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Abstract 

Enhancing the separated singing voices from harmonic (pitched) and percussive 

musical instruments in songs recorded with a single microphone is the scope of this 

thesis. Separating singing voice has applications in music information retrieval 

systems. Various methods have been used to separate singing voice from harmonic 

and percussive instruments. Most of them use two stages of separation, one for 

separating harmonic instruments, and the other for separating percussive instruments. 

One of these Algorithms uses non-negative matrix factorization in each stage to 

separate harmonic and percussive instruments. Traditionally, in each stage, 

components’ bases or gains are clustered based on discontinuity measures. The first 

contribution of this thesis was the use of local discontinuity of significant parts of 

these bases and gains, followed by splitting (rather than classifying) each 

component’s basis or gain. This significantly refined the separated voice and music 

sources.  

Median filtering has also been used in two stages to separate singing voice. 

Typically, horizontal and vertical filters are used in each stage. The second 

contribution of this thesis was to enhance the separation quality using a combination 

of six additional diagonal median filters to accommodate singing voice frequency 

modulations. In addition, filters parameters that are suitable for all songs regardless 

of their sampling frequencies are sought. 

The third contribution of this research was the novel use of Hough Transform to 

detect traces of pitched instruments in the magnitude spectrogram of the separated 

voice. These traces are then removed completely using median filtering after 

successfully calculating their frequency bands. The new Hough Transform based 

approach was applied to a number of separation algorithms as a post processing step 

and it significantly improved the quality of the separated voice and music in all of 

them.  
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1 Introduction 

1.1 Motivation 

If you listen carefully to the sounds in your surrounding, most likely you can identify 

many sources. Probably you hear a tweet of a bird, a car passing by, a nearby 

conversation, and music played in the background. Interestingly, you may even 

choose to direct your attention to one source only, say the nearby conversation, and 

then you can comprehend it amid all this mix of sounds.  

Although no machine yet can replicate this unique human hearing ability, 

building a one that is capable of segregating sounds coming from different sources 

would have many useful applications. For example, separating singing voice from 

the music background of a song would facilitate automatic indexing of songs and 

searching song database just by humming. 

Sound source separation in general and singing voice separation in particular are 

challenging problems. Many approaches were attempted in order to separate the 

singing voice from the accompanying music. For example, some approaches assume 

that voice is dominant while others assume that the music is repeating. Some 

decompose the time-frequency representation of the audio signal in different ways, 

while others use learned models.  

The desire to learn how possibly a machine could come closer to the human 

hearing ability when coupled with the difficulty of the problem was the drive for my 

exciting research journey. 

1.2 Why Singing Voice Separation? 

Separation of vocals from music recordings would help in many music information 

retrieval (MIR) tasks. MIR is a multidisciplinary research area that strives to develop 

technologies for automatically organizing and searching audio signals without 

relying on textual annotation [1], [2]. MIR has a dedicated annual conference 
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(ISMIR) and an annual evaluation campaign (MIREX). The following are examples 

of the MIR related applications that would benefit from singing voice separation. 

1.2.1 Melody Extraction and Transcription 

Melody is one of the most recognizable traits of a music signal. It is the pitch 

sequence that a human listener is most likely to perceive. It is reasonable to assume 

that the melody line is the pitch contour of the lead vocal as this is usually how 

people recognize a piece of music. Extracting the melody is useful for music 

recognition, analysis of its structure, and genre classification [3]. 

Producing a sequence of frequency values represents the pitch of the dominant 

melody, facilitates the automatic transcription a musical signal, which is done by 

computing its corresponding symbolic musical representation [4], [5]. 

1.2.2 Singer Identification 

Singer identification of a song whose meta-data does not include singer’s name 

would be useful when automatically searching for songs of a certain singer. 

Furthermore, when the acoustical characteristics of different signers are available 

and well described, users can discover new songs rendered by the singing voices they 

usually prefer suing the similarities between different singers [6], [7]. 

1.2.3 Lyrics Recognition 

In addition to the melodic component of singing, there is the lyrics component. 

Lyrics are words of a song, usually in the form of verses and choruses. Automatic 

lyrics recognition from music recordings would allow searching in audio databases 

by keywords, automatic indexing of music, and finding songs using query-by-

singing. In this case, usually a vocal separation algorithm is needed to separate the 

singing voice then a recognizer is used to extract the lyrics [8]. 

1.2.4 Lyrics Alignment 

Another application of separating singing voice is its use to find the temporal 

relationship (alignment) between the musical audio signal and its corresponding 
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lyrics text. Many people enjoy music videos when synchronized lyrics are displayed 

in the caption. The alignment can also be used in automated karaoke annotation 

systems, automatic labeling and keyword spotting in singing database [9], [10]. 

1.2.5 Identifying Song Language 

Another component of the research on extracting information from music recordings 

automatically is to be able to identify the language of a song. This would be useful in 

many applications like song classification, recognition, and retrieval [11], [12]. 

1.2.6 Query by Humming 

Separated singing voice can also help in the querying of music database by humming 

or singing. Singing or humming to a music search engine has always been appealing 

and in particular nowadays after the widespread of small sized portable devices [13]. 

1.2.7 Other Uses 

In addition to its importance for MIR applications, separation of audio sources could 

have many other benefits, like in adjusting the pitch of vocals, simplifying the task of 

musicians to learn their parts from a recorded song, and it can also be used to create a 

vocal/nonvocal equalizer that can be used in an automatic karaoke generator [14], 

[15]. 

1.3 Background 

1.3.1 Computational Auditory Scene Analysis (CASA) 

Humans have the amazing ability to distinguish between individual sound sources in 

a complex mixture of sounds. The ability to comprehend speech in such environment 

is known as the cocktail party problem [16], [17]. Auditory scene analysis (ASA) is 

the study of the way the brain processes sounds reaching our ears and organize them 

into meaningful sources. It is argued that this happens in two stages [18]. The first 

stage is the segmentation of sound into time-frequency segments. The second is 

grouping the segments that are likely to have come from the same source into 

streams representing these sources.   
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Computational Auditory Scene Analysis (CASA) is the study of developing 

machines capable of achieving the humans’ ability of the ASA. CASA is motivated 

by a number of useful applications, such as, automatic speech recognition, automatic 

speaker identification, automatic music transcription, hearing aids, etc. In order to 

group time-frequency segments into streams, CASA uses different cues such as 

pitch, onset/offset time, spatial location, notes and harmonicity.  

CASA may or may not employ perceptual and neural mechanisms used by the 

human auditory system [19]. This gave rise to an area of research called Sound 

Source Separation (SSS). 

1.3.2 Sound Source Separation (SSS) 

The problem of sound source separation is determined by the properties of the mixed 

sounds as well as the recording setting. For example, the number of microphones, the 

distance between them, the number of sources (audio streams), room reverberations 

and size, are all factors that help in designing a proper solution to the separation 

problem in hand. In general, sound mixtures can be classified based on, number of 

sources and microphones (mixtures), time delays between sources and microphones, 

and time dependence of the mixing filters. 

When the number of sources (P) is larger than the number of microphones (X) – 

also called the number of sensors or channels - then we have an under-determined 

system. When P equals X we have a determined system. And we have an over-

determined system whenever P is less than X. 

When the time delay of all audio signals arriving at all sensors is the same or 

zero, then we have an instantaneous mixing. Convolutive mixing however models 

time lag between different audio signals arriving at the sensors. Convolutive mixing 

also takes into consideration reflections from room walls (room reverberation). 

When the mixing filters remain constant over time, then we have time-invariant 

mixing. But when the mixing filters vary throughout the time, we have time-varying 

mixing. 
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The methods that are used to solve the separation problems mentioned above are 

classified into supervised methods, which are the ones that require training, and 

unsupervised (or blind) methods, which do not require training or prior knowledge 

about the original sources. 

1.4 Thesis Scope 

1.4.1 Blind Monaural Singing Voice Separation 

In this thesis, the special case of instantaneous, under-determined, time-invariant, 

and blind SSS problem is considered. Furthermore, in many cases in audio signal 

processing, only one-channel recording is available. In this case, it is also called 

monaural SSS, and the formulation of the problem in its simplest form is as follows:  

 ! ! = !! !
!!

!!!
 (1.1) 

where the ! !  is the observed (mixture) signal, !! !  represent the !!! source signal, 

and !! being the number of sources. The aim now is to estimate the original sources 

!! !  from the mixture ! ! . Sources could be different talkers, different instruments, 

or mixes of vocals and instruments. The later is the scope of this thesis, namely; 

blind monaural singing voice separation.  

1.4.2 Problem Statement 

In many genres of music, especially in the popular music, the lead vocal is the most 

impressive and essential part for most listeners. If we take into consideration that 

music instruments can be classified into harmonic (or pitched) instruments (like 

piano and violin) and percussive instruments (like drums and hi-hat), then the 

problem statement can be formulated as follows: 

 ! ! = ! ! + ℎ ! + !(!) (1.2) 

where ! ! , ℎ ! , and !(!)  represent the vocals, harmonic instruments, and 

percussive instruments signals respectively. 
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1.5 Objectives & Contributions 

1.5.1 Thesis Objectives 

Many approaches have been attempted for the blind separation of singing voice from 

monaural recordings. They include pitch detection based methods, non-negative 

matrix factorization methods, repetition-based methods, low-rank and sparse matrix 

decomposition methods, and harmonic-percussive separation based methods. More 

details about these methods can be found in the next chapter. However, these 

methods are far from maturity, and the first objective of this thesis is to examine 

these methods and select the most promising ones in an attempt to further develop 

them and overcome their weaknesses. 

Further investigations indicated that the harmonic-percussive separation based 

methods are fairly recent, flexible, and computationally efficient. They do not make 

assumptions about the singing voice or the music instruments and they are capable of 

extracting backing voices. Furthermore, they seem to achieve the best separation 

performance. Therefore, we decided to investigate these methods further. 

Another objective was to examine the effect of Hough Transform in separating 

pitched instruments from the mixture signal. Hough Transform is known to detect 

straight lines in images and it could probably detect pitched instruments in time-

frequency representations of music recordings. 
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1.5.2 Thesis Contributions 

 
Figure 1.1:  Block diagram demonstrating thesis contributions to the field of monaural singing 

voice separation. 

 

1.5.2.1 First Contribution: Local Discontinuity 

One of the harmonic-percussive separation algorithms uses non-negative matrix 

factorization in two stages to separate harmonic and percussive instruments [20]. The 

idea of decomposing time-frequency representations of a mixture signal into 
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components was appealing and we thought we could investigate these components 

further. Especially as we noticed that many components are not pure, that is they 

contain a mixture of sources. Therefore, instead of classifying components bases and 

gains based on a discontinuity measure, we used local discontinuity of significant 

parts of these bases and gains followed by splitting (rather than classifying) each one 

of them. This resulted in a much better separation. This work was published in [21] 

and the interested reader can go to chapter 3 for more detail.  

1.5.2.2 Second Contribution: Diagonal Median Filtering 

In another algorithm, median filtering is applied on time frames and frequency bins 

of the time-frequency representation of the audio signal. This is used to separate 

harmonic and percussive instruments in each of the two stages of the algorithm [22]. 

We tried this algorithm on a variety of commercial songs and the qualitative 

assessment results were encouraging. We enhanced the separation quality using a 

combination of six diagonal median filters in addition to the horizontal one already 

used by the original algorithm. The diagonal median filters were able to capture the 

frequency modulations of the vocals in more detail, thus improving the separation 

quality. Also we found empirically filters parameters that are suitable for all songs 

regardless of their sampling frequency. This unleashed the real potential of the 

algorithm and the results were impressively better. The work was published in [23] 

and its details can be found in chapter 4. 

1.5.2.3 Third Contribution: Hough Transform Based System 

Even with new parameters and directions for the median filtering approach in [23], 

we could still hear some traces of pitched instruments in the separated vocals. We 

also noticed that harmonics of pitched instruments (represented by horizontal ridges 

in the time-frequency representation) each has a different frequency span (thickness), 

hence the need for adapting filter lengths according to the instrument. But we needed 

a method to detect locations of these pitched instruments in the time-frequency 

representation of the audio signal. Hough Transform is such method, as it is known 

for detecting straight lines in images.  
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With these ideas in mind, a new system based on Hough transform and adaptive 

median filtering was built as a post-processing step that could be applied to any 

separation algorithm. It was applied to the algorithms developed earlier in this 

research [21], [23], as well as a number of other separation algorithms. The new 

system significantly improved the quality of the separated voice and music in all of 

the separation algorithms in which it was applied. Furthermore, when combined with 

the diagonal median filtering approach in [21], it achieved the state-of-the-art 

separation performance for blind monaural singing voice separation in comparison to 

all other separation methods we know of. Chapter 5 contains the detailed system 

explanation. 

1.6 Thesis Overview 

This thesis is organized as follows. Chapter 2 contains background and a review of 

the previous attempts for monaural singing voice separation. Chapter 3 explains the 

first contribution of this thesis where local discontinuity metrics are used to refine 

the separated vocals and accompaniments in multi-stage NMF singing voice 

separation systems. Chapter 4 explains the second contribution, which is using 

diagonal median filtering with new parameters for improved separation. Chapter 5 

includes the details for the novel use of Hough transform and adaptive median 

filtering to remove traces of pitched instruments from the separated vocals in any 

separation algorithm. Chapter 6 gives the thesis conclusion and future work. And 

finally, Appendix A contains the names of the MIR-1K songs used in chapter 5 

experiments. The following is a little bit more about each chapter. 

Chapter 2 starts by introducing some necessary topics, such as the short-time 

Fourier Transform (STFT), which is the time-frequency representation used to 

analyse audio signals in all algorithms used in this thesis. This is followed by the 

datasets used for examining the separation quality of different algorithms, that is 

MIR-1K dataset and songs by the Beach Boys band. Also metrics used in evaluating 

and comparing developed algorithms are included in the introductory topics. The 

second part of the chapter is a review of singing voice separation literature. It 

includes methods based on modelling singing voice and instruments while other 
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extract the dominant pitch. Some methods use non-negative factorization while 

others are based on the fact that music instruments are classified into harmonic and 

percussive instruments. This is the area where the thesis made a number of 

contributions. Other methods are also reviewed like those that utilize the repetitive 

nature of music as well as low rank vs. sparse matrix decomposition methods. 

Chapter 3 has two parts. The first one introduces non-negative matrix 

factorization (NMF) and its use in sound source separation. Then it explains in detail 

the multi-stage NMF system developed by Zhu [20] for singing voice separation. 

The second part of the chapter explains the first contribution of this thesis, which is 

using local spectral and temporal discontinuity measures in addition to the global 

discontinuity measure already used in Zhu system in order to refine the separated 

sources. Box plots have been used to compare the new system with the Zhu’s 

baseline system and about 1dB of improvement in Signal to Distortion Ratio were 

achieved in both the separated voice and music signals. 

Chapter 4 explains the multipass median filtering (MPMF) algorithm developed 

by Fitzgerald in [22] for separating singing voice. Then it moves to the second 

contribution of this thesis, which is using diagonal median filtering in singing voice 

separation. Median filtering with a variety of directions and combinations was tried. 

The diagonal median filtering technique is also tested with two sets of songs whose 

sampling rates are different. Practical filter lengths that are expected to work well for 

any set of songs were also empirically estimated. The new algorithm out-performs all 

other state-of-the-art blind monaural singing voice separation algorithms. 

Last, chapter 5 shows the problem of remaining pitched instruments in the 

separated vocal track in various separation algorithms. Then it moves to explaining 

the new post-processing system of removing or reducing these pitched instruments 

remains. The new system uses Hough transform for locating pitched instruments and 

uses median filtering with adaptive parameters for removing them from the vocal 

track. Adding this this system to the diagonal median filtering algorithm, improved 

the voice signal to interference ration by more than 1 dB. What was surprising about 

this system is that it improved the performance of all separation algorithms even the 

latest supervised (trained) one. 
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2 Literature Review 

In this chapter we illustrate the time-frequency representation of audio signals, which 

is typically the first step before applying any separation algorithm. We also introduce 

Hough Transform, an image processing technique that is used in chapter 5 to identify 

locations of pitched instruments in the time-frequency representation of the mixture 

signal. Additionally, we talk about the sets of songs that are used for testing the 

algorithms in this thesis, followed by an illustration of the evaluation metrics that are 

used to measure the quality of the separated vocals and instruments tracks. 

Finally, we review many of the singing voice separation algorithms belonging to 

different approaches. Most of these are blind monaural singing voice separation 

algorithms, however, some supervised approaches are also included as they are used 

for performance comparison later in the thesis. 

2.1 Introductory Topics 

2.1.1 Short-time Fourier Transform (STFT) 

Stationary signals are the signals whose characteristics remain the same throughout 

the time. However, audio signal in general possesses time varying characteristics. 

For the analysis of audio signals, both temporal and spectral information are needed 

simultaneously, hence the need for Time frequency representations (TFR). A TFR of 

a signal would enable us to see how the frequency contents of the signal are 

changing with time as it uses two orthogonal axes, one for the time and other for the 

frequency. The Short-Time Fourier Transform (STFT) is the most commonly used 

TFR in analysing non-stationary signals and it has been used in all the algorithms in 

this thesis. There are other representations such as Constant Q transform (CQT) and 

Wavelet Transform; however, they are outside the scope of this thesis. 

In STFT, the signal is divided into overlapping frames of narrow time span such 

that it is almost stationary. Then a window is applied to the frame to reduce artifacts 

resulting from the transform. Then Discrete Fourier Transform is applied on each 

windowed frame to yield the spectral information for each frame. As the window 
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moves along the time axis, variations of spectral content of the signal can be 

analysed.  

The Discrete Fourier transform (DFT) ! !  of a discrete signal ! !  of a length 

! samples can be found using the equation 

 ! ! = ! ! !
!!!!"#

!
!!!

!!!
 (2.1) 

where ! = 0,… ,! − 1 is the frequency index. The equation of the STFT can be 

written as 

 ! !, ! = ! ! + !" ! ! !
!!!!"#

!
!!!

!!!
 (2.2) 

where ! is the window function width (in samples),  ! is the frame index, ! is the 

hop (step) size, which is the space in samples between frames (between successive 

applications of the window), and ! !  is the window function used. In this thesis, 

! = ! (no zero padding), and the Hanning window is used. 

 ! ! = 0.5 1− cos 2!"
! − 1  (2.3) 

In this T-F representation, the frequency !!  corresponding to the frequency 

index (or frequency bin) ! can be written as 

 !! =
!
! !! (2.4) 

where !! is the sampling frequency of the signal. Also the time !! of the frame whose 

index is ! can be formulated as 

 !! =
!
!!
! (2.5) 

The STFT calculated above is a complex valued matrix. However, in separation 

algorithms, usually only its magnitude is used in the analysis while the phase 

information are just used to calculate the inverse STFT and retrieve the time domain 

signal. The magnitude of the STFT shall also be referred to as the magnitude 

spectrogram in the rest of this thesis. 
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In STFT, the product of time resolution and frequency resolution is constant. 

For example, if the width ! of the window function is relatively high, we shall get a 

better frequency resolution and a lower time resolution. This would be suitable if we 

need to analyse the frequency content accurately. However, identifying precisely 

when an event occurred would be difficult in this case. Although this is a known 

limitation of the STFT, but it is useful in separating singing voice since the high 

frequency resolution STFT can be used to separate pitched instruments while the low 

frequency resolution STFT is used to separate percussive instruments. More details 

can be found in harmonic-percussive separation methods in section 2.4.1. 

2.1.2 Hough Transform 

In chapter 5 we use Hough transform [24] to locate horizontal ridges in the 

magnitude spectrogram of harmonic instruments. Hough transform is an image 

processing technique to identify straight lines in images as well as other shapes and 

objects. 

Hough transform is based on the fact that a line in the Cartesian coordinate 

system (The image) can be mapped onto a point in the rho-theta space (Hough space) 

using the parametric representation of a line  

 ! = ! cos! + ! sin! (2.6) 

 
Figure 2.1:  A point in the Hough space represents a line in the image space. 

Conversely, if rho and theta are the variables in the equation above, then each 

pixel (!,!) in the image is represented by a sinusoidal curve in the rho-theta space. 
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Figure 2.2:  A point in the image space is represented by a sinusoidal curve in the Hough space. 

In order to find the value of ρ, θ corresponding to a specific line in the image 

(!,! plane), we use the previous equation to draw the sinusoidal curve for each point 

in the line. 

Accordingly, if we have a binary image that consists of one line, and we graph 

the sinusoidal curve for every non-zero point in the image, then the actual ρ and θ 

coordinate of the line would be reinforced by all graphed sinusoidal curves on the 

rho-theta plane. This is a single Hough peak. 

 
Figure 2.3:  A point in the Hough space formed by the reinforcement of many sinusoidal curves. 

An image with multiple lines would generate multiple peaks in Hough space. In 

chapter 5 the spectrogram of the mixture signal is converted to a binary image where 

Hough transform is applied to identify locations of horizontal lines. These lines 

represent pitched instruments harmonics. 
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2.2 Testing Datasets 

2.2.1 MIR-1K dataset 

The MIR-1K dataset [25] consists of 1000 song clips with duration ranging from 4 to 

13 seconds, extracted from 110 karaoke Chinese pop songs performed mostly by 

amateurs. The sampling rate of each song is 16 kHz, and music accompaniment and 

singing voice were recorded in the left and right channels, respectively. The MIR-1K 

dataset have been used to evaluate the effectiveness of many singing voice separation 

algorithms as in [20], [26]-[30], and it is also used to evaluate the proposed 

algorithms of this thesis. 

When examining the songs in the dataset, we noticed that we could hear some 

vocals in the left channel, while it is supposed to be pure music. This is likely to 

affect the accuracy of the evaluation results of our separation algorithms when we 

use clips extracted from these songs. We found out that there are 55 songs that do not 

have this problem in its left (music) channel; their names are in Appendix A. There 

are 476 clips in the MIR-1K dataset that belong to these 55 songs, and their lengths 

range from 5 to 12 seconds. In many cases, we used only these clips for testing our 

algorithms. 

2.2.2 The Beach Boys Songs 

The Beach Boys is a well-known, widely influential American pop band. 

Fortunately, tracks from the “Good Vibrations” album are available as split stereo 

recordings where all the vocals are in one channel and the instrumental track in the 

other channel [31]. Furthermore, there are a number of tracks from “The Pet Sounds 

Sessions” for which the vocals and the instrumental tracks are available separately 

[32]. The later were manually resynchronized in order to create the mixture signals. 

The songs and excerpts extracted form them have been used to evaluate the 

performance of many separation algorithms as in in [20], [22], [33]-[36]. 

In total, 12 clips whose lengths range from 31 to 53 seconds, sampled at 44.1 

kHz, were created from excerpts from the Beach Boys tracks. The complete 

accompaniment and vocals were on the left and right channels, respectively. We 
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mixed the voice and music signals of these songs as they were (with equal energy) to 

generate the mixture signals (sometimes referred to as 0dB mixes). 

2.3 Evaluation Metrics 

2.3.1 The BSS_Eval Metrics 

These are commonly used set of metrics defined by Vincent et al.  [37] to 

quantitatively measure the quality of the separation algorithms. The separated (or 

estimated) vocal or music signal is assumed to be a sum of three components. 

 !!"# = !!"# + !!"# + !!"# (2.7) 

where !!"# is the original (or target) source, !!"# represent the interference from other 

sources, and !!"# represent the artifacts generated by the separation or resynthesis 

method.  

The Source to Distortion Ratio (SDR) provides a measure of the overall quality 

of the separation algorithm and is defined as: 

 !"# = 10 log!"
!!"# !

!!"# + !!"# ! (2.8) 

while the Source to Interferences Ratio (SIR) provides a measure of the presence of 

other sources in the separated source and is defined as: 

 !"# = 10 log!"
!!"# !

!!"# !  (2.9) 

and finally the Source to Artifacts Ratio (SAR) provides a measure of the artifacts 

present in the separated signal and can be defined as: 

 !"# = 10 log!"
!!"# + !!"# !

!!"# !  (2.10) 

The metrics have been shown to correlate well with human assessments [38], 

and they are invariant to scaling factors of the signals. Higher values of SDR, SIR, 

and SAR are an indication of better separation, and the metrics are calculated using 

the BSS_Eval toolbox available at [39]. The metrics are used in many separation 

algorithms as in [20], [27], [28], [36], [40], [41]. 



 2-34 

2.3.2 Global Normalized Source to Distortion Ration (GNSDR) 

To measure the quality of the estimated source signal !!"# with respect to the 

original signal !!"#, the Source to Distortion Ratio (SDR) is calculated as follows 

[42]: 

 !"#(!!"# , !!"#) = 10 log!"
!!"# , !!"# !

!!"# ! !!"# ! − !!"# , !!"# ! (2.11) 

where !!"# , !!"#  is the scalar product of !!"# and !!"#, and !!"# ! is the energy of 

!!"#.  

To evaluate the separation performance for one recording, the Normalized SDR 

(NSDR) is used. It measures the improvement of the SDR between the non-

processed mixture ! and the estimated source !!"#: 

 !"#$ !!"# , !, !!"# = !"# !!"# , !!"# – !"# !, !!"#  (2.12) 

For overall performance estimation for !  recordings, the Global NSDR 

(GNSDR) is calculated by averaging the NSDR of all recordings, weighted by their 

lengths !!. 

 !"#$% !!"# , !, !!"# = !! !"#$(!!"# , !, !!"#)!
!!!

!!!
!!!

 (2.13) 

A higher value of GNSDR indicates a better quality separation. This method is used 

in a variety of separation algorithms as in [25], [27], [28], [43], [44] 

2.4 Overview of Singing Voice Separation Methods 

Many methods have been developed for singing voice separation. In most of the 

existing methods, an input signal is first transformed from time domain to time-

frequency domain, and then singing voice is characterized there. The music 

components are suppressed with time-frequency masking. And finally, the estimated 

spectrogram of singing voice is transformed back to time domain again. The 

important thing is how to distinguish singing voice from the music components. 

Since both singing voice and musical sounds are harmonic, simple harmonic 
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extraction technique cannot be used. Also music signals do not satisfy the properties 

of noise. Therefore classical noise suppression techniques would not work.  

Speech separation techniques would not be effective either because of the many 

differences between singing voice and speech. For example, in singing voice, there is 

the singing formant, which makes the voice of a singer stand out from the music 

background. Another difference is that most of the sounds generated during singing 

is voiced (about 90%), while speech has a large amount of unvoiced sounds. 

Additionally, the pitch of singing voice tends to be piece-wise constant with abrupt 

pitch changes in between, while it changes smoothly in natural speech. 

Besides these things, singing voice also has a wider pitch range. The pitch range 

of normal speech is between 80 and 400 Hz, while it can reach 1400 Hz for singing 

voice. Another major difference between singing and speech is that in most cases the 

background interfering with speech is usually independent of it. That is the spectral 

content of the speech and interference is uncorrelated. Conversely, singing voice is 

mostly accompanied by musical instruments that are meant to be coherent with the 

voice. All these differences make the singing voice separation problem a challenging 

one. In the following, we’ll try to shed some light on many of the attempts made to 

solve this separation problem, starting by the harmonic-percussive separation 

methods as they are closely related to our thesis. 

2.4.1 Harmonic Percussive Separation Methods 

Musical instruments can be divided into harmonic instruments, such as piano, violin, 

flute, and harmonica (see Figure 2.4), and percussive instruments, such as drums, hi-

hat, wood block, and tambourine (see Figure 2.6). In the spectrogram of an audio 

signal, harmonic instruments appear smooth in the temporal direction since they are 

sustained for relatively longer time and also they are harmonic where each overtone 

spans a relatively narrow band (see Figure 2.5).  
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Figure 2.4:  Examples of harmonic instruments: (a) piano, (b) violin, (c) harmonica, and (d) 

flute. {Source: Office Online Pictures with Creative Commons Licenses} 

  
Figure 2.5:  Spectrogram of a violin. {Source: https://en.wikipedia.org/wiki/Musical_acoustics} 

Conversely, percussive instruments appear smooth in the frequency direction 

since they are instantaneous and impulsive and their spectrum has a wide band (see 

Figure 2.7). 
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Figure 2.6:  Examples of percussion instruments: (a) drum, (b) hi-hat, (c) tambourine, and (d) 

wood block. {Source: Office Online Pictures with Creative Commons Licenses} 

 
Figure 2.7:  Spectrogram of a Bass drum. {Source: https://www.Freesound.org} 

 

A vocal signal is closer to harmonic sounds than to percussive ones, although it 

is quite percussive compared to the other harmonic instruments. Therefore, it has 

some similarities to both. In fact singing voice appears as a pitched instrument at low 

frequency resolution spectrograms (see Figure 2.8) while it looks like a percussive 

sound at high frequency resolution spectrograms (see Figure 2.9).  
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Figure 2.8:  vocals and music instruments in a low frequency resolution spectrogram (FFT 

window size of 2048 samples) 

 
Figure 2.9:  vocals and music instruments in a high frequency resolution spectrogram (FFT 

window size of 8192 samples) 

Harmonic/percussive separation based methods usually apply a 

harmonic/percussive separation method on the mixture signal at a high frequency 

resolution to separate the harmonic instruments, and it also applies the same method 

at low frequency resolution spectrogram to separate the percussive sound, thus 

rendering the singing voice. 



 2-39 

 
Figure 2.10:  Block diagram of harmonic-percussive separation based methods 

Four systems are explained in this section in (most probably) the chronological 

order in which they were developed. We modified two of them in this thesis, which 

brought the state-of-the-art separation performance not just in harmonic-percussive 

separation based methods, but also in all monaural blind separation methods.  

We start by the two-stage melody line enhancement system developed by 

Tachibana et al. [45]. Here the melody line is assumed to represent either singing 

voice or an instrument. Tachibana used the harmonic/percussive sound separation 

technique (HPSS) devised by Ono et al. in [46], [47] which separates a music signal 

into harmonic and percussive components using the anisotropic smoothness of each. 

In the first stage of Tachibana system, HPSS is applied on the mixture spectrogram 

with high frequency resolutions to separate out the temporally stable harmonic 

components. In the second stage, HPSS is applied on the low frequency resolution 

spectrogram of the percussive + temporally variable signal resulting from the first 

stage to separate out the percussive sounds. The temporally variable component left 

is the melody-enhanced signal (or the singing voice). For quantitative analysis, the 

melody line was tracked by dynamic programming before and after applying the 

two-stage HPSS algorithm. The results showed that the algorithm performs better 

when the melody is played by a singing voice. 

The multipass median filtering-based separation (MMFS) algorithm by 

FitzGerald [22] used the same framework but replaced HPSS with a median filtering-

based harmonic and percussive separation method that he demonstrated in [48]. As 
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an alternative to the diffusion based approach used in [49], Fitzgerald uses a median 

filter for each frequency slice to remove percussion spikes (considered as outliers) 

thus emphasizing pitched instruments harmonics. Similarly, when a median filter is 

applied to a time frame, it removes the harmonics of the pitched instruments as they 

appear as spikes of energy in the frame. MMFS algorithm has a number of optional 

alternatives. The STFT in the low-resolution stage can be replaced by the Constant Q 

transform (CQT) which is a logarithmic frequency resolution spectrogram [50], this 

lead to better separation of the vocal track while affecting that of the instruments. 

After separation, traces of percussion instruments (like kick drum) may still be heard 

with the singing voice because at low frequency resolution they may be concentrated 

in a single frequency bin and thus classified as pitched instrument. This can be 

reduced with a high pass filter with a cut-off frequency of 100HZ, which is sufficient 

to preserve the vocals. Also, post-processing techniques like tensor factorization [51] 

and re-separation using non-negative matrix partial co-factorization [52] has been 

used to further improve the quality of the separated vocals. However, tensor and 

matrix factorization techniques resulted in improved SIR while decreasing SDR and 

SAR. 

Non-Negative Matrix Factorization (NMF)  [53] is an unsupervised technique 

for linear representation of positive matrices. It has been used for music transcription 

[54] and for monaural sound source separation [55]. The decomposition results in a 

number of components, where each audio source ideally is assumed to consist of one 

or more of these components. In Zhu system for singing voice separation [20], the 

factorization is achieved by minimizing a cost function where the K-L divergence 

[56] was used as it performed better than Euclidean distance [56] and the Itakura-

Saito divergence [57]. The system consists of two stages where NMF is applied on 

spectrograms with long and short windows respectively to remove pitched and 

percussion instruments. In the first stage, summing and normalizing the squared 

differences between adjacent elements in the spectral basis of an NMF component 

measure spectral discontinuity of that component. The component is assumed to be 

generated by a pitched instrument if its spectral discontinuity measure is bigger than 

a certain threshold and then it is eliminated. In the second stage, summing and 

normalizing the squared differences between adjacent elements in the temporal gain 
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vector of each NMF component measure its temporal discontinuity. The component 

is assumed to be generated by a percussion instrument if its temporal discontinuity 

measure is bigger than a certain threshold and thus it is eliminated. The algorithm 

has been compared with systems of Durrieu [58], Rafii [40], and Huang [27].  

Results indicated that, at voice-to-music ratios of -5 and 0 dB, Zhu system has the 

best overall separation performance for the vocals (the highest SDR).  

The harmonic/percussive separation system by Ono minimizes the 

temporal/spectral gradients of the separated spectrograms to enhance the 

horizontal/vertical ridges corresponding to harmonic/percussive instruments [46], 

[47]. Jeong and Lee system [28] extended this idea to include the vocal signal in a 

single optimization framework by assuming the music signal to be as a sum of 

harmonic, percussive, and vocal components. Vocal signals contain a strong 

harmonic structure but with temporally unstable properties. It is usually shown as 

horizontal but rapidly changing harmonic ridges in the spectrogram. It is thus 

considered as a residual that cannot be represented using an accompaniment model. 

However, since the energy of the vocal signal is concentrated in a few 

time/frequency bins, it can be modeled using l1-norm minimization in the 

spectrogram domain [27], [59].  It follows that the objective function to separate the 

vocal and the accompaniment can contain the first and second terms as in the 

objective function in Ono’s algorithm [47] in addition to imposing sparsity and non-

negativity to the third term. A generalized Wiener filter is used to construct the voice 

and accompaniment signals and a high pass filter is applied to the resulting vocal 

signal to remove low frequency components that usually belong to accompaniments. 

Jeong and Lee algorithm was compared with Tachibana [45], Rafii [26], Hsu [25], 

and Li [60] algorithms using the MIR-1K database [25]. The performance metric was 

the widely used global normalized source-to-distortion ratio (GNSDR). Jeong and 

Lee method had the highest GNSDR except with a vocal-to-accompaniment ratio of  

-5 dB when compared to Tachibana’s algorithm. 

2.4.2 Statistical Methods 

Probabilistic/Adaptation-based methods are supervised learning methods that learn 

the music model from the non-vocal segments of the mixture signal and uses it to 
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separate the vocals from the vocal segments. It assumes that there is a significant 

amount of non-vocal segments in the song (while in fact it is usually limited in 

typical songs). It also assumes that the same kind of accompaniments is available in 

both vocal and non-vocal segments. The following diagram depicts the basic idea. 

 
Figure 2.11:  Block diagram summarizing the idea of adaptation based methods. 

In the system by Ozerov et al. [43], each of the voice and music components are 

modeled by a Gaussian Mixture Model (GMM) with a diagonal covariance matrix 

[61]. Source separation is done through Adaptive Wiener Filtering on the Short Time 

Fourier Transform (STFT) domain [62]. Voice and Music models are learned from 

the given STFT of the training voice signals and music signals using the Expectation 

Maximization Algorithm[63]. However, to accommodate a large variety of vocal and 

music signals, Ozerov adapted the vocal and music models with characteristics 

similar to those in the mixed signal. He modified an adaptation technique proposed 

by [64], where the recording is segmented into a sequence of vocal and non-vocal 

parts. The adapted music model is learned from the non-vocal (music) parts, which 

are assumed to be pure music. On the other side, the adapted voice model is learned 

from the vocal parts that are already mixed with background music, and then the 

background music is attenuated using the adapted music model. 

In his second system for singing voice separation [65] Ozerov extends his 

previous algorithm by a general formalism for model adaptation in the case of mixed 

sources. This formalism is founded on Bayesian modeling and statistical estimation 

with missing data. He explained in detail the case of maximum a posteriori (MAP) 

adaptation approach [66] used for speech recognition [67] and speaker verification 
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[68]. With model adaptation, the separation performance is improved by 5 dB in 

comparison to general models. Ozerov also built a general flexible framework for the 

handling of prior Information in [69]. 

Raj system [70] is another example of learning the music model from the non-

vocal segments. The nonvocal segments here are manually labeled and used to train a 

set of accompaniment spectra based on probabilistic latent component analysis 

(PLCA). This statistical model is used to separate speakers from a mixed recording 

in [71] and it is adapted in Raj system to separate the vocals from the music 

recording. Spectra of the singing voice are then learned from the song mixture by 

keeping the accompaniment spectra fixed. It is worth noting that Han et al. also used 

PLCA [3]. 

2.4.3 Pitch Based Methods 

Pitch-based methods rely on identifying the predominant pitch contour from the 

mixture signal and then inferring the harmonics of the melody. Figure 2.12 

represents the main steps followed in pitch-based methods. Note that singing voice is 

about 90% harmonic voiced sounds [72] with frequencies of concurrent overtones 

being approximately integer-multiples of the fundamental frequency (F0). The other 

component is the unvoiced speech, which has no harmonic structure. In a vocal 

segment of a song, singing voice generally dominates musical instruments. Hence, 

we can separate signing voice by estimating the predominant F0 (singing pitch) from 

song mixtures and cutting off other components except those at F0 and its harmonic 

frequencies. However, F0 estimation is a difficult task, and a small error can have 

critical effects, resulting in severe distortion. Also, the voiced harmonics may 

overlap with instruments harmonics and music can be heard in the separated singing 

voice. 

 
Figure 2.12:  The main steps in pitch-based singing voice separation methods 
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Many pitch-based systems are developed to address the singing voice separation 

problem. Meron et al. used prior pitch knowledge to separate the voice from the 

piano background [73]. Zhang et al. used monophonic pitch detection [74]. 

Ryynänen et al. work was based on multi-pitch detection [14]. Lagrange et al. based 

his algorithm on graph partitioning [75]. Li et al. used predominant pitch detection 

[60]. Hsu et al. separated the unvoiced part of the singing [25], and used iterative 

pitch estimation in [76]. Fujihara et al.  [6] and Cano et al.  [77] used different 

algorithms for detecting the predominant pitch. Prior information and additivity 

constraint were then added by Cano et al. [78]. The following few paragraphs would 

elaborate a bit more about some of these systems. 

In the CASA system developed by Li and Wang [60], the signal is divided into a 

set of overlapping frames where each frame is a block of samples within which the 

signal is assumed to be near stationary. In the first stage, the frames are partitioned 

into portions by detecting significant spectral changes across all frames using a 

simple spectral change detector [79] with weighted dynamic thresholding. Each 

portion is classified as vocal (where singing voice is present) or nonvocal (pure 

music) based on the sum of likelihood of each frame in the portion. To classify each 

frame, mel-frequency cepstral coefficients (MFCC)  [80] is used as the feature vector 

and the Gaussian Mixture Model (GMM)  [81] as the classifier as they have been 

used widely for audio classification.  

In the second stage, the pitch contours of singing voice is detected for vocal 

portions using an algorithm proposed in [82] which is extended from [83].  Briefly, a 

vocal portion is first processed by a gammatone filter bank, which simulates the 

frequency decomposition of the human auditory periphery. Then periodicity 

information is extracted from the output of each frequency channel through a 

normalized correlogram for each one. Next, the probability of each pitch hypothesis 

is evaluated and a hidden Markov model (HMM) is used to model the pitch 

generation process while the Viterbi decoding algorithm is used to detect the most 

likely pitch hypothesis sequence which is then identified as the pitch contour of the 

singing voice.  
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The third and final stage is the separation of singing voice through segmentation 

and grouping of time-frequency units of the vocal portion. The algorithm is extended 

from [84] proposed originally to separate voiced speech from interference. Firstly, 

the vocal portion is passed through a model of auditory periphery, similar to the one 

used in the previous stage. The output of each channel is then divided into 

overlapping time frames thus decomposing the vocal portion into T-F units. Then 

segments are formed of neighbouring T-F units in time or frequency based on their 

temporal continuity and cross-channel correlation features. Secondly, the T-F units 

are labelled as singing dominant or accompaniment dominant using the detected 

pitch contour of the previous stage. Segments in which the majority of T-F units are 

labelled as singing dominant are grouped to form the foreground stream, which is 

presumably the singing voice. 

Another pitch-based system was developed by Ryynänen [14], which aims to 

separate the accompaniments to be used for a karaoke application. To do that, he first 

transcribed the lead-vocal melody as a note sequence and a detailed F0 trajectory. He 

uses a melody transcription method in [85], which is an improved version of his 

earlier method in [86]. Then he used sinusoidal modelling to estimate and synthesize 

the lead vocal using quadratic polynomial-phase model procedure [87]. Then, to 

produce the song accompaniment, the voice model is subtracted from the original 

audio. The quality of the separated accompaniments was evaluated using the signal-

to-noise ratio criterion. Two databases were used in the evaluation. One is mixed 

mono singing performances with synthesized MIDI accompaniment. The other was a 

set of stereophonic recordings extracted from a karaoke DVD. 

2.4.4 Non-negative Matrix Factorization Methods 

Non-Negative Matrix Factorization (NMF) is proposed by Lee and Seung [53] in 

which a matrix is decomposed into a set of none-negative components. An example 

of such decomposition is shown in Figure 2.13. Each component is a product of a 

column vector called the basis and a row vector called the gain. NMF-based methods 

model both sing voice and music instruments concurrently by decomposing the 

mixture spectrogram into elements and clustering them into background and melody. 
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NMF and its use in sound source separation are explained in more detail in section 

3.2.1. 

 
Figure 2.13:  Examples of the components that resulted from the non-negative matrix 

factorization of the audio signal spectrogram shown in the top left corner. 

One of the early systems that used non-negative matrix factorization to 

decompose the mixture spectrogram into a set of components was Vembu system 

[88]. He clustered the spectral bases of the components into two groups (vocal and 

nonvocal) using features as Mel-frequency cepstral coefficients (MFCC) [89], 
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Perceptual linear predictive coefficients (PLP) [90], and Log frequency power 

coefficients (LFPC) [91]. It is worth noting that he performed spectrogram 

factorization only on vocal portions of the input signal where the partitioning was 

done using a combination of features; MFCC, PLP, and LFPC, and the classification 

was done using neural networks and support vector machine [92], [93]. The Vembu 

method could effectively separate vocals from simple music, however, when the 

number of accompanying instruments increased, the performance dropped 

significantly. This is because the method decomposes the spectrum into more 

components to accommodate different music instruments, which in turn increases the 

difficulty of clustering. 

In another system by Chanrungutai [94], the amplitude spectrogram was also 

decomposed into a number of components using NMF then music components were 

manually selected and removed according to the following rules. Firstly, since 

percussion instruments are usually played rhythmically, components whose gains 

have rhythmic structures are removed. Secondly, human voice usually does not last 

for a long period compared to musical notes. Thus it is assumed that if there is a 

relatively long continuous event in the gain of a component, then it mostly belongs to 

a harmonic instrument and it is also removed. Once all the components of the music 

are selected and removed, the sum of the remaining components represent the new 

amplitude spectrogram of the separated singing voice. This amplitude spectrogram is 

then multiplied by the original complex spectrogram and the singing voice is 

retrieved. To evaluate his system, Chanrungutai compared the detected pitch of the 

separated singing voice with that of the original singing voice using Praat [95]. His 

system performs better for singing female voice and best separation results were 

obtained when separating percussion instruments. 

In the hybrid algorithm by Virtanen [96], pitch detection is combined with 

spectrogram factorization to produce better separation results. Firstly, the vocals 

were assumed to be dominant and its fundamental frequency was estimated using the 

melody transcription algorithm of Ryynänen and Klapuri [85]. Local maxima in the 

fundamental frequency salience function around the quantized pitch values were 

interpreted as the exact pitches. Partial frequencies of the vocals were assigned to be 



 2-48 

integer multiples of the estimated pitch with a bandwidth of 50 Hz. Secondly, a 

binary mask is generated to cover time-frequency regions where the voiced singing is 

present leaving the music accompaniments alone, and then a NMF algorithm is 

applied on these remaining music regions to learn a model for the accompaniment in 

order to approximate the accompaniment for the whole spectrogram including vocal 

regions. This way the contribution of the accompaniment in the vocal regions is 

estimated and then subtracted from the vocal regions to achieve better separation 

quality. The results showed that the proposed method achieved better separation 

quality than the sinusoidal modeling and binary mask reference method. 

So far the separation methods summarized above - and others as well [70], [97] 

- estimate both the spectral bases and gains directly from the signal in an 

“unsupervised” way. Conversely, in the supervised NMF method used by Durrieu et 

al. [58], the leading voice is represented using a source/filter model while the 

background music (the residual) was represented using an unconstrained NMF model 

[98]. In the source filter model, pitch information is stored in the source part, while 

the filter part catches the spectral contents (related to timbre properties) of the lead 

vocal. The parameters of vocals and music models are estimated iteratively using the 

Itakura–Saito (IS) divergence [57]. Contrary to common representations in melody 

pitch estimation [85], [99], the proposed model provides a representation of the 

signal, which does not miss important information, in particular, the envelope of 

each note in the signal. In general, the system achieves the best results when the 

singing style exhibits sufficiently smooth melody lines. 

There are many other systems as well, such as the one developed by Wang et al. 

who combined pitch detection and NMF and used a source-filter model [100]. Joder 

et al. combined the Instantaneous Mixture Model (IMM) with an aligned musical 

score [101]. Marxer et al. replaced the NMF with Tikhonov regularization in the 

same IMM framework [102]. Contrary to Joder system, Bosch et al. used a 

misaligned musical score in [103]. Janer et al. used a semi-supervised NMF to 

separate the unvoiced fricatives [104], while Marxer et al. modelled the voice 

breathiness in [105]. 



 2-49 

2.4.5 Methods Utilizing the Repetitive Nature of Music 

Repetition or rhythm-based methods assume that background music consists of 

repeating patterns in the mixture. A number of systems exist, such as the one by 

Rafii et al. who identified the repeating pattern using the beat spectrum and then 

removed it using the geometric mean in [26] and the median in [40]. Rafii et al. also 

used a similarity matrix for the same [34]. Liutkus et al. work adapted to the varying 

period of the repeating patterns [33]. FitzGerald used the median of the near frames 

instead of the beat spectrum to determine the background music [106]. Liutkus et al. 

framework was based on local regression with proximity kernels [36]. Rafii et al. 

used an NMF-based method to first learn a model for the melody and a repetition-

based method to then refine the background [35]. Rafii et al. also combined rhythm-

based and pitch-based methods in [107]. In the following few paragraphs, a number 

of systems are explained in a bit more detail. 

Rafii system in [26] is based on the assumption that popular songs generally 

have a noticeable repeating musical structure, over which the singer performs 

varying lyrics. His idea is to extract this repeating structure by finding its period and 

segmenting the spectrogram according to it. Periodicity of the signal is found 

through auto correlation of each frequency bin (row) of the magnitude spectrogram 

of the mixture signal. Then the beat spectrum is calculated by averaging across all 

frequency bins. The period of the repeating music is the period of the longest peak in 

the beat spectrum. After segmenting the spectrogram according to this period, the 

repeating segment model is computed as the geometric mean of all the segments. 

Time-frequency bins of the spectrogram are compared to the segment model using a 

tolerance threshold and a binary mask is generated to extract the repeating 

background music. REPET system is simple, fast, blind, and completely automatable 

and when evaluated using the MIR-1K dataset, it gave higher GNSDRs than the best 

automatic version of Hsu [25]. 

Liutkus [33] proposed to adapt the REPET algorithm along time to handle 

variations in the repeating background. The method first estimates the time-varying 

prominent period of the repeating structure using dynamic programing, and then it 

models local estimates of the repeating background. The repeating patterns are 
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extracted using a soft mask based on a Gaussian radial basis function to reduce 

artifacts. Liutkus compared his extended version of REPET to the median filtering 

algorithm in [22] using songs from the Beach Boys (Songs could be different from 

those used in the median filtering algorithm). Liutkus’s system seemed to perform 

better when the vocals are louder than the accompaniment (when mixing the 

channels at a voice-to-music ratio of 6 dB). 

Instead of assuming periodically repeating patterns in a signal, Rafii proposed a 

new separation method using a similarity matrix in [34]. He used the cosine 

similarity measure to computing the similarity matrix from the mixture spectrogram, 

and then derived the repeating spectrogram model. The new algorithm was able to 

process music pieces with fast varying repeating structures and isolated repeating 

elements. When comparing with Liutkus method in [33] and the median filtering 

algorithm in [22] using the Beach Boys songs, it achieved better separation 

performance. 

Fitzgerald also proposed a model for singing voice separation based on 

repetition [106], but without using the hypothesis of local periodicity. In his system, 

the background music at a given frame in the mixture spectrogram is computed as 

the median value of the nearest neighbor frames. This is then used to generate a mask 

that is applied on the original complex spectrogram, which is then inverted back to 

the time domain. The new approach had better separation results when compared 

with the median filtering approach in [22] using songs from the Beach Boys album. 

Rafii also extended his original system in [26] by computing the repeating 

segment model using the median of the spectrogram segments instead of the 

geometric mean, and also by using a soft mask instead of a binary mask. 

Additionally, he proposed various improvements of his algorithm using high pass 

filtering, vocal frames indices, and best repeating period. His new system in [40] 

outperformed the previous one and did better in some cases than Durrieu’s system 

[58]. REPET was extended to full-track songs by applying the algorithm to 

individual sections where the repeating background is stable. Experiments also 

showed that REPET could be used as a preprocessor to pitch detection algorithms to 

improve melody extraction. 
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2.4.6 Low-Rank and Sparse Matrices Decomposition Methods 

Robust Principal Component Analysis (RPCA)-based methods model singing voice 

and music accompaniment by decomposing the mixture into a low-rank component 

and a sparse component. Music accompaniment can be assumed to be in a low-rank 

subspace, because of its repetition structure; on the other hand, singing voices can be 

regarded as relatively sparse within songs. Based on this assumption, Huang system 

[27] used robust principal component analysis (RPCA) for singing voice separation. 

He used the inexact Augmented Lagrange Multiplier (ALM) method [108] for 

solving the RPCA problem. Separation results were examined by using a binary 

time-frequency masking method. Evaluations on the MIR-1K dataset showed that 

this method achieved higher GNSDR compared with Hsu [25] and Rafii [26] 

methods. 

Sprechmann proposed a non-negative variant of RPCA, termed robust low-rank 

non-negative matrix factorization (RNMF) in [59]. In his approach, the low-rank 

model is represented as a non-negative linear combination of non-negative basis 

vectors. He also approximated the RPCA and RNMF with multi-layer feed-forward 

artificial neural network that allowed incorporating unsupervised, semi-supervised, 

and fully supervised learning. The supervised training drastically improved the 

results of the separation, and the fast implementation allows real-time processing. 

The decomposition also was improved by Yang [109] by adding a regularization 

term to incorporate a prior tendency towards harmonicity in the low-rank component, 

reflecting the fact that background voices can be described as a harmonic series of 

sinusoids at multiples of a fundamental frequency. A post-processing step is applied 

to the separated vocals to eliminate the drums using FASST [69]. The system 

outperformed Rafii [26] and Huang [27]systems. 

The system developed by Moussallam in [110] addressed the problem of jointly 

finding a sparse approximation of the singing voice and the repeating background 

music in the same redundant dictionary. In parallel with the RPCA idea of [111], the 

mixture is decomposed into a structured sparse matrix and an unstructured sparse 

matrix. Structured sparsity is enforced using mixed norms, along with a greedy 
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matching pursuit algorithm [112]. The model is evaluated on short excerpts from the 

Beach Boys songs. 

In Lefèvre system [113], an informed source separation problem in which the 

input spectrogram is partly annotated is considered. They proposed a convex 

formulation that relies on a nuclear norm penalty to induce low rank for the 

contributions. Solving this model with a simple sub-gradient method outperformed a 

nonnegative matrix factorization (NMF) technique in [114] that is also manually 

annotated, both in terms of source separation quality and computation time. 

In his separation algorithm in [115], Yang draws the attention to the fact that the 

vocal part of a song can sometimes be low-rank as well. The algorithm learns the 

subspace structures of vocal and instrumental sounds from a collection of clean 

signals first, and then computes the low-rank representations of both the vocal and 

instrumental parts of a song based on the learned subspaces. Online dictionary 

learning is used to learn the subspaces, and a new algorithm called multiple low-rank 

representation (MLRR) is proposed to decompose a magnitude spectrogram into two 

low-rank matrices. The subspaces of singing voice and music accompaniment are 

both learned from the data. Evaluation on the MIR-1K dataset shows that this 

approach improves the source-to-distortion ratio (SDR) and the source-to-

interference ratio (SIR). However, the performance of the algorithm drops when 

processing entire music tracks. 

 Papadopoulos presented an adaptive formulation of RPCA that incorporates 

music content information to guide the decomposition [41]. Experiments on a set of 

complete music tracks of various genres reveal that the algorithm is able to process 

entire pieces of music that may exhibit large variations in the music content, and 

compares favorably with the state-of-the-art algorithms. 

2.4.7 Deep Neural Networks Methods 

Recently, deep recurrent neural networks are used in a supervised setting to separate 

singing voice. Deep learning algorithms can discover hidden structures and features 

of different sound sources found in a mixture signal. Huang et al. explored different 



 2-53 

architectures and optimizations of the network and soft masking and achieved more 

than 2dB GNSDR gain compared to previous systems when using the MIR-1K 

dataset for evaluation [30], [44]. Fan et al. used Deep Neural Networks and adaptive 

pitch tracking for vocal separation and pitch tracking [116]. Grais et al. used a single 

Deep Neural Network to enhance the separated sources using a new cost function 

that decreases the interference between them [117]. 

2.5 Conclusion 

A large number of singing voice separation algorithms have been developed. 

Different methodologies were used in evaluating the separated singing voice and 

music channels, which makes it difficult to compare them all together. However, 

when examining quantitative results carefully for the blind monaural separation 

algorithms, we came up with the conclusion that harmonic-percussive based 

separation algorithms stand out. In particular, Jeong and Lee algorithm in [28] had 

the best separation quality we could find. 

However, when examining the sound samples provided with many of these 

algorithms and/or testing them on other music signals, we found out that there is still 

voice in the separated music channel as well as music in the separated voice channel. 

This indicates that there is still a room for improvement. Therefore, we decided to 

investigate harmonic-percussive based separation algorithms further in an attempt to 

raise their abilities in segregating vocals from the music accompaniments. 
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3 Two-Stage Non-Negative Matrix 

Factorization with Local Discontinuity 

Metrics for Singing Voice Separation 

3.1 Introduction 

Harmonic-percussive based separation algorithms are discussed briefly in section 

2.4.1. One of these algorithms uses non-negative matrix factorization in two stages to 

separate harmonic and percussive instruments from the mixture signal [20]. In 

addition to being relatively fast and effective, decomposing a time-frequency 

representation of a mixture signal into components sounded interesting, as it is like 

dividing a bigger problem into smaller ones. Each component in [20] was classified 

using discontinuity measures as either vocals or instruments. However, we decided 

to investigate this algorithm further when we noticed that many components contain 

a mixture of sources. Interestingly, we were able to refine these components using 

the above mentioned discontinuity measures, but this time we apply them locally on 

significant parts of each component rather than the whole component. This led to 

splitting (rather than classifying) each component, which resulted in a much better 

separation, as demonstrated using the MIR-1K data set. 

The rest of the chapter is organized as follows: Section 3.2 introduces NMF use 

for sound source separation followed by summarizing the multi-stage NMF singing 

voice separation algorithm in [20]. Section 3.3 presents our method for improving 

this algorithm with the use of local discontinuity measures for further refining the 

NMF components before reconstructing sound sources. Section 3.4 shows the results 

of applying the proposed method on the MIR-1K dataset as compared with the 

baseline method. Finally, section 3.5 gives the conclusion. 



 3-55 

3.2 Existing Method 

3.2.1 Non-negative matrix factorization for sound source separation 

Non-Negative Matrix Factorization (NMF) is a dimension reduction technique 

proposed by Lee and Seung [53] in which a matrix ! is decomposed into the product 

of two matrices ! and ! where all elements in the matrices are non-negative. 

 ! ≈ !" (3.1) 

! is usually called the basis matrix, while ! is called the gains (or coefficients) 

matrix.  

NMF has been used in many fields. For example, learning parts of faces and 

features of text [53], music transcription [54], object characterization[118], and 

financial data analysis [119]. 

The non-negativity in the technique leads to parts-based decomposition because 

it allows only additive components !! 

 ! ≈ !!
!

 (3.2) 

 !! = !! !! !
 (3.3) 

where !! is the !!! column in basis matrix ! and !! !
 is the !!! row in the gain 

matrix !. Examples of the components !! that resulted from decomposing an audio 

signal magnitude spectrogram is shown earlier in Figure 2.13 page 2-46. 

To find ! and !, Lee and Seung [56] designed the multiplicative update rules to 

minimize the cost function between ! and !". Two cost functions were proposed, 

the square of the Euclidean distance  

 !− !" ! = !!" − !" !"
!

!"
 (3.4) 

and the (generalized) Kullback-Leibler (KL) divergence, also known as I-divergence 
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 ! !  !" = !!"!"#
!!"
!" !"

− !!" + !" !"
!"

 (3.5) 

Other cost functions have been proposed as Itakura-Saito (IS) divergence, which 

is used for music analysis [57], and many others like Csiszar ́s divergences and β-

divergence [120]-[122]. However, in our experiments for singing voice separation, 

KL divergence performed best. 

For singing voice separation, ! is the !×! non-negative matrix that represents 

the magnitude spectrogram of the mixture signal !, where !  is the number of 

frequency bins and ! is the number of time frames. ! and ! are the basis and gains 

matrices of dimensions !×! and !×! respectively, and ! represents the number of 

components. 

The KL divergence minimization problem was solved as in [56] with the 

following multiplicative update rules. 

 !⟵ !⊗
!
!"!

!

!!!  (3.6) 

 !⟵ !⊗
!! !

!"
!!!  (3.7) 

where ⊗ and / represent element-wise multiplication and division respectively, ! 

denotes an all-one matrix of the same size as !, and T is the matrix transpose. 

As an example for the factorization, Figure 3.1(a) shows the magnitude 

spectrogram !  of a mixture signal excerpted from the MIR-1K data set. The 

factorization result, !", obtained using the KL divergence is shown in Figure 3.1(b). 

As the reader can see, !" represents a reasonable approximation of !. 

 Also one of the components, !!, resulted from the factorization is shown in 

Figure 3.2(b), while its basis column vector !! and gain row vector !! !
are shown 

in Figure 3.2(a) and Figure 3.2(c) respectively.  
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Figure 3.1:  An example of the magnitude spectrogram of the mixture signal ! is shown in (a), 

while its approximation obtained by the factorization !" is shown in (b). 
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Figure 3.2:  The component matrix !! shown in (b) is the product of the basis column vector !! 
shown in (a) and the gains row vector !! ! shown in (c). 

In the two-stage NMF based singing voice separation algorithm in [20] as well 

as in others [88], [94], each NMF component is ideally assumed to be coming from 

one sound source and thus classified as either vocal or instrumental. More details on 

the classification of components are explained next. 

3.2.2 Using spectral and temporal discontinuity measures in singing voice 

separation 

The two-stage NMF based singing voice separation algorithm presented by Zhu in 

[20] contains two stages, one for separating pitched instruments from the mixture, 

and the other is for separating percussion instruments. There are two possible routs 

for this system and Figure 3.3 shows the route when pitched instruments are 

separated first before the percussion instruments. This choice brought better 

separation results as indicated in [20]. 
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Figure 3.3:  Block diagram summarizing Zhu’s system for signing voice separation. 

The separation of pitched instruments is based on the observation that in a 

spectrogram with a long FFT window, pitched instruments have a stable pitch and 

thus appear continuous in the temporal direction and discontinuous in the spectral 

direction. To filter out these pitched instruments, the magnitude spectrogram is 

decomposed into a set of NMF components and those components that are spectrally 

discontinuous are removed. 

Summing and normalizing the squared differences between adjacent elements in 

the spectral basis of each component measures its spectral discontinuity. Specifically, 

for each component !! , the spectral discontinuity measure !! !!  is defined as 

 !! !! = !!,! − !!!!,!
!!

!!!
!!,!!!

!!!
 (3.8) 



 3-60 

and if it is larger than a threshold !!, the component is considered to be originating 

from a pitched instrument. The suitable value for !! was found empirically to be 0.4 

as explained in [20]. An example of a pitched component is shown in Figure 3.4(a), 

while Figure 3.4(b) shows an example of a component that represents percussions 

and vocals. 

 
Figure 3.4:  An example of a component that is classified as pitched instrument is shown in (a), 

while (b) shows an example of a component that is classified as percussions and vocals.  

A new magnitude spectrogram !!  is formed by subtracting all pitched 

components from the input mixture spectrogram ! 
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 !′ = max !, !− !!
!!!,…,!
!s !! >!s

 (3.9) 

where ! is an all-zero matrix of the same size as !, and max !,!  takes the element-

wise maximum of  matrices !, !, which is used to ensure there are no negative 

elements in !′. After that, !′ is inverted back to time domain using the phase 

information of the original sound mixture, then it is used as an input to the second 

stage of the algorithm. 

In the second stage of the algorithm, percussion instruments are separated from 

the sound mixture based on the observation that in a short window spectrogram, they 

appear continuous in the spectral direction and discontinuous in the temporal 

direction. Therefore, NMF components that are temporally discontinuous can be 

considered as originating from percussive sounds and thus removed using a similar 

temporal discontinuity thresholding method. Specifically, for each component !! , the 

temporal discontinuity measure !! !!  is defined as 

 !! !! = !!,! − !!,!!!
!!!!!

!!,!!!
!!!

 (3.10) 

and if it is larger than a threshold !!, the component is considered to be originating 

from percussion instruments.  

The separated voice spectrogram is obtained by subtracting all percussion 

instruments components from the mixture spectrogram at this stage, and then it is 

inverted back to time domain to yield the separated singing voice !. Music signal 

can be obtained by subtracting ! from the original mixture signal !. 
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3.3 Local Discontinuity Measures for Refining NMF Components 

3.3.1 Motivation 

The algorithm summarized in the previous section classifies each NMF component 

as if it is completely representing one of two sources. However, it was noticed that 

many of the components contain a mixture of sources, rendering an inaccurate 

classification in practice. Figure 3.5(a) shows an example of a component that was 

classified as non-pitched instrument (vocals + percussions) while in fact it contains 

many parts of pitched instruments as well. The vocal parts of the component 

indicated by red rectangles are clearly coming from the vocal channel whose 

spectrogram is shown in Figure 3.5(b). On the other hand, the rest of the component 

is coming from the music channel shown in Figure 3.5(c). 

 
Figure 3.5:  The spectrogram of a component that was classified as a pitched instrument 

component is shown in (a), where red rectangles are used to indicate vocal parts of the 

component. The original vocal and music channels spectrograms are shown in (b) and (c) 

respectively. 

This observation led us to think of a way to identify these parts in order to 

remove them out of the component and add them to pitched instruments components. 
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One method we tried and found successful is to use the same discontinuity measures 

explained earlier, but in a slightly different manner. 

3.3.2 The long window spectrogram factorization stage 

Our proposal for addressing the problem above and improving the separation quality 

is to apply discontinuity measures on parts of the NMF component rather than the 

whole component. To explain the idea, we first consider the long window 

spectrogram factorization stage where !!  is used to classify NMF components into 

pitched and non-pitched ones. The component in Figure 3.5 is shown again in Figure 

3.6 but with the addition of the spectral basis of the component in Figure 3.6(d). 

 
Figure 3.6:  Long-window spectrograms of (a) the original music, (b) the original voice, and (c) a 

component classified as non-pitched (vocals + percussions). The spectral basis of the component 

is shown in (d) where vocal peaks are denoted by red circles while pitched instruments peaks 

are denoted by blue squares.  
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To further refine this component, we first identify the ! highest peaks in its 

spectral basis !! . Then, the local spectral discontinuity !!  around each peak is 

calculated as follows: 

 !! !, ! =
!!,! − !!−1,! 2ℎ!(!)

!=!"(!)
!!,!2ℎ!(!)

!=!"(!)
 (3.11) 

where ! = 1,… , ! is the peak index, and the lower bound !"(!) and the upper bound 

ℎ! !  are given by  

 !"(!) = max 0, !! −
!
2  (3.12) 

 ℎ! ! = min !! +
!
2 ,!  (3.13) 

where !! represents the frequency bin (index) of the peak and ! is the peak width (in 

number of frequency bins), which is assumed to be constant for all peaks. 

Figure 3.6(d) shows the spectral basis !! as well as the values of !! !, !  for 

each peak. In our experiments, we observed that peaks with !! > !! (!! = 0.4) 

mostly belong to pitched instruments (denoted by blue squares); otherwise, they are 

from the voice (denoted by red circles). 

Following this observation, we propose to remove the pitched peaks (with 

!! > !!) from the basis !! of this component (as well as all non-pitched components) 

in order to obtain a ‘cleaner’ non-pitched component. The removed pitched peaks are 

added together to form a new pitched component. Algorithms 3.1 and 3.2 depict the 

new long window spectrogram factorization stage in detail, while Figure 3.7 shows 

the block diagram of this stage. 
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Algorithm	3.1:	Separating	pitched	instruments	from	the	sound	mixture	

Input:	Mixture	signal	!	
Output:	Pitched-instruments-removed	signal	!′		
Initialization:	!	
Calculate	!,!	from	(3.6),	(3.7)	
for	! = 1: !		
						if	(!! !! > !!)	
										!!!"#$!!"  ß !! 	
						else	
										Run	Algorithm	2	to	extract	!!!"#$!!" 	from	!! 	
						end	if	
end	for	
!!ß	Calculate	from	(3.9)	using	all	!!!"#$!!" 	above	
!′ß	Inverse	STFT	of	!!	
	
	
	
Algorithm	3.2:	Splitting	a	component	into	a	pitched	and	a	non-pitched	one	

Input:	Component	!! 	with	!! ≤ !!					(!! = !!!!)	
Output:	Extracted	pitched	component	!!!"#$!!" 	from	!! 	
Initialization:	!!, !	
!! 	ß	!! 	
!	ß	Locations	of	the	!	highest	peaks	in	!! 	
for	! = 1: !	
					Calculate	!! !, ! ,	!"(!)	and	ℎ!(!)	from	equations	(3.11)	–(3.13)	
					if	(!!(!, j) > !!)	
										!"# = !" ! :ℎ! ! 	
										!!!"# 	ß !	
					end	if	
end	for	
!!ß!! − !! 		
!!!"#$!!"ß!!!! 		
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Figure 3.7:  Modified long window spectrogram factorization stage where novel additions are 

shown inside a dashed rectangle 

 

3.3.3 The short window spectrogram factorization stage 

Similarly, at the second stage where percussion instruments are separated from 

vocals using short window spectrogram factorization, it was noticed that many of the 

NMF components that were classified as originating from percussion instruments 

(!! > !!), still contain vocal sounds. Figure 3.8(a) shows the temporal gain of one of 

these components while its spectrogram is shown in (b). Looking at the original 

voice in (c), one can notice that the temporal gain in (a) has a vocal part starting at 

around two seconds. 
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Again, we searched for the ! highest peaks in the temporal gain !! of each of 

these components and we calculated the local temporal discontinuity !! around each 

peak defined as: 

 !! !, ! =
!!,! − !!,!−1 2ℎ!(!)

!=!"(!)
!!,!2ℎ!(!)

!=!"(!)
 (3.14) 

with 

 !"(!) = max 0, !! −
!
2  (3.15) 

 ℎ! ! = min !! +
!
2 ,!  (3.16) 

where !! represents the time frame (index) of the !!! peak and ! is the peak width 

measured in terms of the number of time frames and assumed to be constant for all 

peaks. 



 3-68 

 
Figure 3.8:  The temporal gain of a music component is shown in (a) where vocal peaks are 

denoted by red circles while percussion instruments peaks are denoted by blue squares. Also 

shown are the short-window spectrograms of the component in (b), the original voice in (c), and 

the original music in (d). 

Peaks are assumed to belong to vocals if !! ≤ !! and thus removed from the 

percussion component gain !! to obtain a refined one. The removed peaks are added 

together to form a new vocal gain. In this way, the percussion component is split into 

a new vocal component and a refined percussion one. All refined percussion 

components are used to re-synthesize the singing voice as explained at the end of 

section 3.2.2. The block diagram of this stage is shown in Figure 3.9 
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Figure 3.9:  Modified short window spectrogram factorization stage where novel additions are 

shown inside a dashed rectangle. 

3.4 Experimental Results 

In order to evaluate the effectiveness of the proposed algorithm in comparison to the 

baseline algorithm in [20], we used the MIR-1K dataset [25] explained in section 

2.2.1. We used the entire set of 1000 song clips, and the voice and music signals 

were linearly mixed with equal energy to generate the mixture signal. The separation 

performance was measured using the BSS_Eval metrics; SDR, SIR, and SAR 

explained earlier in section 2.3.1. 
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The first experiment was run using the original algorithm with all its parameters 

as in [20]. In the first stage, pitched instruments were separated using a spectrogram 

with a long FFT window of 4096 samples and an overlap of 50%. The spectral 

discontinuity threshold !! was set to 0.4. Percussion instruments were separated in 

the second stage where the FFT length was set to 256 samples with also 50% 

window overlap, and the temporal discontinuity threshold !! was set to 0.2. The 

number of components ! was fixed to 15 in the two stages. 

In the second experiment, the long window spectrogram factorization stage was 

implemented using the original algorithm as in [20] without any modification while 

the short window stage (i.e. the second stage) was implemented using our proposed 

algorithm of removing the vocal peaks from percussion components gains. A fixed 

width !  of 250 time frames (which corresponds to 2 seconds) was chosen 

empirically, and I was set to 20.  

In the third experiment, we used our proposed algorithm only during the long 

window stage where pitched peaks are removed from non-pitched components basis. 

All peaks were assumed to have a width ! of 6 frequency bins (~24 Hz). Finally, in 

the fourth experiment our proposed algorithm was used in both stages. The following 

two tables summarize all parameters used in the two stages. 

TABLE 3.1:  PARAMETERS USED IN THE LONG WINDOW SPECRTROGRAM FACTORIZATION STAGE 

FFT window length Overlap !! ! ! I 

4096 50% 0.4 15 250 20 
	
TABLE 3.2:  PARAMETERS USED IN THE SHORT WINDOW SPECRTROGRAM FACTORIZATION STAGE 

FFT window length Overlap !! ! ! I 

256 50% 0.2 15 6 20 
	

Figure 3.10 shows the results based on the three metrics, namely, SDR, SIR and 

SAR for the separated voice for the four experiments. We noticed that the best 

separation performance was achieved when using our proposed algorithm during the 

long window stage only, where the median SDR improved by 1 dB, and the median 
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SIR improved by 1.2 dB, while the median SAR decreased by only 0.2 dB. It was 

also noted that using the proposed algorithm in the two stages leads to similar results. 

 
Figure 3.10:  Separation performance for singing voice using SDR, SIR, and SAR metrics. 

Boxplots shown are for Zhu’s original algorithm, followed by the new modified during the short 

window stage, then during the long window stage, and finally combining both modifications. 

Outliers are not shown. Median values are displayed 

On the other hand, Figure 3.11 shows the same three metrics for the separated 

music in all the four experiments. In this case, the best separation performance was 

obtained when using our proposed algorithm during the two stages, where the 

median SDR improved by 1.2 dB, and the median SIR improved by 1.8 dB, while 

the median SAR decreased by 2 dB. The reader can also check sound samples for the 

four experiments in [123]. 

 
Figure 3.11:  Separation performance for music instruments using the same metrics as in Figure 

3.10 
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3.5 Conclusion 

In this chapter, we presented a method to improve the performance of a two-stage 

NMF algorithm for the separation of singing voice from monaural music recordings. 

In the long-window spectrogram stage, where pitched instruments are separated from 

the mixture, we proposed the use of local spectral discontinuity measures, which are 

applied on the peaks of non-pitched NMF components bases. The reason for doing 

this is that we found that most non-pitched components contain some pitched sounds, 

hence the need to refine them. With the use of local discontinuity, these components 

were then split into two components; one for non-pitched sources and the other for 

pitched ones. The later is then added to the pitched components that are separated 

using the global spectral discontinuity measures. 

Similarly, in the short-window spectrogram stage, were percussion instruments 

are separated from the mixture, local temporal discontinuity measures are applied on 

the peaks of percussions NMF components gains. This would refine them from the 

vocal parts within and add these parts to the vocals separated using the global 

temporal discontinuity measures. 

The refinements achieved by the new method have led to better voice/music 

separation performance. Experiments made on the MIR-1K dataset indicated that 

using the new method during the long-window stage alone is enough to achieve the 

highest separation quality for singing voice. On the other side, to achieve the highest 

separation quality for music instruments, the new refinement process is needed in 

both stages. 

However, although the two-stage NMF method is relatively fast and efficient, 

we found another method that consumes about 50% more of processing time, but it 

performs considerably better. More about this is explained in the next chapter. 

  



 4-73 

4 Diagonal Median Filters for Separating 

Singing Voice 

4.1 Introduction 

Although the two-stage NMF based separation algorithm explained in the previous 

chapter is relatively fast and easy to implement, we found out that the median 

filtering based harmonic/percussive separation algorithm developed by Fitzgerald in 

[48] and used for singing voice separation in [22] performs quite well and even better 

when its parameters are properly adjusted. In this chapter we developed this 

algorithm further by adding diagonal filters to match the characteristics of the vocals, 

and thus achieved much better performance. 

The median filtering based harmonic/percussive separation algorithm in [48] 

uses median filters along the horizontal and vertical directions of the spectrogram to 

remove percussion and pitched instruments, which have vertical and horizontal 

ridges respectively. However, we noticed that vocals spectrograms contain frequency 

modulations that do not exist in pitched or percussion instruments. These frequency 

modulations lead to the formation of diagonal vocal formants in many parts of the 

singing voice spectrogram. For that reason, we propose to involve diagonal median 

filters somehow in the separation algorithm in order to enhance the separation of 

vocals. 

The rest of the chapter is organized as follows: Section 4.2 explains briefly the 

traditional algorithm in [22] where horizontal and vertical median filters are used in 

two stages for separating the vocal track. Section 4.3 explains the novel use of 

diagonal median filters with six different directions as well as a new practical way of 

looking at the filters lengths. Section 4.4 estimates filter lengths from the MIR-1K 

dataset then demonstrate the improvement when using the new lengths with the 

Beach Boys songs. It then explains with a variety of examples the effect of different 

combinations of diagonal filters on the separation quality for both MIR-1K and 

Beach Boys song clips. It also shows that the new diagonal median filtering 
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technique with the new practical filter lengths resulted in the least distorted voice and 

music channels separated from the monaural mixture among all single channel 

unsupervised separation algorithms. Finally, section 4.5 gives the conclusion and 

future work. 

4.2 Existing Method  

In this section we briefly explain the multipass median filtering (MPMF) algorithm 

[22] used for separating singing voice. To start with, let us recall that the median of a 

list of values is the value at the centre of the sorted list. If the number of values is 

even, it is the mean of the two values at the centre. When a median filter of length ! 
is applied on an input vector !, the result is the output vector ! defined in Equation 

(4.1) if ! is odd1 and in Equation (4.2) if ! is even2, 

 ! ! = !"#$%&{!(! − ! − 12 :! + ! − 12 )} (4.1) 

 ! ! = !"#$%&{!(! − !
2 :! +

!
2− 1)} (4.2) 

where ! is the index of the processed element of the output vector !.  

Since percussion instruments form vertical ridges in the magnitude spectrogram 

as in Figure 4.1(a), applying a median filter !"! with length !! for each frequency 

slice in the spectrogram would remove these ridges if the filter length is large enough 

compared to the percussion instrument duration as they would be treated like 

outliers. We call this the horizontal filter since it is applied along the horizontal 

(time) axis. 

On the other side, harmonics of pitched instruments form horizontal ridges in 

the magnitude spectrogram as in Figure 4.1(b), therefore applying a median filter 

!"! with length !! for each time frame in the spectrogram would remove these 

ridges as they would be treated like outliers if the filter length is large enough 

                                                

1 This equation is used in [22], [48]as they both use filters of length 17. 
2 This equation reflects the behavior of the median function in Matlab, which is used 
in our algorithms, where filters lengths could be even numbers. 
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compared to the ridges frequency span. We call this the vertical filter since it is 

applied along the vertical (frequency) axis. 

 
Figure 4.1:  (a) Horizontal median filter for removing vertical ridges of percussive instruments, 

(b) vertical median filter for removing horizontal ridges of pitched instruments. 

Applying the previous two filters (one at a time) on every sample in the 

magnitude spectrogram ! would produce the harmonic-enhanced spectrogram !! 

and the percussion-enhanced spectrogram !!. 

 !! = !"!{!, !!} (4.3) 

 !! = !"!{!, !!} (4.4) 

To reduce median filter artifacts and improve separation at regions of overlap, 

Wiener filter masks !! and !! are generated from !! and !! as in (4.5) and (4.6), 

where the all operations are applied element-wise.  

 !! =
!!!

!!! + !!!
 (4.5) 

 !! =
!!!

!!! + !!!
 (4.6) 

These masks are then multiplied (element-wise) by the original complex 

spectrogram to produce the harmonic instruments and percussive instruments 

spectrograms respectively. These spectrograms are transformed back to time domain 

to yield the separated harmonic and percussive signals. These procedures are 

summarized in the following block diagram. 
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Figure 4.2:  Block diagram for summarizing the use of median filtering for harmonic-percussive 

separation 

In order to separate singing voice, the above procedure is implemented twice, 

once at high frequency resolution (long FFT window) to separate pitched instruments 

from the vocals and percussions (remember that voice appears like percussive sounds 

at high frequency resolution) and once again at low frequency resolution (short FFT 

window) to separate the voice from percussive sounds (remember that voice looks 

more like pitched instruments at low frequency resolution). 

 
Figure 4.3:  The multi-pass median filtering (MPMF) system used for singing voice separation. 

The algorithm summarized above uses vertical and horizontal median filters to 

separate vertical ridges of percussive instruments and horizontal ridges of pitched 

instruments from the mixture signal. However, when carefully examining the 

fluctuations in vocal formants, one can see that they usually contain a combination of 

diagonal and horizontal ridges. Hence, we suggest the use of diagonal median filters 

to capture more details of the vocal components.  
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4.3 The proposed algorithm 

4.3.1 The novel use of diagonal filters  

When observing the characteristics of the vocals channel spectrogram (See Figure 

4.4) one can notice that the vocal formants have many modulations and are diagonal 

in many parts of it. In order to improve the separation of vocals, we propose to use 

diagonal median filters during the low frequency resolution stage of the algorithm 

instead of the horizontal filters. Notice that the diagonal characteristics of vocals are 

more evident at low frequency resolution spectrograms. This is why we used the 

diagonal filters only during the low frequency resolution stage. 

 
Figure 4.4:  Spectrogram of a singing voice channel from the MIR-1K dataset showing voice 

modulations 

To accommodate a wide variety of singing voices, six diagonal median filters 

MDd1 through MDd6 are applied along the diagonals of the magnitude spectrogram 

matrix ! in six different directions (!1…!6) as shown in Figure 4.5. The results are 

the diagonally enhanced spectrograms !!! to !!!, defined as: 

 !!" = !"!"{!, !!} (4.7) 

where !! is the horizontal filter length used at the low frequency resolution stage. 

Note that the diagonal filters replace the horizontal filters, which are used to extract 
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vocals. Meanwhile the vertical filters used to extract percussions are left the same 

without any change. 

The spectrogram samples used in each filter can be considered to be the integer 

points (!,!) that are in sequence and lie on the straight line represented by the 

following equation. 

 ! = !!! + ! (4.8) 

where b is the y-intercept of the line, which could be any value from 1 to the last 

frequency bin of the spectrogram (known as the Nyquest end), and the slope !! is 

determined for each direction !" using the following table, where ! is the index of the 

diagonal filter used, ! = 1… 6. 

TABLE 4.1:  LINE SLOPES FOR DIFFERENT DIAGONAL MEDIAN FILTERS DIRECTIONS. 

Direction name !1 !2 !3 !4 !5 !6 

Line slope 2 1 0.5 - 2  - 1 - 0.5 
 

 
Figure 4.5:  Samples used when applying diagonal median filters of different directions on the 

center point. 

The diagonal median filter lengths are set to be as close as possible to the length 

of the horizontal median filter. Since the samples of the diagonal filters are more 

spread compared to the horizontal filter, we dividing the horizontal filter length by 2 
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to obtain the number of samples used in the filters MDd1, MDd3, MDd4, and MDd6, 

and we divide it by 2 to obtain that of MDd2 and MDd5.  

We first thought to replace the horizontal filter at the low frequency resolution 

stage by one of the diagonal filters. In this case, !!", which is calculated in equation 

(4.7), replaces !!, which is calculated in equation (4.3), in generating the Wiener 

filter masks calculated in equations (4.5), (4.6). We also considered combining two 

or more median filters, using an operator that takes the maximum of the matrices 

element-wise. Here are some examples of the new harmonic-enhanced spectrogram 

!!′. 

!!′ = max (!! ,!!!) (4.9) 

!!′ = max ( !!!,!!!) (4.10) 

!!′ = max ( !! ,!!!,… ,!!!) (4.11) 

where !!′ replaces !! in equations (4.5), (4.6) as mentioned earlier. 

The effects of using different filters directions and different combinations of 

filters are detailed in section 4.4.4. However, before delving into these experiments, 

let us first rethink about the lengths of the current filters used in the two stages of the 

algorithm and estimate their practical values. 

4.3.2 Filter lengths 

We propose to use a practical set of filter lengths that are independent of other 

parameters like fast Fourier transform (FFT) size, step size of the short-time Fourier 

transform (STFT) and the sampling frequency of the song. For that reason, we use 

seconds for measuring the lengths of the horizontal median filters and hertz for 

measuring the lengths of the vertical median filters. This is in contrast to using the 

number of time frames and frequency bins (columns and rows of the time-frequency 

matrix of the spectrogram) in [22] for measuring the lengths of horizontal and 

vertical median filters respectively. 

Let fv denotes the vertical filter length in Hz, then its length in frequency bins lv 

can be calculated as: 
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 !! =
!!
!!
×! (4.12) 

where !!  is the sampling frequency and !  is the window length of the STFT. 

Similarly, the horizontal filter length in seconds is denoted by !!  and the 

corresponding length in time frames !! is calculated as: 

 !! =
!!
! ×!! (4.13) 

where ! is the step size of the STFT. In the following sub-section we examine the 

effect of changing these lengths in an attempt to find practical values. We shall first 

search for practical median filters parameters using one set of song clips, and then 

test these parameters on another set of songs. 

4.4 Simulation results 

4.4.1 Estimating the new median filter lengths 

In our search for practical median filter lengths, we used the MIR-1K dataset [25] 

explained earlier in section 2.2.1. We used 50 clips randomly selected from the songs 

that has pure vocal and music channels. We mixed the voice and music signals of 

these songs linearly with equal energy to generate the mixture signal. The separation 

performance was measured using the BSS_Eval metrics; SDR, SIR, and SAR 

explained earlier in section 2.3.1.  

We set parameters of the experiment like those in [22]. Specifically, the median 

filter lengths were all equal to 17 bins or frames. The FFT size for the high frequency 

resolution stage was 16384 samples with STFT step size 2048 samples. And the low 

frequency resolution stage FFT size was 1024 samples and the STFT step size was 

256 samples.  

We start by examining the effect of changing the vertical filter length at the high 

frequency resolution stage on the separation quality represented by the mean SDR, 

SIR, and SAR in dB. The next figure shows the results. 
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Figure 4.6:  Vocal separation metrics when changing the vertical median filter length in Hz at 

the high frequency resolution stage. 

We found 20 Hz to achieve the highest SDR and it brings also a good 

compromise between SIR and SAR. Therefore, we fixed the vertical filter length at 

this value and started to change the horizontal median filter length in seconds at this 

stage as shown in Figure 4.7. Here we found 2 seconds to be a good value for the 

overall improvement and balance of the three metrics. 

 
Figure 4.7:  Vocal separation metrics when changing the horizontal median filter length in 

seconds at the high frequency resolution stage. 

After that we turn to the low frequency resolution stage lengths starting by the 

vertical median filter length. As Figure 4.8 indicates, 250 Hz seems to be a good 

choice. Finally we changed the horizontal median filter length at this stage and we 

picked 0.15 seconds from Figure 4.9. 
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Figure 4.8:  Vocal separation metrics when changing the vertical median filter length in Hz at 

the low frequency resolution stage. 

 
Figure 4.9:  Vocal separation metrics when changing the horizontal median filter length in 

seconds at the low frequency resolution stage. 

The summary of all practical median filter lengths that are empirically estimated 

is shown in the following table. 

TABLE 4.2:  PRACTICAL LENGTHS FOR ALL THE MEDIAN FILTERS. 

Spectrogram/Stage Vertical filter 
length (Hz) 

Horizontal filter 
length (seconds) 

High frequency resolution 20 2 

Low frequency resolution 250 0.15 
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4.4.2 Testing the estimated lengths with the Beach Boys songs 

To evaluate the performance of the algorithm with the new parameters, we tested it 

on 12 excerpts from real-world songs by the Beach Boys band as detailed in section 

2.2.2.  

The first experiment was run with all median filter lengths set to 17 bins (or 

frames) as in the baseline algorithm described in [22]. Note that these lengths 

correspond to a vertical filter length of about 46 Hz and a horizontal filter length of 

0.8 seconds in the high frequency resolution stage, while in the low frequency 

resolution stage, the vertical filter length was 732 Hz and the horizontal filter length 

was 0.1 seconds. Obviously, these lengths are quite different from the new ones 

suggested in Table I. 

In the second experiment, all median filter lengths were set as in Table 4.2. 

These correspond to 7 frequency bins and 43 time frames in the long window STFT 

stage and 12 frequency bins and 13 time frames in the short window STFT stage. 

 
Figure 4.10:  Average voice SDR, SIR, and SAR before and after using the new filter lengths. 
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Figure 4.11:  Average music SDR, SIR, and SAR before and after using the new filter lengths. 

Figure 4.10 and Figure 4.11 demonstrate the average of three metrics: SDR, SIR 

and SAR for voice and music respectively for the three experiments. When 

examining the effect of using the practical parameters, we notice that most metrics 

increased significantly for both voice and music. The SIR of the voice and SAR of 

the music reduced somewhat but they are still reasonably good though. Also, 

performing the one-tailed paired T-test on the results of the first and second 

experiments indicated a statistical significance with t value < 0.05 for all the metrics 

except for the voice SIR (which was reduced anyway). 

Furthermore, we calculated the combined (voice and music) average SDR, SIR 

and SAR to demonstrate the overall separation performance improvement. To 

achieve this, we first calculated the average of voice and music metrics for each clip 

then we performed averaging over all clips. The results in Figure 4.12 demonstrate 

the improvement in all the metrics used. 
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Figure 4.12:  Average combined SDR, SIR, and SAR before and after using the new filter 

lengths. 

The spectrograms in the following figures illustrate the effect of using the new 

filter lengths on the quality of the separated voice and music from the “CN-track” 

song clip. The reader can easily notice the vocal formants that were mistakenly 

added to the separated music channel when we used the old filter lengths (See Figure 

4.13b and Figure 4.14b), and this is corrected to a good extent when using the new 

filter lengths (as shown in Figure 4.13c and Figure 4.14c). 
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Figure 4.13:  Example of voice enhancement after the new filter lengths. (a) The spectrogram of 

the original voice. (b) The spectrogram of the separated voice with old filter lengths where the 

red rectangles illustrate areas where vocal formants are missing. (c) The spectrogram of the 

separated voice with the new filter lengths where missing formants are retrieved. 
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Figure 4.14:  Example of music enhancement after the new filter lengths. (a) The spectrogram of 

the original music. (b) The spectrogram of the separated music with old filter lengths where the 

red rectangles illustrate areas where parts of vocal formants appear. (c) The spectrogram of the 

separated music with the new filter lengths where vocal formants removed or reduced. 

4.4.3 Why these lengths worked? 

Recall that the objective of the high frequency resolution stage of the algorithm is to 

separate the horizontal lines of pitched instruments from the mixture. Since the 

frequency span of these lines are usually around 5 hertz, a vertical median filter 
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whose length is more than double that amount is expected to remove pitched 

instruments. This value should also be far from the frequency span of percussive 

instruments and most vocal fluctuations. That is why 20 hertz is a good value for the 

length of the vertical median filter. 

It is also important for the horizontal median filter of the high-resolution stage 

to remove percussive instruments and most of the vocals with a minimal effect for 

pitched instruments. Since pitched instruments usually last more than 1 second, a 

horizontal median filter with length 2 seconds would preserve most of pitched music 

while smoothing out the vocals and percussions since they rarely remain stable for 

that time.  

In the second stage, median filters in the low-resolution spectrogram are used to 

separate percussive instruments from vocals. We noticed that the frequency span of 

percussive instruments is usually above 150 hertz while vocals usually span less than 

50 hertz in the same time frame. Thus, a vertical median filter of length 250 hertz is 

probably a good choice to remove vocals and keep percussions. A Similar argument 

can be made about the horizontal filter with a length 0.15 second to remove most 

percussion instruments while maintaining vocals. 

Note that the suggested filter lengths in Table 4.2 are approximate and are not 

necessarily the optimal for each song. For example, the vertical median filter length 

of 20 Hz at the high frequency resolution stage is a good compromise between the 

frequency span of pitched instruments horizontal ridges on one side and the 

frequency span of percussive instruments and most vocal fluctuations on the other 

side. However, if pitched instruments horizontal ridges have higher frequency spans, 

then a median filter with a higher length value, say 30 Hz, would probably achieve 

better separation results. Similar arguments can be made about the other filter lengths 

in the table. For that reason, we thought if we could adapt filter lengths, we could 

achieve better results. This is the topic of chapter 5. 
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4.4.4 Experimenting with different directions of diagonal filters 

Now that we found practical filters lengths, we try different diagonal filters with 

different directions and measure their effect on the separation quality. In the first 

experiment, we used 50 random clips from the MIR-1K dataset as in section 4.4.1 

and all median filter lengths were set as in Table 4.2. Additionally, the FFT length of 

the low frequency resolution stage was set to 2048 samples instead of 1024 for better 

overall separation performance. At first, we performed the separation with the 

horizontal filter in low frequency resolution stage as usual, then replaced it by one of 

the diagonal filters in Figure 4.5, and calculated the average SDR of the separated 

vocals each time for comparison. The results are shown in the following figure. 

 
Figure 4.15:  Different diagonal filters effect on 50 clips from the MIR-1K dataset 

We noticed that the voice SDR increased for each of the diagonal filters used, in 

particular the !1 and !4 directions had the highest increase. We thought to combine 

these two filters using equation (4.10) and check the results. However, results were 

better than the original horizontal filter but less than each filter separately.  

We now try the two most effective directions (!1,!4) on the 476 clips of the 

MIR-1K dataset mentioned in section 2.2.1. The results are shown in the following 

figure. 
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Figure 4.16:  Best two diagonal filters effect on the 476 clips of the MIR-1K dataset 

To understand what happened, one can look at Figure 4.17 where a segment of 

the original vocal spectrogram of the “leon_5_02” clip is shown in (a) while (b) 

shows a segment of the separated vocals with horizontal filter only. The results of 

using the diagonal filters with directions d1 and d4 are shown in (c) and (d) 

respectively. It is clear that the diagonal parts of the vocal formants improved when 

using each of the diagonal filters d1 and d4 in comparison to the use of the original 

horizontal filter. 

 
Figure 4.17:  The spectrogram in (a) shows a segment of the original vocals, while (b) has the 

same vocal segment separated using the horizontal filter only. Improvements of the vocal 

segment is shown in (c) and (d) when replacing the horizontal filter with a diagonal filter with 

d1 and d4 directions.  
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In the following experiment, we shall use the 12 Beach Boys excerpts as in 

section 2.2.2 and see the effect of using diagonal median filters as we did with the 50 

random clips of the MIR-1K. The next figure shows the results. 

 

Figure 4.18:  Different diagonal filters effect on the Beach Boys clips. 

It is obvious from Figure 4.18 that no filter alone is capable of producing similar 

or better results than the original horizontal filter which indicates that no diagonal 

filter can replace the horizontal filter. However, having a closer look at the first 3 

diagonal filters that are similar in direction, we noticed that the filter !3 performs the 

best. Similarly, the filter !6 is better than !4 and !5. When we combined these two 

filters using an equation similar to (4.10), the results were better than the original 

horizontal filter.  

4.4.5 Combining a diagonal filter with the horizontal filter 

Since some results were better when combining 2 filters together, we thought to 

combine each diagonal filter with the horizontal one and check results. The 

combination was done in a similar way using the maximum operator to generate the 

new harmonic-enhanced spectrogram !!′ as in equation (4.9). 

In the first experiment, we used the 50 random samples from the MIR-1K data 

set with the same setting as in section 4.4.4 and we also calculated the average SDR 

of the separated vocals for comparison. Results in Figure 4.19 suggests that 
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combining horizontal filters with diagonal filters did not do any good when testing 

then MIR-1K dataset separation. 

 
Figure 4.19:  Different effects of combining the horizontal filter with a diagonal filter applied on 

50 clips from the MIR-1K dataset. 

The next experiment is to try the same with the Beach Boys dataset. Figure 

interestingly indicates that combing the horizontal median filter with any diagonal 

median filter improves the results. 

 
Figure 4.20:  Different effects of combining the horizontal filter with a diagonal filter applied on 

the Beach Boys clips. 

We also noticed that the winning combination in the first 3 directions is ! + !2 

while the winning combination in the last 3 is ! + !5  which lead us to try 

combining them all as ! + !2+ !5 and interestingly the results improved further. 
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4.4.6 Combining all diagonal filters together 

The results obatined so far were good but we thought to combine all diagonal 

filters together and check results and then combine them again with the horizontal 

medain filter and check results. The first experiment was done for the 476 clips of 

the MIR-1K data set and as Figure 4.21 suggesets, combinging all diagonal filters 

did not do any good for the MIR-1K dataset with or without the horizontal filter. 

This means that using one diagonal filter is still the best option especially with the d4 

direction then the d1 direction. 

  
Figure 4.21:  Comparing best performed filters with mixed filters for the MIR-1K dataset 

In the second experiment, Beach Boys dataset was considered and the winning 

combinations of  sections 4.4.4 and 4.4.5 are also included for comparison purposes. 

As Figure 4.22 suggests, we have many options to improve results and probably the 

best one is to combine all diagonal median filters with all directions !1+⋯+ !6 

togeather. 
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Figure 4.22:  The best 4 combinations of diagonal filters to improve the separation for the Beach 

Boys clips 

Performing the one-tailed paired T-test on the results of this table indicated a 

statistical significance with t value < 0.005 for all the combinations except the 

!3+ !6 case where the t value was 0.03. 

4.4.7 Achieving state-of-the art blind monaural separation 

To get a feeling of the rank of our new diagonal median filtering algorithm with the 

new practical filters, we compared it with the recent blind monaural separation 

algorithms using the 476 MIR-1K dataset. We used the !4 direction only as it 

brought the best results with the MIR-1K dataset. The new algorithm was compared 

to the harmonic-percussive with sparsity constraints (HPSC) algorithm in [28], 

robust principal component analysis (RPCA) algorithm [27], and adaptive REPET 

(REPET+) [33]. A high-pass filter with a cut-off frequency of 120 Hz was used as a 

post-processing step in all separation algorithms as it improved results and it is part 

of the RPCA algorithm. However, it was not used for REPET+ as it did not improve 

results. 
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Figure 4.23:  Average voice SDR of the diagonal median filter and other algorithms 

 
Figure 4.24:  Average voice SIR of the diagonal median filter and other algorithms 

 
Figure 4.25:  Average voice SAR of the diagonal median filter and other algorithms 
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Figure 4.26:  Average music SDR of the diagonal median filter and other algorithms 

 
Figure 4.27:  Average music SIR of the diagonal median filter and other algorithms 

 
Figure 4.28:  Average music SAR of the diagonal median filter and other algorithms 
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Figure 4.23 and Figure 4.26 indicate that the average voice and music SDR of 

the new diagonal median filtering is the highest among all algorithms. As SDR is the 

signal to distortion ratio and represent the overall quality of the separation algorithm, 

we can suggest that our new algorithm has the highest quality of all blind monaural 

separation algorithms. Or at least it is the case when the singing voice is the target of 

the separation process, since the SIR of the voice was also the highest when using the 

diagonal median filtering algorithm. 

4.5 Conclusion 

In this chapter we presented a new algorithm to separate vocals from monaural music 

accompaniments based on the observation that the frequency fluctuations of the 

singing voice in the mixture spectrogram has many diagonal parts and suggests the 

use of diagonal median filters in the separation process. We tried six diagonal 

median filters with different directions in the stage that uses low frequency resolution 

spectrogram to separate vocals from percussive instruments. The reason for our 

choice is that the vocal modulations are clearer in the low frequency resolution 

spectrograms. Different datasets reacted differently but in general diagonal filters 

had a positive impact on all of datasets used one way or another. For example, using 

one diagonal median filter; !4, achieved the best improvements when using the 

MIR-1K dataset, while combining all diagonal filters together; !1…!6, brought the 

best separation results for the Beach Boys songs. 

We also computed empirically the filter lengths using 50 random clips from the 

MIR-1K dataset, which is sampled at 16 kHz. Then we tested the new horizontal and 

vertical filter lengths on the Beach Boys dataset, which is sampled at 44.1 kHz. 

Spectrograms as well as performance metrics indicated that the new parameters 

performed much better than the old ones.  

Experimental results confirm that the proposed algorithm performed better than 

all other state-of the-art blind monaural separation algorithms. The separated voice 

and music channels in our algorithm had the least distortion among all algorithms. 
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That being said, we still noticed that some song clips or even parts of the same 

song clip had different instruments whose ridges had different widths and probably 

would need a different filter lengths at different parts of the spectrogram to achieve 

better separation. This led us to search for different ways to adapt filter lengths to 

different songs and/or different parts of the same song. We actually found one way to 

achieve this objective and it is discussed in detail in the next chapter.  
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5 Hough Transform Based Adaptive Median 

Filtering 

5.1 Introduction 

Although the diagonal median filtering algorithm demonstrated in the previous 

chapter achieved the state-of the-art blind monaural separation, we were still able to 

hear pitched instruments in the vocals separated from many song clips. In this 

chapter we propose a new solution to minimize this problem and improve the 

performance of the separation, not only in the diagonal median filtering algorithm, 

but for other algorithms as well. The method uses Hough transform and adaptive 

median filtering to attenuate harmonics of pitched instruments that still exist in the 

separated vocal track. 

 
Figure 5.1:  Spectrograms of the original voice in (a) followed by the separated voice from (b) 

Diagonal Median Filtering, (c) adaptive REPET, and (d) RPCA separation algorithms. 
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To demonstrate the problem, Figure 5.1 shows a segment of the original voice 

spectrogram (before mixing with the music accompaniments) and the vocals 

separated from the mixture signal by a number of separation algorithms. The 

“Kenshin_1_01” clip from the MIR-1K data set is used and the spectrogram is 

obtained with a window size of 2048 samples and 25% overlap. 

One can see the additional horizontal ridges that represent harmonics of pitched 

instruments available in all outcomes of separation algorithms with different 

proportions. These observations lead to thinking about a methodology to target 

pitched instruments harmonics and separate them from the separated voice regardless 

of the separation algorithm used. 

Since harmonics of pitched instruments appear as horizontal ridges in the 

mixture spectrogram, we thought of using Hough Transform to identify their 

locations. Hough Transform is a known image processing technique that is used to 

detect straight lines in images and it has also been used in [124] to separate music 

accompaniments. Additionally, the horizontal ridges of pitched instruments vary in 

their frequency bands, therefore when removing them, we used a median filtering 

technique that adapts to their frequency bands. The effectiveness of the proposed 

system is proven using a variety of measures. 

The rest of the chapter is organized as follows. Section 5.2 explains in detail the 

proposed system in three main steps followed by a demonstration example and 

possible enhancements and challenges. Section 5.3 explains the experiments that are 

used to evaluate the proposed system and evaluation results. Section 5.4 includes 

discussion and future work. 

5.2 Proposed System 

The system we propose makes use of both the mixture signal and the vocals 

separated from any reference separation algorithm. Firstly, the magnitude 

spectrogram of the mixture signal is used to generate the binary image that is 

necessary for the operation of Hough transform. Secondly, Hough transform is 

applied on the binary image generating the horizontal lines that represent pitched 
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instruments harmonics. Then we determine the bandwidth of these harmonics to 

form rectangular regions denoted here as Hough Regions. Finally, These regions are 

then removed from the magnitude spectrogram of the vocals separated from the 

reference separation algorithm using an adaptive median filtering technique. The 

removed pitched instruments harmonics are then added to the instruments separated 

from the reference separation algorithm. The following diagram briefly describes our 

proposed system. 

 
Figure 5.2:  Block diagram demonstrating the main steps in our proposed system of removing 

pitched instruments harmonics !!. 

In the following subsections, we shall explain in more detail each step in the 

proposed system, starting by the generation of the binary image. 

5.2.1 Binarization of the mixture magnitude spectrogram 

The first step is to calculate the complex spectrogram ! from the mixture signal ! 

using a window size and an overlap ratio that are suitable for the new procedure and 

independent of the parameters used in the reference separation algorithm. Then the 

magnitude spectrogram ! is obtained as a !×! matrix where the value at !!! row and 

!!! column is represented using Cartesian coordinates as ! !,! , where ! = ! and 

! = !. 
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Then the magnitude spectrogram ! is converted to a grey-scale image !! !,!  

whose scale is 0,1  followed by a number of binarization steps as in Figure 5.3 in 

order to obtain the final binary image used by Hough transform. 

 
Figure 5.3:  Block diagram demonstrating the main steps in obtaining the binary image from 

the mixture magnitude spectrogram. 

We tried different binarization techniques [125] and we found out that parts of 

the spectrogram were better represented by a binary image obtained by global 

thresholding while others being better represented when local thresholding is used. 

The best results were obtained when combining global and local thresholding as 

follows. 

A new grey-level image !! !,!  is obtained using a global threshold, !!, as 

shown in equation (5.1) 

 !!(!,!) = !!(!,!)   !" !! !,! ≥ !!
0                    !"ℎ!"#$%!      (5.1) 

Afterwards, Bernsen local thresholding [126] is applied on this gray-level image 

to get the first binary image !!(!,!) as in equations (5.2), (5.3) 

 !!(!,!) = 1   !" !! !,! ≥ !!(!,!)
0              !"ℎ!"#$%!           (5.2) 

 !!(!,!) =
!!"#(!,!)+ !!!"!(!,!)

2  (5.3) 

where !!"#(!,!) and !!!"!(!,!) are the minimum and maximum grey level values 

within a rectangular !×! window centred at the point (!,!). An example of the 
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binary image !!(!,!) obtained by global and local thresholding is shown in Figure 

5.4(b). 

 
Figure 5.4:  Generating the final binary image from the magnitude spectrogram in (a). (b) 

Shows the binary image after global and local thresholding. (c) Shows an example of !!; the 

amplitude of the spectrogram at a time frame shown as a blue vertical line in (b), (d), and (e). 

Red circles mark first and second points representing peaks while blue squares represent points 

that are next to peaks but are not part of it. (d) Shows the binary image if one point per peak 

were used. (e) Shows the final binary image when two points per peak are used 
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When applying Hough transform on this image, horizontal lines were generated 

inside many of vocal segments. In order to overcome this problem, we needed to 

have a representation that emphasizes the horizontal nature of the pitched 

instruments harmonics. 

For that we used !! as a mask that is applied on the magnitude spectrogram ! to 

generate a new magnitude spectrogram !!. 

 !! = !!⨂ ! (5.4) 

where ⨂ represents element-wise multiplication. Let us now represent the matrix !! 

as a row of ! column vectors representing the spectra of all ! time frames. Let us also 

assume the same for the final binary image !!. 

 !! = [!!, !!,… !! ,… , !!] (5.5) 

 !! = [!!,!!,…!! ,… ,!!] (5.6) 

Then peaks of the magnitude spectrum for each column !! are calculated using the 

“findpeaks” function of Matlab. Each of these peaks sets a value of 1 in the column 

vector !! of the new binary image !! while all other values are set to 0. Figure 5.4(c) 

shows a segmented example of !!. 

Yet, we noticed some pitched instruments harmonics had peak points fluctuating 

up and down between adjacent time frames as shown in Figure 5.4(c). In order to 

facilitate the generation of horizontal lines by Hough transform in the next stage of 

our system, we represented each peak by two adjacent points. The second point is 

chosen to be the one before or after the main peak point whichever has a higher value 

of the magnitude spectrum. An example of the result is shown in Figure 5.4(d). 

Algorithm 5.1 calculates the final binary image !! from the magnitude spectrogram 

!! in detail. 
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Algorithm	5.1:		Building	the	final	binary	image	
from	time	frame	peaks	of	the	spectrogram	
Input:	The	spectrogram	!!	with	!	rows	
(frequency	bins)	and	!	columns	(time	frames)	
Output:	The	final	binary	image	!!	
	
!!ç	All	zeros	!×!	matrix	
for	each	column	!"{1… !}	
						f	=	Locations	of	all	!	peaks	in	!! 	
						for	each	location	!! 	
											!! !! = 1	
											if		!! !! + 1 > !! !! − 1 	
																								!! !! + 1 = 1	
											else		
																								!! !! − 1 = 1	
											end	if	
					end	for	
end	for	
	

5.2.2 Hough Transform Regions 

The next step is to identify the locations of pitched instruments harmonics that 

appear as horizontal ridges in the mixture magnitude spectrogram. For that purpose, 

we apply Hough transform[24] explained earlier in section 2.1.2 on the binary image 

generated from the mixture magnitude spectrogram. Hough transform shall generate 

the horizontal lines representing these ridges.  

In our implementation, to get the horizontal lines from the binary image !!, we 

used “hough” function in Matlab to construct the Hough space, followed by 

“houghpeaks” function to generate the peaks in the Hough space. Then line segments 

are extracted using “houghlines” function, and only horizontal lines with a certain 

minimum length are kept. The results is a set of ! horizontal lines were each line !! 

is defined by the left and right points (!!,!!) and (!!,!!) respectively. 

 



 5-106 

 
Figure 5.5:  Block diagram demonstrating the main steps in obtaining the Hough regions 

Next, we estimated the variable frequency bands of the horizontal ridges that 

Hough lines represent. The idea is to use the y-coordinate of the point that has the 

lowest magnitude spectrum value between two adjacent ridges. Algorithm 5.2 gives 

the details of obtaining lower frequency !! and the upper frequency !! for each line 

(denoted by ! for simplicity). 

Algorithm	5.2:		Estimating	the	frequency	band	of	a	
horizontal	ridge	represented	by	a	horizontal	line	
Inputs:	The	magnitude	spectrogram	!	and	a	single	Hough	
line	!	defined	by	{!!, !!,!!}	
Output:	The	line	frequency	band	{!!,!!}		
	
1-	Calculate	!! = (!! + !!)/2	
2-	Starting	from	(!! ,!!),	decrease	!	gradually	in	search	for	
(!! ,!!)	such	that:	
		i-			! !! ,! − 1 ≤ ! !! ,! , ! ! (!!,!!] 	
		ii-		! !! ,!! − 1 > ! !! ,!! 	
3-	Similarly,	starting	from	(!! ,!!),	increase	!	gradually	in	
search	for	(!! ,!!)	such	that:	
		i-			! !! ,! + 1 ≤ ! !! ,! , ! ! [!! ,!!) 	
		ii-		! !! ,!! + 1 > ! !! ,!! 	
	

5.2.3 Adaptive Median Filtering 

Up to this point we calculated a rectangular region !! = {!!! , !!! ,!!! ,!!!} around 

each horizontal line !! that represents the !!! harmonic segment that presumably 

belong to a pitched instrument in the mixture spectrogram. Now, we need to remove 

this set of regions R from the vocals separated from the reference separation 

algorithm to refine it further from the pitched instruments.  
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We first calculate the complex spectrogram !!"# of the separated vocals signal 

!!"# using the same window size and the overlap ratio that were used to calculate the 

mixture spectrogram !. In order to remove Hough Regions from the magnitude 

spectrogram !!"#, we apply an adaptive median filtering technique that is modified 

from [22]. This is done in two main steps as depicted in the following diagram. 

 
Figure 5.6:  Block diagram demonstrating the two main steps in removing the pitched 

instruments harmonics from the vocals using adaptive median filtering. 

Firstly, for each region !!, we use the median filters to generate the pitched 

instruments–enhanced regions !!! and the vocals-enhanced regions !!!. 

 !!!  = !"! !!"# , !! ,!!  (5.7) 

 !!! = !"! !!"# , !! ,!!!  (5.8) 

where !"! is the horizontal median filter with a fixed length !!, applied for each 

frequency slice in the region !! of the magnitude spectrogram !!"#, while !"! is the 

vertical median filter with an adaptive length !!! applied for each time frame in the 

region !!. 

In order to ensure complete removal of the rectangular region from the separated 

voice, !! was empirically set to 0.1 sec. On the other side, !!! changes according to 

the bandwidth of the rectangular region and is calculated as 
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 !!! = !!! − !!! (5.9) 

The pitched instruments-enhanced spectrogram !! is formed as an all zeros !×! 
matrix except at Hough regions !! where it equals to !!! respectively. On the other 

side, the vocals-enhanced spectrogram !! is an all ones !×! matrix except at Hough 

regions !! where it equals to !!! respectively. 

Secondly, Wiener filter masks !! and !! are generated from !! and !! as in 

(5.10) and (5.11) were the square operation is applied element-wise. 

 !! =
!!!

!!! + !!!
 (5.10) 

 !! =
!!!

!!! + !!!
 (5.11) 

These masks are then multiplied (element-wise) by the original complex 

spectrogram of the separated vocals !!"# to produce the complex spectrograms of the 

removed pitched instruments and the new refined voice respectively !! ,!! as in 

(5.12) and (5.13). 

 !! = !!"#⨂!! (5.12) 

 !! = !!"#⨂!! (5.13) 

These complex spectrograms !! ,!! are then inverted back to the time domain 

to yield the removed pitched instruments harmonics and new vocals waveforms 

respectively !! and !!. The former is added to the music signal separated from the 

reference algorithm !!"# to form the new separated music signal !!. 

 !! =!!"# + !! (5.14) 

Figure 5.7 demonstrates by an example the effect of using the new system with 

the diagonal median filtering algorithm in [23] as the reference separation algorithm, 

and the “Kenshin_1_01” song clip from the MIR-1K data set. Spectrograms are 

obtained with a window size of 2048 samples and 25% overlap as in Figure 5.1 and 

Figure 5.4. The original singing voice followed by the separated voice from Diagonal 

Median Filtering are shown in Figure 5.7(a) and (b) which are also shown in Figure 

5.1(a) and (b).  The binary image generated from the mixture signal and the 
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horizontal lines generated from Hough Transform are shown in Figure 5.7(c). These 

determine the locations of pitched instruments harmonics that shall be removed from 

the new voice as shown in Figure 5.7(d). 

 
Figure 5.7:  Removing harmonic instruments harmonics with the proposed system. (a) and (b) 

are the magnitude spectrogram of the original vocals and the vocals separated from the 

Diagonal Median Filtering algorithm respectively. (c) shows the binary image generated from 

the mixture spectrogram and Hough Transform generated lines (in red). (d) is the magnitude 

spectrogram of the new vocals 

5.2.4 Enhancements and Challenges 

A number of ideas were tried to enhance the separation performance. For example, 

we extended Hough horizontal lines lengths to be the same as that of the segments of 

the binary image that they represent. Also when these segments heights (frequency 
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bands) were more than a certain threshold, the horizontal lines representing them 

were removed, as they most probably belong to vocals. 

On the other side, we tried to classify the segments that are represented by 

Hough lines into vocals and instruments based on the shape of their contour. 

However, we were not successful in doing so for a large variety of songs. We also 

noticed that in the range of frequencies between 125 and 825 Hz, singing voice 

harmonics resemble pitched instruments harmonics in many cases (both have long 

horizontal ridges in the spectrogram). Also below 125 Hz, the mixture spectrogram 

mostly belongs to music instruments and a simple high pass filter achieved better 

separation than our system in that frequency range. Thus, we only considered 

frequencies above 825 Hz when calculating Hough horizontal lines. 

It is probably worth mentioning that we initially calculated Hough Regions form 

the separated vocals. However, calculating them from the mixture signal led to better 

results 

5.3 Performance Evaluation 

5.3.1 Data set and system parameters 

The MIR-1K dataset [25] (see section 2.2.1) was used to evaluate the effectiveness 

of the proposed system. We only used all the 476 clips pertaining to the 55 songs that 

have pure voice and music channels. The voice and music signals were linearly 

mixed with equal energy to generate the mixture signal 

The mixture signal and the vocals separated from the reference separation 

algorithm were converted to a spectrogram with window size of 2048 samples and 

25% overlap. To get the binary image, we divide the spectrogram image into smaller 

overlapping regions. Each region has a time span of 1 sec and frequency span of 400 

Hz. The overlap between regions was 20% in time and frequency axes. For each 

region, the first binary image was calculated using a global threshold of !! = 0.1. 

The second binary image was calculated with Bernsen local thresholding using a 

rectangular neighbourhood of 71×71 pixels. The third binary image however was 

calculated from peaks per frame where the minimum peak-to-peak distance was 20 
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Hz. The final binary image was built from the overlapping regions binaries with the 

“or” operator. 

Then we calculate Hough lines from small overlapping regions as well. Each 

region also had a time span of 1 sec and a frequency span of 400 Hz with 20% 

overlap as well. We calculated Hough horizontal lines for frequencies above 825 Hz 

because below this frequency, and in many cases, the vocal formants had long 

horizontal parts that resemble pitched instruments harmonics, and thus were 

mistakenly classified as pitched instruments as explained in section 5.2.4. For each 

region, the number of Hough peaks was 40 and only Hough lines with a minimum 

length of 10 pixels (~ 0.16 sec.) were considered. Overlapping Hough lines from 

different regions were combined together before being used to generate Hough 

regions explained in section 5.2.2. 

5.3.2 First Experiment 

In the first experiment, we used the diagonal median filtering algorithm as the 

reference separation algorithm. The filters lengths were set as in Table 4.2 and one 

diagonal filter, “d4”, replaced the horizontal filter as section 4.4.6 suggests. The 

separation performance was measured using the BSS_Eval metrics; SDR, SIR, and 

SAR explained earlier in section 2.3.1. A high-pass filter with a cut-off frequency of 

120 Hz was used as a post-processing step as in section 4.4.7. 

Figure 5.8 shows the box plots for the voice metrics of the reference separation 

algorithm before then after applying the Hough Transform based system. One can 

notice that all metrics values have increased except for the voice artifacts. This 

means that the overall separation performance has improved for both singing voice 

and music. The greatest improvement was in the voice SIR, which is an indication 

that the new system considerably reduces the interference from pitched instruments 

on the separated voice. 
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Figure 5.8:  The separation performance for singing voice and music indicated by the SDR 

(left), SIR (middle), and SAR (right) metrics. Two boxplots are shown for each metric; the 

leftmost one (R) is for the reference separation algorithm before applying our system, and the 

second one (H) is after applying it. Median values are displayed. 

 

5.3.3 Second Experiment 

Additionally, we used the global normalized source-to-distortion ratio (GNSDR) 

explained in section 2.3.2 to measure the quality of the separated voice and music 

from different reference algorithms before and after using our new system. Table 5.1 

shows the results for many reference separation algorithms, namely; the diagonal 

median filtering (DMF) algorithm [23], the harmonic-percussive with sparsity 

constraints (HPSC) [28], robust principal component analysis (RPCA) [27], adaptive 

REPET (REPET+) [33], two-stage NMF with local discontinuity (2NMFLD) [21], 

and deep recurrent neural networks (DRNN)  [30], [44] in order. 

A high-pass filter with a cut-off frequency of 120 Hz was used as a post-

processing step in most separation algorithms except for REPET+ where it did not 

improve results, and for DRNN since it is a supervised (trained) approach and does 
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not need a high pass filter. We also removed the clips used in training the DRNN 

from the testing dataset.  

TABLE 5.1:  GNSDR IMPROVEMENTS FOR DIFFERENT REFERENCE ALGORITHMS. 

Reference 
Algorithm 

Voice 
before 

Voice 
after 

Music 
before 

Music 
after 

DMF+H 4.7075 4.9663 4.7293 4.9505 

HPSC+H 4.2036 4.3933 3.9979 4.1631 
RPCA+H 3.4590 3.6732 2.7167 3.1141 
REPET+ 2.8485 3.2546 2.3699 3.0282 

2NMF-LD+H 2.2816 2.6146 2.9514 3.4494 
DRNN 6.1940 6.2318 6.2006 6.2679 

	
Additionally, since the greatest improvement shown by the first experiment was 

the voice SIR, we also calculated the singing voice global source-to-interference 

ratio (GSIR), which is the weighted mean of the voice SIR of all clips. 

TABLE 5.2:  VOICE GSIR IMPROVEMENTS FOR DIFFERENT REFERENCE ALGORITHMS. 

Reference 
Algorithm 

Voice 
before 

Voice 
after 

DMF+H 10.2083 11.4141 
HPSC+H 7.1059 7.6443 
RPCA+H 8.6360 9.2991 

2NMF-LD+H 7.7299 8.8735 
REPET+ 5.2733 6.0682 
DRNN 13.1780 13.6295 

	
We noticed that the new system improved the quality of separation for all 

reference algorithms used, even for the supervised system (DRNN), which is an 

indication to its wide applicability. Also, the results suggest that the diagonal median 

filtering approach when combined with the Hough Transform based system has the 

best separation quality of all blind (unsupervised) separation algorithms. 

5.4 Conclusion 

In this chapter we presented a new method based on Hough transform and adaptive 

median filtering to remove pitched instruments from the vocals separated from 

monaural music recordings when using various separation algorithms. Since Hough 

transform works on binary images, we started by converting the spectrogram of the 
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mixture signal into a binary image using global thresholding and then Bernsen local 

thresholding. To further improve the accuracy of capturing horizontal lines from the 

binary image, we developed a new technique to generate an enhanced binary image 

using peaks of time frames of the mixture spectrogram (columns of the image 

matrix).  

Once Hough transform is applied at the new enhanced binary image, different 

lines are generated and represented by peaks in the Hough space. To this end, only 

horizontal lines are kept as they mostly represent harmonics of pitched instruments. 

The next step is to calculate the frequency bands of these pitched instruments 

remains and remove them using median filtering that adapts to their bandwidths. We 

used median filtering to remove these regions of the spectrogram in order to reduce 

the artifacts that could be generated due to their removal. 

The new method was capable of improving separated vocals as well as separated 

music for all separation algorithms tested. We achieved the state-of-the-art 

separation for blind systems when combing diagonal median filtering with the new 

Hough transform based system.  
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6 Conclusion and Future Work 

6.1 Conclusion 

The aim of this thesis was to investigate and develop blind monaural singing voice 

separation methods. Motivated by the thrill of developing machines capable of 

hearing and the challenges throughout the way, we developed new algorithms and 

achieved the state-of-the-art separation performance. Developing efficient separation 

algorithms would facilitate automatic indexing, searching, and processing of music 

databases that are not annotated. Many applications would benefit from the separated 

voice and music tracks, such as melody transcription, lyrics recognition, and query 

by singing, to name a few. 

Singing voice separation is one branch of a wider topic, which is Sound Source 

Separation (SSS). The later was inspired by Computational Auditory Scene Analysis 

(CASA), which aims at developing machines capable of achieving human hearing 

ability. There are various techniques for singing voice separation that are based on 

different assumptions. Some assume music is repetitive while others assume voice is 

dominant. Some learn from examples, while others are totally blind. We chose 

harmonic-percussive base separation methods because they do not make assumptions 

or require training. Additionally, we believe they achieve the highest separation 

performance, despite the difficulty to make complete fair comparison among all 

separation algorithms due to the different methods of evaluations used by each. 

Typically in separation algorithms, the mixture signal is first transformed into a 

time-frequency representation. This is usually the STFT based spectrogram where 

the processing is done on its magnitude while the phase information is just used to 

resynthesize the time-domain signal.  Harmonic instruments (like piano and flute) 

have horizontal lines in the spectrogram while percussive instruments (like drums 

and hi-hats) have vertical lines. Harmonic-percussive separation based methods are 

based on the resemblance of vocals to percussive instruments in high frequency 

resolution spectrograms while it looks more like harmonic instruments in the low 

frequency resolution spectrograms. Therefore, two separation steps are typically 
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needed to separate singing voice. Although, some attempts are made to separate all 

sources in one step. 

One of the early methods that caught our attention was the two-stage non-

negative matrix factorization (NMF) method. NMF is used to decompose the 

magnitude spectrogram into components. Then, each component is classified as 

harmonic or percussive based on measuring the discontinuity of its basis or gain. 

However, examining these components carefully revealed that they are not pure 

harmonic or percussive, but rather dominantly harmonic or dominantly percussive. 

We thought of a way to refine these components further. One way that surprisingly 

worked really well was to use the same discontinuity measures that are originally 

used to classify components, but this time we used them to refine components.  More 

specifically, in each stage, we removed the harmonic parts of the percussive 

dominant components and added them to the set of harmonic dominant components. 

When testing the effects of these refinements using the same dataset and metrics 

used for testing the original algorithm, we found out that the separated vocal and 

music channels are of significantly better quality. 

We also came across the multipass median filtering approach, which we tested 

with different commercial songs. We found it performing really well on a large 

variety of song clips especially when its parameters are set properly. It uses median 

filters in the horizontal and vertical directions to remove percussive and harmonic 

instruments respectively from the magnitude spectrogram of the input signal. 

However, these filters do not take into consideration the rapid changes in the 

frequencies of the vocals, forming diagonal ridges in many parts of its magnitude 

spectrogram. Therefore, we proposed the use of diagonal median filters in the low 

frequency stage of the separation algorithm where vocal formants fluctuations are 

clear. We tried different combinations of six diagonal filters with six different 

directions. We also proposed practical filters lengths using experiments on two 

different sets of song clips, MIR-1K and the Beach boys.  

The new diagonal median filtering approach with the new parameters improved 

separation performance significantly for both song sets. When separating clips from 

the MIR-1K dataset, the best performance was achieved by using only one diagonal 
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filter. On the other side, using all the diagonal filters together achieved the best 

performance with the Beach Boys dataset. This is due to the different nature of 

vocals in the two data sets. Surprisingly, when comparing the separation 

performance with other blind monaural separation algorithms using the MIR-1K 

dataset and different metrics, the diagonal median filtering approach achieved the top 

performance, especially for the singing voice where it outperformed all other 

algorithms by at least 1 dB when measuring the signal to distortion ratio, the measure 

of the overall separation quality. 

To this end, we could still hear pitched instruments harmonics in the separated 

singing voice from all separation algorithms, including the diagonal median filtering 

approach. The reason is that pitched instruments harmonics have variable frequency 

spans due to the use of different instruments, even within the same song clip. This 

means that a constant vertical median filter length across the whole spectrogram is 

not the ideal solution. We need to adapt the vertical median filtering length according 

to the harmonic on which it is applied, in order to further improve the separation. 

Since Hough Transform is well know for detecting horizontal lines, we used it to 

identify places of pitched instruments harmonics since they appear as horizontal 

ridges in the magnitude spectrogram of music signals. We also developed a 

technique to measure the variable frequency span of these detected harmonics in 

order to facilitate their removal. Finally, we used the median filtering approach with 

the new adaptive lengths in order to remove these pitched instruments harmonics 

completely form the vocals channel. 

Testing the new system on the MIR-1K data set revealed that the main 

achievement is reducing the interference of pitched instruments on the separated 

singing voice (An improvement of ~1 dB in Signal to Inference Ratio). We raised the 

bar higher for the quality of the separated vocals and music when combining the 

diagonal median filtering and the Hough Transform based system. Although we were 

initially trying to improve the separation performance of the diagonal median 

filtering approach, we ended up improving various separation algorithms as well. We 

used our new system as a post processing stage that - to our surprise - worked well 

for any monaural singing voice separation. This Hough Transform based adaptive 
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median filtering is one of a kind, since to the best of our knowledge, there is no post 

processing system that is capable of attenuating the pitched instruments remaining in 

the vocals separated from various separation algorithms. 

6.2 Future Work 

In the course of this research work, there were a number of experiments that 

were briefly conducted to improve singing voice separation, however they need 

further development and investigation. For example we tried combining the diagonal 

median filtering approach with the Hough based system in one optimized separation 

algorithm that adapts to variations in pitched instruments. The difficulty we 

encountered was that harmonic instruments are removed in the high frequency stage 

of the diagonal median filtering algorithm, while on the other side when using Hough 

transform they are removed in a relatively much lower frequency resolution 

spectrogram. The question is can we combine both in one stage, and what would be 

the frequency resolution of the spectrogram then? 

Another question that poses itself is: Can we use Hough transform to generate 

vertical lines from the magnitude spectrogram in order to enhance the removal of 

percussive instruments? In fact we couldn’t achieve this in our experiments, probably 

because the MIR-1K data set that we used does not have much variety of percussive 

instruments, or because further enhancements of the Hough-based system are still 

required. 

But, how can we further enhance the Hough-based system? One very possible 

answer is to search for a better binary image representations of magnitude 

spectrograms in order to allow more accurate generation of Hough lines from areas 

that the current system is not able to recognize as pitched instruments (or percussive 

instruments if vertical lines are also considered). Also at frequencies from 125kHz to 

825, we need a different approach to distinguish harmonic instruments from vocal 

formants that resemble them to a great extent. We tried formant-tracking algorithms 

for the vocals, however this did not bring accurate results and more investigation is 

needed. If implemented, this could improve the Hough-based adaptive median 

filtering approach significantly. 
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Another area that could be investigated in the diagonal median filtering 

approach is to try to automatically adapt the direction of the diagonal filters 

according to the region in which they are applied. Probably edge detection 

algorithms could help to track the different directions of vocals modulations and 

adjust diagonal filters directions accordingly to achieve better separation. 

We also tried to refine components in the two-stage NMF algorithm using 

Hough transform generated lines instead of local discontinuity metrics, but we could 

not achieve better results. Probably the two approaches could be combined together 

somehow to improve results, especially if the Hough transform-based system has 

been developed further. 

The above discussion provides some recommendations for future investigations 

and possible developments of this research work, which we hope would be useful in 

developing practical singing voice separation systems in the future. 
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Appendix A 

Here are the names of the 55 songs that have pure music on the left channel and pure 

vocals on the right channel. We classified them further into 39 good quality songs 

and 16 noisy songs. The names of the good quality songs are: 

abjones_1	
amy_1	
amy_3	
amy_6	
amy_7	
amy_10	
amy_13	
annar_1	
annar_2	
annar_3	
annar_4	
bobon_4	
bobon_5	
bug_1	
bug_2	
bug_3	
davidson_3	
davidson_4	
geniusturtle_1	
geniusturtle_2	
geniusturtle_5	
geniusturtle_6	
geniusturtle_7	
geniusturtle_8	
jmzen_4	
jmzen_5	
khair_1	
khair_2	
khair_3	
khair_4	
khair_6	
leon_2	
leon_4	
leon_5	
leon_9	
titon_2	
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titon_3	
titon_4	
yifen_2	
		
while the noisy songs names are: 

ariel_1	
ariel_2	
ariel_3	
ariel_4	
ariel_5	
fdps_1	
fdps_3	
heycat_1	
Kenshin_1	
Kenshin_3	
Kenshin_4	
Kenshin_5	
stool_1	
stool_2	
stool_3	
stool_5	
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