken properly 

into account, the energy dissipation depends on the element size and tends to zero when the 

mesh is indefinitely refined (Bažant 1980). The introduction of a ‘localisation limiter’ alleviates 

the mesh non–objectivity issue and prevents the strain softening from being localised in an 

infinitesimally small region. This can be done with nonlocal or gradient models, in which, the 

stress at a point depends either on the strains both at the same point and in a suitably defined 

neighbourhood of it (nonlocal approach) or on the strain and the successive gradients of the 
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strain tensor at that point (gradient approach) (Bažant 1986). The ‘crack band model’ is another 

simpler localisation limiter, which alleviates the dependency of the concrete fracture energy on 

the element size by relating such size to the concrete constitutive relationship. This can be 

achieved by associating the strain–softening law with a certain characteristic width, ݄, of the 

crack band (Bažant, Planas 1998). The salient attribute of the crack band localisation limiter, 

once implemented in a smeared–crack model, is that the post–failure stress versus crack–

opening curve (of the discrete–crack model) and stress versus cracking–strain curve (of the 

smeared–crack model) will coincide if the crack–opening displacement is taken as ݓ ൌ ݄ߝ, 

  . being the cracking–strain (Bažant, Planas 1998)ߝ

Ultimately, in a two–dimensional (2D) or 3D FE simulation of RC beams, both the 

smeared– and discrete–crack approaches allow simulating the formation and propagation of 

multiple cracks developing within an RC beam and, therefore, can capture the so–called 

‘tension stiffening’. This term is used to indicate the ability of the uncracked concrete between 

two cracked cross–sections to resist tensile stresses, which are transferred to the concrete by 

the residual bond between the steel rebars and concrete. This results in an overall bending 

stiffness of the RC beam, which is higher than that computed by considering the stiffness 

provided by the cracked cross–section only. However, if the discrete–crack approach is used, 

two additional ingredients must be implemented, namely a crack initiation criterion and a 

bond–slip law at the steel–concrete interface. The latter may, for example, be introduced using 

interface elements between the rebars and concrete. Instead, with a smeared–crack approach, 

the initiation criterion is embedded in the constitutive law, and the bond–slip is automatically 

captured, too, by continuum damage in the finite–elements adjacent to the steel rebars. 

Therefore, no additional bond–slip law and interface elements are needed. 

To the authors’ knowledge, the work by Suidan and Schnobrich (1973) is the earliest study 

reporting a 3D FE analysis of RC beams where 20–noded isoparametric brick elements were 

employed. Since then, many 2D and 3D FE models have been developed to investigate the 

nonlinear behaviour of RC beams. Plain stress (Jankowiak 2012, Chen, Teng et al. 2011, Chen, 

Chen et al. 2012, Zangeneh Kamali 2012, Nilforoush Hamedani, Shahrokh Esfahani 2012) and 

plain strain elements (Sümer, Aktas 2011, Yang, Chen 2005, Coronado, Lopez 2006) were used 

to model concrete in the 2D scenario. Different types of elements have been used to model the 

concrete in the 3D case such as 8–noded brick elements (Głodkowska, Ruchwa 2010, Sinaei, 

Shariati et al. 2012, Cervantes 2013, Jiang, Wang et al. 2012, Wang, Xu 2011), 20–noded brick 
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elements (Radfar, Foret et al. 2012) both with reduced integration, and 4–noded linear tetrahedral 

elements (Obaidat, Heyden et al. 2010, Obaidat, Dahlblom et al. 2010). For concrete, to the best 

of the authors’ knowledge, the use of 3D 8–noded solid elements with incompatible modes has 

never been reported in the literature in the case of 3D nonlinear FE analyses of RC beams up to 

failure. This is despite the fact that these elements, based on the pioneering ‘enhanced strain’ 

method by Simo and Rifai (1990) (initially in 2D elements), are known to provide better 

computational performance in flexure–dominated problems than conventional 8–noded 

elements. 

Apart from the work reported by Radfar, Foret and Sab (2012), in which steel rebars were 

modelled using 3D 20–noded brick elements with reduced integration, the aforementioned 

models used 2–noded truss elements to model steel rebars. The literature reported only two 

recent studies (Markou, Papadrakakis 2012, Ahmed 2014), in which 3D beam elements were 

employed to model the steel reinforcement. Furthermore, none of the above studies has 

addressed cases including unloading and reloading. 

This paper focuses on detailed nonlinear 3D FE simulations of RC beams using a smeared–

crack model, namely the ‘concrete damaged–plasticity’ (CDP) model implemented in the 

commercial code ABAQUS (Dassault Systèmes 2014a), and an explicit–dynamics solution 

procedure. Although the studied beams could be simulated using 2D models, it was deemed 

useful to use 3D models instead for following reasons. Firstly, the assumptions of plane stress 

and plane strain used in 2D models are not entirely valid for typical beam sizes, and it is difficult 

to estimate a priori the extent to which the predictivity of the 2D models can be affected by the 

use of one of these assumptions. Secondly, the RC beams presented here form part of an 

extensive experimental and numerical investigation, in which these beams are later retrofitted 

with FRPs. Since this strengthening technique is not typically applied to the entire beam width, 

3D effects can rise and the estimation of these effects and their impacts on the computed results 

become none–trivial.  

Even when 2D nonlinear models can lead to sufficiently good predictions, for all the above 

reasons they require significant experience and engineering judgement. Therefore, a 

cost/benefit analysis can reveal, in some cases, that the significantly larger computational cost 

of a 3D analysis can be compensated by the greater speed of creating the model (also 

considering that this step can be considerably automated and parametrised) and by the 

efficiency of managing the transfer of knowledge within large engineering and research 
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organisations. Last but not least, the computational cost of 3D analysis is bound to significantly 

decrease in the next 5 to 10 years thanks to the advances in computational methods, hardware 

performance and parallel computing. This will likely further shift the focus from 2D to 3D 

analyses in the future. 

The paper aims at addressing three main areas where, as discussed in the above literature 

review, open questions remain for an analyst wishing to conduct these types of numerical 

simulations. One is the influence of the element types on the FE results. In particular, the 

performance of 3D solid elements with incompatible modes, never considered so far, is 

assessed and compared with that of 8–noded elements with reduced integration, with fully 

integrated 20–noded elements and with linear and quadratic tetrahedral elements.  

The second question that is aimed to be addressed in this work is whether the bending 

stiffness of the steel rebars can be neglected, as is done in most of the studies in the literature, 

or if this assumption has a significant influence on the structural response. To this end, both 

3D truss elements and 3D beam elements are considered in the analyses and the differences in 

results are discussed. 

The third open issue (Oliver, Linero et al. 2008) is whether the concrete–damaged plasticity 

model leads to effective predictions not only in the loading phase but also during unloading.  

To investigate these three main aspects, the FE results are validated against the 

experimental results reported by Alfano et al. (2012), which included tests on two RC control 

beams subject to 4–point bending. The beams were casted using the same concrete and rebar 

types and varied in length and cross–sectional area. Therefore, in addition to the above–

discussed main novel aspects of the investigation, the rationale used for the determination of 

material parameters and for the assessment of the predicting capability of the CDP model are 

further non–straightforward aspects, which are addressed in this paper. Another aspect that has 

received little attention is the implications of basing the CDP model on a uniaxial stress–

relative displacement law or a uniaxial stress–strain law. These are related through the crack–

band concept, and therefore, they should provide the same results in the exact solution of the 

boundary–value problem. However, in practice the localisation limiter, i.e. the crack 

bandwidth, can be highly affected by the geometry of the elements, whereby differences in 

results may occur.      

The outline of the paper is as follows. In Section 2, a brief summary of the experimental 

tests by Alfano et al. (2012) is provided, including the key geometrical and measured material 
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properties of the RC beams tested. In Section 3, a description of the FE models developed is 

given, with detailed explanation of the elements and meshes, loads and boundary conditions 

and the material models used. The numerical results are compared with the experimental values 

obtained by Alfano et al. (2012) in Section 4, and are extensively discussed to provide insight 

into the above–mentioned areas of investigation and novelty. The main conclusions are then 

summarised in Section 5. 

2. Summary of Experimental tests 

The performance of the FE models developed in this paper is validated against the 

experimental tests reported by Alfano et al. (2012). Of particular interest to this work are the 

two RC control beams, namely beams U2 and U5, which were tested under four–point bending. 

The beams, which vary in length and cross–section, have the geometrical properties reported 

in Table 1 (seeFigure 1.  Figure 1 for details on the notation). 

Table 1. Geometrical properties of the two control beam tested by Alfano et al. (2012) 

Beams L1 mm L2 mm b mm h mm c mm d mm 

U2 1000 600 150 300 30 130 
U5 800 700 150 250 30 125 

 
Figure 1. Geometry, reinforcement and loading of the tested beams 

The concrete used to cast the two control beams was a mixture of basaltic sand, 10–mm 

aggregates and cement, with a 0.79 water/cement ratio.  Six cubic specimens, 150	mm in size, 

were tested to determine the concrete compressive strength, whereas the tensile strength was 

determined by performing Brazilian tests on five concrete cylinders, 150	mm in diameter and 

300	mm in length. Furthermore, tests on three cylinders, 150	mm in diameter and 375	mm in 
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length, were performed to determine the Young’s modulus of concrete. As for the steel rebars, 

monotonic tensile tests were performed on steel rebar specimens to determine the yield stress, 

which confirmed the value of the Young’s modulus as provided by the manufacturer. The 

average material properties for the concrete, steel rebars and stirrups are given in Table 2.  

Table 2. Average material properties of concrete and steel bars Alfano et al. (2012) 

 Concrete Steel bars and stirrups 

Density kg/m3 2400 7820 
Poisson ratio 0.15 0.30 
Young’s modulus GPa 26 205 
Yield stress MPa – 380 
Cubic compressive strength MPa 19.39 – 
Tensile strength MPa 2.00 – 

The tested RC beams were loaded by means of one hydraulic actuator and a loading beam 

in a displacement–controlled mode. Two transducers, which were placed in the mid–span on 

the beam soffit, symmetrically with respect to the vertical plane through the beam’s axis, were 

used to record the mid–span deflection.  The experimental loading history, whose schematic 

representation is depicted in Figure 2Figure 2. , consisted of: 

 Branch OA: loading up to a force, ܨ, higher than that corresponding to the cracking 

bending moment at the beam mid–span; 

 Branch AB: unloading to zero; 

 Branch BC: reloading up to ܨ, and 

 Branch CD: where the beam was continued to be loaded up to failure. 

 

Figure 2. Schematic representation of the loading history: load versus mid–span deflection 
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3. Nonlinear Finite–Element Modelling 

3-1. General 

The experimental tests described in the previous section can be numerically modelled 

using nonlinear FE implicit procedures. However, the use of an implicit procedure to solve 

problems involving cracking and damage may not be always efficient as convergence 

difficulties are often encountered, whereas a dynamic explicit (DEXP) analysis can be more 

efficient to model complex nonlinear material behaviour involving damage and large 

deformations. Convergence in this context refers to the ability of the iterative algorithm (the 

most widely used being the Newton–Raphson method) to achieve equilibrium, at the end of a 

load increment, between external and internal forces, within a predefined numerical tolerance. 

The salient feature of the DEXP method is that the global tangent stiffness matrix, required 

otherwise in implicit methods, is no longer formed. Hence, iterations and tolerances are not 

required because the state of the model is advanced explicitly, that is – the state at the end of 

the increment is merely based on the displacements, velocities and accelerations at the 

beginning of the increment. Accurate and stable results can only be obtained with quite small 

time increments. On the other hand and due to the small time increments, simulations typically 

require thousands of increments, which are inexpensive because solving simultaneous 

equations is not required in the DEXP method. Instead, the computational cost lies in the 

element calculations to determine the elements’ internal forces acting on the nodes. 

Furthermore, a quasi–static solution can be also obtained with the DEXP procedure if the load 

is applied slowly enough throughout the simulation. Therefore, in the present study, dynamic 

explicit FE analyses were conducted using the general–purpose FE program ABAQUS.  

3-2. Finite–Element Geometry and Mesh 

The symmetry of the four–point bending test geometries was exploited by modelling only 

one–quarter of the full beams.  

Structured and unstructured meshes were used to model the concrete. The explicit solver 

in ABAQUS, denoted ‘ABAQUS/Explicit’ (Dassault Systèmes 2014b), offers only the use of 

first–order hexahedral elements for structured meshes, whereas first– and second–order 

tetrahedral elements can be used for an unstructured mesh. To this end, for structured meshes, 

3D 8–noded hexahedral (brick) elements either with reduced integration (C3D8R) or with 
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incompatible modes (C3D8I) were used. The latter elements use, in addition to the standard 

displacement degrees of freedom, internally incompatible deformation modes, which prevent 

the behaviour of conventional 8–noded elements from being too stiff in bending by eliminating 

the shear locking with a small increase in the computational cost (Dassault Systèmes 2014b). 

For unstructured meshes, either 3D 4–noded linear tetrahedral (C3D4) or 3D 10–noded 

modified quadratic tetrahedral (C3D10M) elements were used.  

3D linear truss (T3D2) elements, 3D linear beam (B31) elements or 3D quadratic beam 

(B32) elements were used to model the steel rebars. The implementation of these elements in 

the FE model is related to the mesh being used for the concrete. For example, T3D2 elements 

were used with structured meshes, B31 elements were used with first–order structured and 

unstructured meshes, and B32 elements were only used with second–order unstructured 

meshes. On the other hand, the stirrups were modelled using T3D2 and/or B31 elements (i.e. 

T3D2 elements were used when the steel rebars were modelled using T3D2 elements, 

otherwise B31 elements were used). The steel rebars and stirrups are ‘embedded’ in the 

concrete geometry, so that their translational degrees of freedom are constrained to the 

corresponding concrete degrees of freedom (Dassault Systèmes 2014b).  

To investigate the influence of the density of the FE mesh on the cracking behaviour of 

the concrete and its ultimate–load carrying capacity, computations were performed using three 

different element sizes.  

3-3. Boundary Conditions and Load Application 

The beam end–supports, which were provided experimentally by two steel rollers, were 

modelled in a simplified way to avoid stress concentrations entailed by the application of 

displacement boundary conditions on a line. As such, a 30 mm wide surface (see Figure 3) was 

constrained to a reference point lying on this surface with a rigid body motion. The vertical 

displacement only of the reference point (i.e. in the ܻ െdirection in Figure 3) was blocked and 

all other rotational degrees of freedom were allowed. Symmetry boundary conditions were 

applied on the symmetric planes of the four–point bending test, as shown in Figure 3. 
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Figure 3. Finite element model and boundary conditions 

Likewise, the steel roller of the coupling beam, used to load the RC beam, were also 

modelled with a 20 mm wide surface, designated as Surface 1 in Figure 3, constrained to a 

reference point lying on the same surface. Displacement–controlled was used, by prescribing 

the vertical displacement of this reference point according with the scheme of  Figure 2, the 

other degrees of freedom being free. The displacement–controlled strategy was used to load 

the FE model.  

To ensure a quasi–static solution is obtained with the dynamic explicit procedure 

implemented in this study, the displacement was applied smoothly and slowly to eliminate any 

significant change in the acceleration from one increment to the other. This further ensures the 

smoothness of the changes in the velocity and displacement.  To this end, a ‘smooth–step’ 

amplitude was used to prescribe the displacement to the model. Accordingly, five data points, 

ሺݐ, :݅	ሻܣ 0 → 4, which define the variation of the amplitude value with time, were used to 

define the amplitude, ܽ, whose expression is as follows (Dassault Systèmes 2014b): 

ܽሺߦሻ ൌ ܣ	  ሺܣାଵ െ ଷሺ10ߦሻܣ െ ߦ15             ଶሻߦ6

ߦ ൌ
ሺ௧ି௧ሻ

ሺ௧శభି௧ሻ
   for   ݐ  ݐ   ାଵݐ

(1) 

The salient feature of this amplitude function is that its first and second derivatives are 

zeros at ݐ and ݐାଵ, ensuring that the prescribed displacement is smoothly ramped up using a 

smooth curve, as shown in Figure 4.  
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Figure 4. Schematic smooth step amplitude definition (Dassault Systèmes 2014b) 

3-4. Dynamic Explicit Solution Scheme 

The equation of motion and its related initial conditions for a static structural problem 

when treated as a dynamic one can be expressed as follows (Huebner, Dewhirst et al. 2008): 

ሷ࢛ࡹ  ሶ࢛  ࢛ࡷ ൌ  ሻ࢚ሺࡼ
ݐሺ࢛ (2) ൌ 0ሻ ൌ  ࢛

ሶ࢛ ൌ
࢛߲
ݐ߲
ฬ
௧ୀ

ൌ ሷ࢛ ࢜ ൌ
߲ଶ࢛
߲ଶݐ

ቤ
௧ୀ

ൌ  ࢻ

where  ,ࡹ and ࡷ are the mass, damping and stiffness matrices, respectively. ࢛, ࢜ and ࢻ 

are the displacement, velocity and acceleration, respectively and ࡼሺ࢚ሻ is the nodal forces 

vector. Eq. (2) is a second–order differential equation, which can be effectively solved using the 

central–difference method (CDM). The latter technique being a preferable choice in structural 

dynamics. 

The simulations conducted in this study were highly nonlinear involving significant 

damage and strain localisation. These phenomena are inherently challenging as they 

continuously change the highest frequency of the model, inducing a change in the stability 

limit,	Δݐ  ܮ ܿௗൗ , where ܮ	is the element characteristic length and ܿௗ is the speed of the 

dilatational wave. For instance, a reduction in Δݐ may always be associated with damage 

(i.e. element distortion). Therefore, to ensure the stability of the predicted solution and 

maximise its accuracy, ABAQUS/Explicit solver was allowed to automatically adjust the time 

incrementation. However, the estimation of	Δݐ was specified based on an ‘element–by–

element’ style, whereby the contribution of the current speed of the dilatational wave, ܿௗ, in each 

FE determined Δݐ. This yields accurate estimation of Δݐ as opposed to that estimated based 

on the maximum frequency of the entire model. Despite being conservative, the element–by–
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element stable time estimate maintains a smaller stability limit compared to that of the default 

adaptive ‘global’ estimate employed in the Explicit solver. 

All simulations presented in this study were run in a parallel scenario, utilising the 

computational resources of 12 central processing units (CPUs) (2.70 GHz (up to 3.50 GHz) 

Intel® Xeon E5–2697 v2; 12 cores/24 threads), and one graphic processing unit (GPU) (8GB 

Nvidia® Quadro K5100M; 1536 CUDA @ 771 MHz). It is worth emphasising here that these 

simulations were performed using the ‘double precision’ executable, which typically results in 

a significant increase in increments on top of 20–30% increase in the computational cost in 

comparison with running the ‘single precision’ executable. The latter was opted out as it 

yielded a significant noise in the load–deflection predictions due to the presence of a 

combination of boundary conditions and rigid body constraints. Instead, the double precision 

executable, in such case, better estimates the work done by the reaction forces and moments, 

and therefore, accurately computes the energy induced by the external work, resulting in 

ultimately a stable solution. 

3-5. Material Models 

3-5-1. Concrete 

The concrete nonlinearity under compression can be modelled within the framework of 

either plasticity or damage, or both (Yu, Teng et al. 2010b). Plasticity is generally characterised 

by the formation of unrecoverable deformation once all loads have been removed, whereas 

damage is characterised by the reduction of elastic stiffness. The concrete damaged–plasticity 

(CDP) model was employed to model the behaviour of the two control beams, U2 and U5.  

The CDP model, widely used for concrete, is a continuum, smeared–crack model 

combining damage and plasticity, which is implemented in ABAQUS (Dassault Systèmes 

2014b) and is based on the work by Lubliner et al. (1989) and Lee and Fenves (1998). While 

these references contain detailed information on the models, some key equations are included 

herein in order to explain the input parameters used, their meaning and how they were 

determined. 

The model assumes that the so–called compressive crushing and tensile cracking are the 

main two failure mechanisms of the material. The response of the CDP model under uniaxial 

tensile loading is characterised by a linear–elastic stress–strain relationship up to the value of 

the failure stress. At such a stress, micro–cracks in the concrete material start forming. The 
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progressive coalescence of micro–cracks into macro–cracks and their subsequent openings are 

then captured using a softening stress–strain relationship. This latter relationship models the 

tensile cracking behaviour of concrete and can be defined by the so–called ‘tension softening’ 

by means of either a post–failure stress–strain relation or a fracture energy cracking criterion.  

Under uniaxial compressive loading, the CDP model behaves linearly until the value of 

the initial yield is reached, followed by a stress hardening and strain softening beyond the 

ultimate stress.  

In the CDP model, the following non–associated plastic flow rule is used: 

ሶࢿ  ൌ ሶߣ
ܩ߲
߲࣌

 (3) 

where  ࣌ and   ࢿሶ  denote the stress and plastic strain rate tensors, respectively, ߣሶ is a plastic 

multiplier, and ܩ is the Drucker–Prager function is used in the model: 

ܩ ൌ ටሺ߳ߪ௧ tan߰ሻଶ  ଶݍ െ  tan߰ 
(4) 

In the above equation,  and ݍ are the hydrostatic stress and the von Mises equivalent 

stress, respectively: 

 ൌ െ ଵ

ଷ
	trሺ࣌ሻ           ݍ ൌ ටଷ

ଶ
‖devሺ࣌ሻ‖; (5) 

߰ is the dilation angle measured in the ̅ െ  ത plane at high confining pressure; ߳ is theݍ

eccentricity, a parameter that defines the rate at which the function approaches the asymptote; 

 ௧ the value measured by Alfano et al. (2012)ߪ ௧ is the uniaxial tensile stress at failure. Forߪ

and reported in Table 2 was used. For the eccentricity ߳, which defines the rate at which Eq. 

(4) approaches the asymptote, the default value of 0.1 was used because it results in the same 

dilation angle over a wide range of confining pressure stress states. A sensitivity analysis of ߳ 

not presented here was conducted using ߳ ൌ 0.2 and ߳ ൌ 0.3 and it showed that this parameter 

had no effect on the load–deflection response of the two beams presented in this work. A value 

of ߳ that is significantly less than 0.1 is not recommended as it may lead to convergence issues 

(Dassault Systèmes 2014b). As for the dilation angle	߰, after conducting a sensitivity analysis 

reported below in Section 4-1-1, the value 40° was used.  

To account for the different evolution of strength under compression and tension, the CDP 

model uses the yield function of Lubliner et al. (1989), with the modifications suggested by 

Lee and Fenves (1998). The yield surfaces in the plane stress and deviatoric plane conditions 

are depicted in Figure 5(a) and Figure 5(b), respectively. The yield function defined by 
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Lubliner et al. (1989) can be expressed in terms of the effective stress as follows (Dassault 

Systèmes 2014b): 

ܨ ൌ
1

1 െ ߙ
തݍൣ െ ̅ߙ3  ௧̃ߝ൫ߚ

, ̃ߝ
൯〈ߪത௫〉 െ ൧〈ത௫ߪെ〉ߛ െ ̃ߝത൫ߪ

൯ (6) 

where 

ߙ ൌ
ሺߪ/ߪሻ െ 1
2ሺߪ/ߪሻ െ 1

; 0  ߙ  0.5 (7) 

  is the ratio of initial equi–biaxialߪ/ߪ ,ത௫is the maximum principal effective stressߪ

compressive yield stress to initial uniaxial compressive yield stress. ߪ/ߪ was set to the 

default value of 1.16 in the conducted simulations, which is the maximum of the range of 

experimentally found values reported by Lubliner et al. (1989), the minimum being 1.10. The 

effect of using different values of ߪ/ߪ (e.g. 1.0, 1.3 and 1.4) on the numerical load–

deflection curve was investigated. Numerical results not presented here showed that this 

parameter had negligible influence on the predicted load–deflection response.  

 

(a) 

 

(b) 

Figure 5. Concrete yield surface in (a) plane stress and (b) deviatoric plane 

In Eq.(6), ߚ and ߛ are defined as follows: 

ߚ ൌ
̃ߝത൫ߪ

൯

௧̃ߝത௧൫ߪ
൯

ሺ1 െ ሻߙ െ ሺ1  ;ሻߙ ߛ ൌ
3ሺ1 െ ሻܭ

ܭ2 െ 1
 (8) 

where	ߪത൫ߝ̃
൯ and ߪത௧൫ߝ௧̃

൯ are cohesion values in tension and compression, assumed to depend 

on the compressive and tensile equivalent plastic strains, ߝ̃
 and ߝ௧̃

, respectively. Note that ߚ 
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was assumed to be constant by Lubliner et al. (1989), while the expression given in (7) was 

proposed by Lee and Fenves (1998), to account for the case of cyclic loading, which is of 

interest in this paper. Parameter ܭ ൌ  ሺெሻ are the von Misesݍ ሺ்ெሻ andݍ ሺெሻ, whereݍ/ሺ்ெሻݍ

equivalent stresses on the tensile meridian (TM) and on the compressive meridian (CM), shown 

in Figure 5(b), at any value of the hydrostatic stress (Lubliner et al., 1989). In the simulations 

presented in this paper, ܭ was set to the default value of 2/3, which is in line with what 

suggested by Lubliner et al. (1989).  

 Compressive Behaviour 

The uniaxial stress–strain behaviour of concrete was determined in accordance with the 

Eurocode 2 (2004), whose schematic representation is shown in Figure 6, and has the following 

expression: 

ߪ
݂

ൌ
ߟ݇ െ ଶߟ

1  ൫݇ െ 2൯ߟ
 (9) 

where ߪ is the concrete compressive stress, ݂ is the mean value of concrete cylinder 

compressive strength. Furthermore, ߟ ൌ   is the concrete compressive strainߝ భ, whereߝ/ߝ

and ߝభ ൌ 0.7 ݂
.ଷଵ is the concrete compressive strain at the peak stress, ݂ being the average 

cylindrical compressive strength expressed in MPa, while ݇ ൌ /భหߝหܧ1.05 ݂, with ܧ 

being the average Young’s modulus of concrete in MPa. For ܧ, the value in Table 2 was 

used, whereas ݂ was estimated in accordance with BS EN 206–1 (2000) to be 20% less than 

the cubic compressive strength,	 ݂,௨, reported in Table 2. 

 
Figure 6. Schematic representation of the unaxial compressive stress–strain relation for the structural analysis of 

concrete (British Standard Institution 2004) 
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Eq. (9) is valid for 0 ൏ |ߝ| ൏ หߝ௨భห, where หߝ௨భห is the nominal ultimate strain. As per 

the Eurocode (2004), ߝ௨భ can be taken as 0.0035 for concrete compressive cylindrical strength 

of 12 െ 50	MPa. Otherwise, the ultimate compressive strain for concrete with a greater 

compressive strength can be estimated using the relation ߝ௨భ ൌ 2.8  27ሾ0.01ሺ98 െ ݂ሻሿସ 

(where ݂ is expressed in MPa). 

 Figure 7(a) shows the uniaxial stress–strain curve used to define the compressive 

behaviour of concrete. 

(a) (b) 

Figure 7. Concrete compressive behaviour: (a) Stress–strain curve, (b) Compressive damage evolution 

 Tensile Behaviour 

The concrete behaviour under uniaxial tension can be modelled by means of the so–called 

‘tension softening’ behaviour, also known as ‘tension stiffening’, which models the stress transfer 

between the reinforcement and concrete. This can be done by providing the stress–relative 

displacement curve, which would characterise the cracking behaviour of concrete if a discrete–

crack approach was used. The area under such curve represents the fracture energy (Hillerborg, 

Modéer et al. 1976). Different types of relationships can be used, as depicted in Figure 8. The 

simplest approach is to assume a linear approximation to define the tensile cracking behaviour. 

Such approximation yields reasonably accurate results but the concrete response tends to be too 

stiff. Instead, a smooth tension stiffening function is ideally recommended, such as a bi–linear 

approximation (Hillerborg 1985, CEB-FIP 1993) or an exponential expression (Cornelissen, 

Hordijk et al. 1986, Hordijk 1991) to define the descending part of the stress–displacement curve. 

The former is an acceptable formulation that agrees well with test data, although the location of 

the kink point has been predominantly debated in the literature. The stress ratio at this point has 
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been suggested to be between 0.15 and 0.33 (Park, Paulino et al. 2008). Hillerborg (1985) 

proposed the coordinates of the kink point at ሺ0.15	 ௧݂, 0.8 ிܩ ௧݂⁄ ሻ, whereas these coordinates 

were suggested by CEB-FIP (1993) to be ሺ0.33 ௧݂, 2 ிܩ ௧݂ െ ⁄ሻݓ0.15 , where ݓ ൌ ிߙ ிܩ ௧݂⁄ , 

 ி being the total fracture energy and a dimensionless coefficient that is dependable onߙ ி andܩ

the aggregate size, respectively. The latter reported by Alfano et al. (2012) as 10 mm, which 

corresponds to ߙி value of 7.75.  

It can be noted, therefore, that the tail of the bi–linear approximation of CEB-FIP (1993) is 

twice as long as that of Hillerborg (1985). However, the crack–opening displacement at the kink 

point will be identical for both bi–linear curves when substituting the corresponding values of 

 .ݓ ி, being calculated later in this Section, andܩ

 

(i) Linear function (ii) Bi–linear function (iii) Exponential function 

Figure 8. Linear (Dassault Systèmes 2014b), Bi–linear (Hillerborg 1985, CEB-FIP 1993) and exponential 
(Cornelissen, Hordijk et al. 1986) tension–softening models 

In their study, Roesler, Paulino et al. (2007) concluded that the predicted post–peak load 

behaviour is influenced by ܩி and the stress ratio at the kink point, whereas the tensile strength 

and the stiffness of the stress–displacement relationship, being fully characterised by ܩ, 

control the predicted peak–load. These conclusions were also confirmed by Bažant and Becq-

Giraudon (2002). It is worth emphasising here that ܩ and ܩி are two different material 

characteristics, which determine the slope (i.e. stiffness) of the stress–displacement 

relationship and its tail, respectively. The two fracture energies are approximately related by 

the relation ܩ ൌ   .ி (Planas, Elices et al. 1992)ܩ0.4

The present study aims at investigating the predicted load–deflection response of two RC 

beams, particularly, the behaviour in the post–peak region, the latter being dependable on the 

tail of the tension stiffening law employed in the model. The numerical results predicted using 

the bi–linear and exponential tension stiffening laws in Figure 8 and presented in Section 4-1-

2, show that the tail of the tension stiffening law has no effect on the predicted post–peak load–
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deflection response providing that the same ܩி value is used. The tail of the exponential law is 

1.5 longer than that of Hillerborg (1985) bi–linear law; yet, the predicted response remains 

unaffected. To this end, the numerical response predicted with either of the bi–linear curves 

depicted in Figure 8 is expected to be similar. Hence, the bi–linear curve of Hillerborg (1985) 

is chosen due to its wide use in the computational modelling of concrete. 

In this study, the three types of the stress–cracking displacement tension–softening laws, 

linear, bi–linear and exponential were compared. These responses are plotted in Figure 9(a).  

The exponential law of Cornelissen et al. (1986) has the following expression: 

௧ߪ
௧݂
ൌ 	 ቈ1  ൬ܿଵ

௧ݓ
ݓ

൰
ଷ

 exp ൬െܿଶ
௧ݓ
ݓ

൰ െ
௧ݓ
ݓ

ሺ1  ܿଵ
ଷሻ expሺെܿଶሻ 

ݓ ൌ 5.14
ிܩ
௧݂

 

(10)

where ߪ௧ is the tensile stress normal to the crack direction, ௧݂ is the concrete uniaxial 

tensile strength, ݓ௧ is the crack–opening displacement, ݓ is the crack–opening displacement 

at the complete release of stress or fracture energy, ܿଵ and ܿଶ are material constants taken as 

3.00 and 6.93, repectively. ܩி is the total fracture energy of concrete required to create a stress–

free crack over unit surface.  

Alfano et al. (2012) reported the concrete tensile strength as a splitting tensile strength. 

The CDP model, however, requires the uniaxial tensile strength as an input. To this end, the 

Eurocode 2’s (2004) relation ݂௧ ൌ 0.9 ݂௧,௦ was used to convert the splitting tensile strength 

into a uniaxial one.  

ிܩ ி in Eq. (10) can be estimated using the expressionܩ ൌ ிబሺ0.1ܩ ݂ሻ. in accordance 

with the CEB–FIB (1993), where ܩி is the base value of the fracture energy, which is 

dependable on the maximum size of the aggregate being used in the concrete mixture and ݂ 

is expressed in MPa. The value of ܩிcorresponding to a 10 mm maximum aggregate size, as 

reported earlier in this paper, equals to 0.026	N/mm. 
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(a) 
 

(b) 

Figure 9. Post–failure tensile behaviour of concrete (a) Stress versus cracking displacement curves, and (b) Stress 
versus cracking strain 

The stress versus crack–opening displacement curves, shown in Figure 9(a), can be 

converted into a stress versus strain curves using the crack band model. The crack band width, 

݄, is defined in ABAQUS as the characteristic crack length, ݈ , of an element, which is based 

on the element geometry and formulation. For instance, for a first–order element, the 

characteristic crack length is a typical length across the element, whereas it is half of the same 

typical length for a second–order element. In the present work, ݈ was taken as ݁ and ݁/2, 

where ݁ is the side length of the element, for first– and second–order elements, respectively. 

Based on the preceding definition of the characteristic length, the exponential stress versus 

displacement curve was converted into tensile stress versus cracking strain curves as shown in 

Figure 9(b). 

In practical terms, when post–failure stress–strain relationships are used, a single value of 

݈ must be determined before the analysis based on the average sizes of the entire finite–

elements. This was done for all of the analyses, which are reported below.  

 Damage Evolution 

As depicted in Figure 10, which illustrates the tensile and compressive stress–strain curves 

of concrete, the unloading of the concrete specimen from any point on the softening branch of 

the curve weakens the initial elastic stiffness, ܧ (i.e. damage or degradation appears in the 

material response). In the CDP model, two damage variables, namely ݀ and ݀௧, are used to 

characterise the degradation of the elastic stiffness. The values of the compressive damage 

variable, ݀, and the tensile damage variable, ݀௧, can range from zero, representing an 
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undamaged material, to one, representing a complete loss of strength. The former variable is 

assumed to be a function of the compressive plastic strain (i.e. ݀ ൌ ݀൫ߝ̃
൯; 		0  ݀  1), 

whereas the latter is assumed to be a function of either the tensile plastic strain (i.e. ݀௧ ൌ

݀௧൫ߝ௧̃
൯; 		0  ݀௧  1), or the tensile plastic displacement (i.e. ݀௧ ൌ ݀௧൫ݑ௧

൯; 		0  ݀௧  1). 

If the concrete specimen is unloaded under uniaxial tension, one of two possible scenarios 

can arise depending on whether the concrete stiffness has been lost or not after tensile cracking. 

If this stiffness has not been lost, the unloading path remains parallel to the initial loading path 

and the corresponding elastic strain will be ߝ௧
 ൌ  , otherwise, the slope of the unloadingܧ/௧ߪ

path will be reduced to ሺ1 െ ݀௧ሻܧ and the corresponding elastic strain becomes ߝ௧,ௗ
 ൌ

௧/ሾሺ1ߪ െ ݀௧ሻܧሿ. A similar response is observed if the concrete specimen is unloaded under 

uniaxial compression. If the compressive stiffness remains intact after compressive crushing, 

the slope of the unloading path remains equal to that of the initial loading and the corresponding 

elastic strain is ߝ ൌ  , otherwise, the compressive stiffness of the unloading path isܧ/ߪ

reduced to ሺ1 െ ݀ሻܧ, resulting in a corresponding elastic strain ߝ,ௗ
 ൌ /ሾሺ1ߪ െ ݀ሻܧሿ.   

 
Figure 10. Definition of tensile and compressive damage (reproduced from Dassault Systèmes (2014b)) 

In the proposed FE models, two user–defined curves were introduced to account for the 

compressive and tensile damage, as the unloading data were not reported experimentally. As 
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per the CDP model, the compressive damage variable is defined as a tabular function of the 

(inelastic) crushing strain, ߝ̃. The latter is defined as:  

̃ߝ ൌ 	 ߝ െ బߝ
 , where: ߝబ

 ൌ ఙ
ா

 (11)

As shown in Figure 10, the equivalent plastic strain for crushed concrete is: 

̃ߝ
 ൌ 	 ߝ െ	ߝ,ௗ

  , where: ߝ,ௗ
 ൌ ఙ

ሺଵିௗሻா
 (12)

From Eq. (11), ߝ ൌ ̃ߝ 	ߝబ
. Substituting in Eq. (12) yields: 

̃ߝ
 ൌ ̃ߝ  బߝ

 െ ఙ
ሺଵିௗሻா

ൌ ̃ߝ െ
ఙ
ா
ቀ ଵ

ଵିௗ
െ 1ቁ ൌ ̃ߝ െ

ௗ
ଵିௗ

బߝ
  (13)

The compressive damage variable can be computed using the following relation: 

݀ ൌ 1 െ ఙ


  (14)

 It is assumed that ߝ̃
 ൌ 0 for ߪ   ೠ. Following the preceding definition of theߪ

compressive damage of concrete, the damage evolution is directly determined by the 

compressive stress–strain relationship (e.g. Eq. (9)). The ߝ̃ െ ݀ curve defined using this 

method is shown in Figure 7(b).  

Similarly, the tensile damage variable can be defined as a tabular function of either the 

crack–opening displacement, ݑ௧
, or the cracking strain, ߝ௧̃

. Either way, the tensile damage 

variable can be computed using the relation ݀௧ ൌ 1 െ ሺߪ௧/ ௧݂ሻ. The plastic displacement can be 

determined using the following relationship: 

௧ݑ
 ൌ ௧ݑ

 െ ௗ
ଵିௗ

௧బߝ
, where: ߝ௧బ

 ൌ ఙ
ா

 (15) 

Based on the aforementioned definition of the tensile damage, the damage evolution law 

is directly determined by the tension–softening law being implemented in the FE model (e.g. 

Figure 9(a)). Figure 11 shows three  ݑ௧
 െ ݀௧ curves determined using the preceding method.  
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(a) (b) 

Figure 11. Tensile damage variable versus (a) crack–opening displacement, and (b) cracking strain 

The cracking strain is defined in ABAQUS as: 

௧̃ߝ 
 ൌ 	 ௧ߝ െ ௧బߝ

 , where: ߝ௧బ
 ൌ ఙ

ா
 (16)

With reference to Figure 10, the plastic strain for damaged concrete is: 

௧̃ߝ
 ൌ 	 ௧ߝ െ	ߝ௧,ௗ

  , where: ߝ௧,ௗ
 ൌ ఙ

ሺଵି௧ሻா
 (17)

From Eq. (16), ߝ௧ ൌ ௧̃ߝ
 	ߝ௧బ

. Substituting in Eq. (17) yields: 

௧̃ߝ
 ൌ ௧̃ߝ

  ௧బߝ
 െ ఙ

ሺଵିௗሻா
ൌ ௧̃ߝ

 െ ఙ
ா
ቀ ଵ

ଵିௗ
െ 1ቁ ൌ ௧̃ߝ

 െ ௗ
ଵିௗ

బߝ
  (18)

The post–failure stress–strain relation (e.g. Figure 9(b)), being implemented in the FE 

model to define the tension–softening, directly determines the damage evolution law in this 

case. The three corresponding ߝ௧̃
 െ ݀௧ curves are depicted in Figure 11.  

3-5-2. Steel 

The steel of the longitudinal rebars and stirrups were modelled as an elastic–perfectly 

plastic material. Table 2 shows the material properties for the steel rebars and stirrups. The 

bond–slip interaction was accounted for because the CDP model captures the damage of the 

concrete surrounding the steel rebars.  

4. Results and Discussion 

In the following sub–sections, the numerical results are presented in terms of the load–

carrying capacity versus deflection and predicted crack patterns for the two RC control beams, 

tested by Alfano et al. (2012) and chosen to validate the FE models described in this paper. 

The effects of (i) the shape of the tension softening curve (i.e. linear, bi–linear and exponential), 

(ii) the finite–element type used to represent the rebars (e.g. truss or beam elements with linear 

or nonlinear geometric nonlinearity), (iii) the finite–element type used to represent the concrete 

(e.g. tetrahedron or hexahedron) and the density of the mesh (coarse, medium or fine) on the 

structural response of the two RC beams are investigated.  
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4-1. Load–Deflection Curves 

4-1-1. Effects of Dilation Angle 

The influence of the size of the dilation angle on the load–deflection response was studied 

for the two RC beams presented in this work. The analyses were conducted using a fine 

structured mesh of C3D8I elements, whose edges were of identical lengths of 10	mm. 

Longitudinal steel rebars and stirrups were modelled using B31 elements. An exponential stress–

displacement tension–softening law was employed in these analyses. Four different sizes of 

the dilation angle of 20°, 30°, 40° and 50°, respectively, were studied. The numerical load–

deflection curves are presented in Figure 12(a) for beam U2 and in Figure 12(b) for beam U5. 
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(b) 

Figure 12. Effects of dilation angle on the numerical load–deflection curves of (a) beam U2 and (b) beam U5 

It can be seen from Figure 12Figure 12.  that a small value of the dilation angle (i.e. ൌ 20° 

) results in a significant loss of ductility whilst the differences in the load–deflection response 

for higher values (e.g. ߰ ൌ 30°, 40° and 50°) are rather small. Based on this sensitivity 

analysis, ߰ was set to 40° in all the conducted simulations.  

4-1-2. Effects of Tension–Softening Definition  

The numerical load–deflection curves, predicted using the tension–softening stress–

displacement relations shown in Figure 9(a), are compared in Figure 13(a) against the 

experimental load–deflection curve of beam U2. In the FE analyses, the concrete was modelled 

using C3D8I elements and the longitudinal rebars and stirrups were modelled using B31 

elements. The predicted cracking loads, residual deflections and ultimate–loads reported in 

Figure 13(a) show that the numerical cracking loads are slightly under–predicted with 

differences all between 1 and 4%. The predicted residual deflections upon the first unloading, 

however, are higher than the experimental value, with differences between 40 and 45%. The 

ultimate–load is closely predicted with differences all below or equal to 3%.  

Figure 13(b) shows the numerical load–deflection curves for beam U2 obtained using the 

three stress–strain tension–softening stress–strain laws (i.e. bi–linear, exponential and linear) 

and all the same modelling options as for Figure 13(a). The results are extremely close to those 

in Figure 13(a), with differences in all key values below 3%, showing that the choice of using 
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a stress–strain or a stress–displacement law has negligible influence on the load–displacement 

curve.   

 
(a) 

 

 

 
(b) 

Figure 13. Comparison between the experimental and numerical load–deflection curves for beam U2 obtained 
using: (a) stress–displacement and (b) stress–strain tension–softening laws 
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Figures 13(a) and 13(b) show that the initial stiffness of the numerical load–deflection curve, 

predicted using a linear tension–softening law, is higher than that of the experimental response. On 

the contrary, the initial stiffness of the experimental load–deflection curve is closely predicted using 

the bi–linear and exponential tension–softening laws.  

There is a good agreement between the numerical and experimental curves in the reloading 

phase (i.e. the rebar post–yielding phase) regardless of the tension–softening law employed in 

the FE analysis.   

It can also be seen from Figures 13(a) and 13(b) that all simulations over–predict the 

residual deflection upon the first unloading. The numerical results suggest that almost no 

degradation of the elastic stiffness took place (i.e. the numerical unloading path appears to be 

undamaged). In turn, this may indicate that the plastic displacements and their associated 

strains used to define the tensile damage evolution were over–estimated. Despite the difference 

in the unloading phase, the numerical results obtained for beam U2 demonstrate that the three 

tension–softening laws investigated in this study can effectively capture the load–deflection 

response of the four–point bending test. Furthermore, the stress–strain and stress–displacement 

laws provide practically the same response. 

The same simulations were conducted for beam U5, which is 89% and 83% shorter and 

less deep than beam U2, using identical material parameters and modelling options. For these 

simulations, Figure 14(a) shows the experimental load–deflection curve for beam U5 compared 

against the numerical curves obtained using the three stress–displacement tension–softening 

laws shown in Figure 9(a). Again, C3D8I and B31 elements were used to model concrete, steel 

rebars and stirrups, respectively. The cracking loads reported in Figure 14(a) are generally 

over–predicted in the numerical model compared with the corresponding experimental value 

with differences of 14%, 14% and 19% for the bi–linear, exponential and linear stress–

displacement tension–softening laws, respectively. The predicted residual deflections upon the 

first unloading are also higher than the experimental value, with differences between 21% and 

23% for the same tension–softening laws. The experimental ultimate–load is closely predicted 

by the model with differences of only 5%, 2% and 4% for the bi–linear, exponential and linear 

tension–softening laws, respectively. 
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(a) 

 

 

 
(b) 

Figure 14. Comparison between the experimental and numerical load–deflection curves for beam U5 obtained 
using: (a) stress–displacement tension–softening; (b) stress–strain tension–softening laws 

 Figure 14(b) shows the equivalent numerical–experimental comparison using stress–

strain tension–softening laws instead of stress–displacement laws, and these again employ 

linear, exponential and bi–linear approaches. The predicted cracking loads, residual deflections 

and ultimate–loads are reported in  Figure 14(b). The cracking loads are over–predicted by the 
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model relative to the corresponding experimental values by around 15% to 18%. The predicted 

residual deflections upon the first unloading are also higher than the experimental value, with 

differences between 20% and 23%. The ultimate–load is closely predicted by the model with 

differences of only 2%, 2% and 5% for the bi–linear, exponential and linear tension–softening 

laws, respectively.  

It can be seen from  Figure 14(a) that the bi–linear and exponential tension–softening laws 

predict an identical initial stiffness, despite being slightly over–estimated, whereas the linear 

law predicts a higher initial stiffness, as for beam U2. Furthermore, the three tension–softening 

laws behave almost similarly in the post–yielding phase of the steel rebars. A similar 

observation can also be seen in Figure 14(b), with the exception that the exponential stress–

strain tension–softening law (i.e. D8I_B31_EX.STR) tends to be closer to the experimental 

curve in the advanced post–yield response. There is generally a reasonably good agreement 

between the experimental load–deflection curve and its numerical counterpart regardless of the 

tension–softening law used in the FE model. This further confirms the effectiveness of the three 

tension–softening laws investigated in this study and more generally the modelling approach.  

The conclusions that can be drawn from the results are twofold. Firstly, the assumption of 

a stress–strain or a stress–displacement approach has a small impact on the predicted numerical 

solution providing that an adequate mesh aspect ratio is selected. Generally, a mesh size, which 

has an aspect ratio (i.e. the ratio between the longest length to the shortest length of a finite–

element) as close as possible to unity, is most ideal. In addition, if some elements in the FE 

mesh have large aspect ratios, it is likely that they will exhibit different cracking behaviour 

depending on the direction of cracking. The second main conclusion is that the shape of the 

tension–softening law, that is linear, bi–linear or exponential, has a relatively small influence 

on the behaviour. The linear law provides a stiffer response in the post–cracking part before 

yielding.   

4-1-3. Effects of Element Types Used for Steel Rebars 

As concluded in the previous section, all tension–softening laws predict very similar results 

compared with the experimental response for beams U2 and U5. Therefore, due to space 

limitations, the numerical results predicted using the exponential law are presented and discussed 

herein.  
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In Figure 15, the experimental load–deflection curve for beam U2 is compared against four 

numerical curves obtained using a structured mesh of C3D8I elements to model the concrete. 

The first two numerical curves, coded B31_GL and B31_GNL, was obtained using beam 

elements (B31) to model the steel rebars and geometric linear (GL) and nonlinear (GNL) models, 

respectively. Likewise, the other two numerical curves, coded T3D2_GL and T3D2_GNL, were 

obtained using truss elements (T3D2) for the rebars, again with GL and GNL model, respectively. 

Figure 16 shows the same results for beam U5. 

 
Figure 15. Numerical load–deflection curves predicted for beam U2 using truss and beam elements to model steel 

rebars, compared against the experimental curve 

Figures 15 and 16 show that all curves predicted the same response up to the cracking 

load. These curves also predicted identical residual deflections. The numerical curves in Figure 

15 present small differences in the reloading phase, particularly, after the yield point. Using 

beam or truss elements leads to practically no difference if a GL model is used, whereas with 

truss elements and a GNL model an early softening response is found, consistently for both 

beams U2 and U5. The only difference in Figure 16 is that beam elements and a GNL model 

lead to a curve that starts to soften beyond a prescribed displacement of about 40	mm. It is also 

noteworthy that beam U5 was loaded in the experiment up to a larger level of ductility with 

respect to U2.  
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Figure 16. Numerical load–deflection curves predicted for beam U5 using truss and beam elements to model steel 

rebars, compared against the experimental curve 

Figures 15 and 16 show that the geometric nonlinearity appears to have a significant 

impact on the structural response when truss elements are used. In a large displacement–

analysis, ABAQUS treats truss elements as an incompressible material regardless of the actual 

material definition (Dassault Systèmes 2014a). It appears that the prescribed displacement 

applied in the FE conducted simulations may have caused a significant longitudinal stretch to 

the steel rebars being modelled as truss elements in this case. This was confirmed by the 

observation of high values for the maximum principal nominal and logarithmic strains 

numerically predicted along the rebar axes. Here, it can be  argued that these high magnitudes 

of longitudinal strains caused not only a significant stretching in the rebars but also a significant 

reduction of their cross–sectional area.  

It is known that in a large–displacement analysis, the current configuration is used to formulate 

the element, rather than the reference configuration. Hence, the higher the deformation the element 

is subjected to, the greater the distortion that will occur. This suggests that the inclusion of large–

displacement effects in the FE model is ultimately of great influence on the structural behaviour 

being analysed, and that truss elements may not be the ideal choice to model steel rebars if 

geometric nonlinearity is considered in the simulation.  

4-1-4. Effects of Mesh and Element Types Used for Concrete 

In this section, the numerical load–defection curves obtained using two mesh types to 

model the concrete, structured meshes of 3D linear (8–noded) elements with incompatible 
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strains (C3D8I) and 3D linear elements with reduced integration (C3D8R), and unstructured 

meshes of 3D linear (4–noded) or 3D quadratic (10–noded) tetrahedral (C3D4 and C3D10M, 

respectively) elements, are presented. As before, the exponential stress–strain tension–

softening law was employed. The steel rebars were modelled using linear beam (B31) elements 

with the structured meshes of C3D8I and C3D8R elements as well as with the unstructured 

mesh of C3D4 element, and quadratic beam (B32) elements with the unstructured mesh of 

C3D10M elements.  

 The four numerical curves in Figure 17 are almost identical, with all three numerical 

curves predicted using C3D8R, C3D4 and C3D10M elements predicting a slightly stiffer 

response relative to the experimental one. With all elements, there is generally a good 

agreement between the numerical and the experimental curves.  

 
Figure 17. Numerical load–deflection curves for beam U2 obtained using four different mesh types to model the 

concrete 

Figure 18 compares the experimental load–deflection curve for beam U5 against the 

numerical curves obtained using the four meshes and element types mentioned earlier in this 

section. The numerical observations noted during discussions on the results for beam U2 can 

be extended to beam U5. The differences between the curves are very small except that 

C3D10M elements lead to a slightly stiffer response. The results predicted with C3D8I and 

C3D4 elements show some limited amount of softening.  
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Figure 18. Numerical load–deflection curves for beam U5 obtained using different element and mesh types to 

model 

The slightly increased stiffness when using an unstructured mesh of C3D4 and C3D10M 

elements can be attributed to the estimation of the element characteristic length (ECL) being 

used to convert a stress–displacement tension–softening law into a stress–strain law, as 

discussed before in defining the Tensile . Given the irregular shape of both linear and quadratic 

tetrahedral elements, the crack length is chosen to be representative of all the finite–elements 

in any prospective mesh, and is taken as the mean value of the average maximum and minimum 

element edge lengths. For example, in one of the unstructured meshes presented in this work, 

in which a 10	mm approximate finite–element size was used, the average maximum edge 

length was 15.70	mm and the average minimum edge length was 10.26	mm. Hence, the ECL 

for an unstructured mesh of C3D4 elements was estimated as the average of these two values 

as 12.98	mm, and for an unstructured mesh of C3D10M elements, the ECL was estimated as 

0.5 ൈ 12.98	mm. Although it can be argued that these characteristic lengths are slightly under–

estimated (i.e. a higher ECL would have resulted in lower cracking strains and therefore, a 

reduced stiffness of the numerical curve), it is also possible that the crack–opening 

displacements, from which the cracking strains were obtained as per the crack band model, are 

slightly over–estimated. 
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4-1-5. Effects of Mesh Size 

 Figures 19 and 20 present comparisons between the experimental curves for beams U2 and 

U5, respectively, and three numerical curves obtained using three different densities of 

unstructured meshes of C3D10M elements and structured meshes of C3D8I elements for beams 

U2 and U5, respectively. Mesh densities are indicated herein as the ratio between the average 

length of the FE edge and the height, ݄, of the RC beam studied. Similar results for each beam 

were obtained for all types of elements, so only the aforementioned types of elements for the two 

beams are presented here. Three mesh densities of about 0.04, 0.06 and 0.08 are chosen, so that 

the aspect ratio of the resulting FE mesh has a value close to unity. It is observed that the three 

mesh densities predict almost the same load–deflection response. Similar results were found for 

mesh–convergence analyses for structured meshes used for beam U2 and unstructured meshes 

used for beam U5. 

 
Figure 19. Numerical load–deflection curves for beam U2 obtained using three different sizes of unstructured 

meshes of C3D10M elements 
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Figure 20. Numerical load–deflection curves for beam U5 obtained using three different sizes of structured meshes 

of C3D8I elements 

It is concluded that the coarser of the meshes used is sufficiently refined if the load–

deflection curve is the main result of interest. Some differences were found between the 

predicted crack patterns as discussed below.  

4-2. Crack Patterns 

Cracks at the material integration points cannot be explicitly output when using the CDP 

model employed in this study. Nevertheless, the crack patterns can be graphically represented by 

introducing an effective crack direction. For the latter, Lubliner et al. (1989) assumes that cracks 

are initiated at points where the tensile equivalent plastic strain, ߝ௧̃
, and the maximum principal 

plastic strain are both positive. The direction of the latter strain, as it is normal to the crack plane, 

determines the crack direction. Following the preceding criterion to determine the predicted crack 

patterns, the contour plots of the maximum principal inelastic strain are reported in this section. 

Figures 21(a) and 21(b) show the contour plots of the maximum principal inelastic strain 

for beam U2 at the ultimate–load using a structured mesh of C3D8I and C3D8R elements with 

corresponding prescribed displacements of 15.8	mm and 14.4	mm, respectively. In Figure 

21(a), the nine cracks, labelled as crack no. 5 to crack no. 13, propagate initially vertically and 

rightwards towards the displacement–application point. On the other hand, the tensile cracks 

initially propagate vertically and leftwards towards the region where displacement is applied. 

The tensile cracks formed in the constant–moment region (i.e. crack no. 1 to crack no. 4) initially 
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propagate vertically and slightly leftwards again towards to displacement–application point. 

Tensile cracks can also be observed at the bottom of beam U2, mainly, along the steel reinforcement 

level (e.g. cracks no. 8, 9 and 10), indicating slipping between concrete and steel rebars.  

Comparing Figures 21(a) and 21(b), one can observe that there are some discrepancies between 

the crack patterns predicted using structured meshes of C3D8I or C3D8R elements. A little fewer 

cracks form in the latter (i.e. eight instead of nine cracks formed in the shear–span region, and three 

instead of four main cracks formed in the constant–moment region). Furthermore, the cracks 

predicted using a structured mesh of C3D8R elements, particularly those formed in the constant–

moment region, appear to be significantly wider than those predicted using a structured mesh of 

C3D8I elements.  

Figures 21(c) and 21(d) show the predicted crack patterns for beam U2 at the ultimate–

load using an unstructured mesh of C3D4 and C3D10M elements with  corresponding 

prescribed displacements of 12.8	mm and 13.6	mm, respectively. The key difference between 

cracks predicted using these two unstructured meshes and those formed in the structured 

meshes is that in the unstructured mesh, there is no mesh bias, particularly in the shear–span 

region where cracks are expected to be inclined as a result of shear. It can also be observed that 

although a similar number of cracks formed in the shear–span region in Figures 21(c) and 21(d) 

(i.e. 9 cracks in total), their initiation and propagation are quite different. For instance, while crack 

no. 5 in both figures appear to be initiated at the same position, the initiation of crack no. 6 occurred 

in a different position. Again, cracks can also be seen at the interface between the bottom rebars 

and concrete. 
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Figure 21. Predicted crack patterns for beam U2 at the ultimate–load using structured meshes of (a) C3D8I and (b) 

C3D8R elements, and unstructured meshes of (c) C3D4 and (d) C3D10M elements 

 Figures 22(a) to 22(c) show the predicted crack patterns for beam U2 at the ultimate–load 

using unstructured meshes of three different mesh densities of C3D10M elements with 

corresponding prescribed displacement of 12.1	mm, 7.2	mm and 7.2	mm, respectively. For 

the finest mesh (i.e. Figure 22(a)), a larger number of cracks formed and propagated along the 

beam span compared to the other two coarser meshes.  
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Figure 22. Predicted crack patterns for beam U2 at the ultimate–load using unstructured meshes of C3D10M 

elements with sizes of (a) 0.04, (b) 0.06 and (c) 0.08 

Figure 23(a) to 23(d) show the corresponding results for beam U5 at the ultimate–load, at 

prescribed displacements of 13.8	mm and 10.3	mm, respectively, for structured meshes of 

C3D8I and C3D8R elements, and prescribed displacements of 10.8	mm and 7.3	mm, 

respectively, for unstructured meshes of C3D4 and C3D10M elements. Similar to the 

observation noted on the predicted crack patterns for beam U2, the structured meshes used for 

beam U5 showed some mesh bias, whereas this bias was less pronounced for the unstructured 

mesh case. It can be also seen from comparing the predicted crack patterns for beam U5 with those 

experimentally observed, shown in Figure 24, that the unstructured meshes captured relatively well 

most of the cracks in the constant–moment region. 
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Figure 23. Predicted crack patterns for beam U5 at the ultimate–load using structured meshes of (a) C3D8I and (b) 
C3D8R elements, and unstrauctured meshes of (c) C3D4 and (d) C3D10M elements 

 
Figure 24. Crack patterns experimentally observed for beam U5 (Alfano, De Cicco et al. 2012)  
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Figure 25(a) to 25(d) show the predicted crack patterns for beam U5 at the ultimate–load 

using structured meshes of four different sizes of C3D8I elements with corresponding 

prescribed displacements of 14.6	mm, 14.5	mm, 12.2	mm	and 12.7	mm, respectively. It is 

worth noting here that the element sizes in this case were chosen so that the resulting aspect 

ratio had a unity value. The crack numbers indicate the sequence of the crack formation. It can 

be seen that the finer the mesh, the clearer the predicted cracks. The strain contours of the 

coarse mesh in Figure 25(d) does not represent with repeatable accuracy the crack patterns. 

Furthermore, the predicted cracks tend to localise along one column or two of finite–elements. 

Therefore, wider cracks are predicted in a coarse mesh as opposed to narrower ones in a fine 

mesh (e.g. cracks no. 3 and 4 in Figure 25(d) and cracks no. 1 and 2 in Figure 25(a)).   

 

 
Figure 25. Predicted crack patterns for beam U5 at the ultimate–load using structured meshes of C3D8I elements 

with sizes of: (a) 0.03 mm3, (b) 0.04 and (c) 0.06 and (d) 0.08 mm3 

5. Conclusions 

In this paper, three–dimensional nonlinear finite–element models have been developed to 

study the flexural behaviour of two reinforced–concrete beams under four–point bending. A 
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dynamic explicit procedure together with the concrete damaged–plasticity model are employed 

to simulate the loading–unloading–reloading behaviour of the beams and to predict their crack 

patterns. The validation and the comparative analyses of the different model choices considered 

are particularly meaningful for two reasons. Firstly, identical material properties are used in the 

finite–element models for both beams. Secondly, many material parameters are determined 

directly based on the measured material properties as reported by Alfano et al. (2012) while the 

remaining few parameters requiring some calibration were found to be well within the expected 

range of values. Moreover, the sensitivity of the results to these terms has been explicitly 

examined in this paper. 

The effect of the tension–softening law on the load–deflection response has been studied. 

The laws considered are a post–failure stress–displacement or stress–stain relationship, with 

each having either a bi–linear, exponential or linear response. For all the laws included in this 

study, the predicted load–deflection curves are in very good agreement with the corresponding 

experimental values. The curves predicted using the linear law over–estimated the initial 

stiffness very slightly but provided excellent agreement with the experimental response in the 

post–yielding phase. 

The effect of modelling steel rebars on the overall response of the two reinforced–concrete 

beams has been also investigated. To this end, beam and truss elements are considered. No 

differences were found for a geometrically linear analysis; therefore, the dowel action was not 

representative. By contrast, for a geometrically nonlinear analysis, the load–deflection curves 

predicted using truss elements exhibited significant softening beyond the ultimate–load, whilst 

those predicted using beam elements exhibited no or negligible softening and good agreement 

with experiments were found. This may be important to consider when studying the progressive 

collapse of reinforced–concrete structures. 

The effect on the load–deflection response of the selection of the element and mesh types 

used to model the concrete has also been presented. Structured meshes of linear (8–noded) 

elements with incompatible strains or with reduced integration, and unstructured meshes of 

linear (4–noded) and quadratic (10–noded) tetrahedral elements, are considered. The disparities 

between the results when different element types were used was found to be very small. Mesh–

convergence analyses were also presented to confirm that the meshes used in these analyses 

were sufficiently refined and that further mesh refinement would provide negligible influence 
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on the load–deflection curves. However, the crack patterns predicted using different mesh sizes 

presented some discrepancies, in that, for finer meshes more cracks were found to develop.  

Finally, the predicted crack patterns using structured and unstructured meshes have been 

presented and discussed. As expected, structured meshes exhibited some mesh bias in terms of 

the predicted maximum principal inelastic strain, whereas this bias was less pronounced in cases 

involving unstructured meshes. 
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