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Abstract: Higher-order corrections to classical long-wave theories enable simple and 
efficient modelling of the onset of wave dispersion and size effects produced 
by underlying micro-structure. Since such models feature higher spatial de-
rivatives, one needs to formulate additional boundary conditions when con-
fined to bounded domains. There is a certain controversy associated with these 
boundary conditions, because it does not seem possible to justify their choice 
by purely physical considerations. In this paper an asymptotic model for one-
dimensional chain of particles is chosen as an exemplary higher-order theory. 
We demonstrate how the presence of higher-order derivative terms results in 
the existence of non-physical “extraneous” boundary layer-type solutions and 
argue that the additional boundary conditions should generally be formulated 
to eliminate the contribution of these boundary layers into the averaged solu-
tion. Several new methods of deriving additional boundary conditions are pre-
sented for essential boundary. The results are illustrated by numerical exam-
ples featuring comparisons with an exact solution for the finite chain. 
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1. INTRODUCTION 

The use of long-wave asymptotics in physics and engineering has a long 
and productive history. Whenever a problem at hand possesses features at 
two widely different length scales, the natural scale separation may be em-
ployed to dramatically simplify the analysis by neglecting the detail at lower 
observation levels. For example, classical theories of plates and shells de-
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scribe low-frequency dynamics of thin structural elements by disregarding, 
in particular, variations of stresses and strains across the thickness. Similarly, 
effective continuum theories for inhomogeneous or discrete media are de-
rived by smoothing out the fine detail of stress and strain field distributions. 

It often happens that the influence of micro- and/or meso-scales becomes 
more pronounced yet still remains a second order. A simple and efficient 
description of size effects, wave dispersion and other relevant features of the 
material response may then be achieved by considering higher-order correc-
tions to the leading-order long-wave theory. The resulting higher-order as-
ymptotic models of micro-structure are often termed gradient theories, due to 
the presence of higher gradients of strain. Similar models for plates and 
shells are commonly referred to as shear deformation theories. 

At the same time, mathematical treatment of the higher-order long-wave 
models demands a special care and the reason for this is the higher order of 
the associated differential equations. Additional particular integrals of such 
governing equations often correspond to short-wave “extraneous” solutions 
incompatible with the physical assumptions that enabled long-wave expan-
sion. Similar complications are known to arise for higher-order theories of 
thin elastic plates and shells, see e.g. [1], [2]. Possible solution to the prob-
lem involves replacing strain gradient-type terms with the gradients of iner-
tia; however, this method is generally inapplicable in a non-scalar context. 

When solving boundary value problems for the aforementioned higher-
order models of micro-structure, we have to impose extra boundary condi-
tions in addition to those naturally arising from the original formulations. 
This paper suggests a rational approach to the derivation of such boundary 
conditions. It is demonstrated by way of a simple example of a refined as-
ymptotic model for the one-dimensional regular array of particles connected 
by springs, obtained in [3] and, in a less general form, in [4]. 

Essentially, general solutions of higher-order models are interpreted as 
composite asymptotic expansions, combining contributions of long-wave 
“averaged” solutions and non-physical boundary layers (e.g. extraneous 
short-wave solutions localised near boundary). Based on this, we propose a 
principle for deriving additional boundary conditions that is aimed at mini-
mising the effect of the boundary layers on long-wave components of inter-
est. A standard asymptotic procedure (see e.g. [5]) is developed to treat a 
boundary value problem for the fourth-order ordinary differential equation 
modelling a finite array with fixed ends. It is worth noting that there always 
is an ambiguity in the selection of additional boundary conditions. In this 
paper, we discuss two types of boundary conditions that involve first, second 
or third spatial derivatives of the displacement. Comparisons with the exact 
numerical solutions for a finite array demonstrate the efficiency of the pro-
posed methodology. 
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2. GOVERNING EQUATIONS 

Let us consider a regular array of particles of mass m  connected by 
springs with the stiffness K , see Fig. 1. Harmonic oscillations of the n th 
particle are governed by the finite-difference equation 

K
q

uuu n
nnn −=+Ω−− +− 1

2
1 )2( , (1) 

where Km /22 ω≡Ω  is the non-dimensional frequency and nq  the mass 
force. This structure acts as a low-pass filter and does not allow undamped 
propagation of harmonic waves when 2>Ω , for more details see [6]. 

 
Figure 1. An infinite array of particles connected by springs. 

Since we are interested in the behaviour of finite arrays, boundary condi-
tions must be specified. In this paper we will assume the essential (Dirichlet) 
boundary conditions at the both ends of the array. For arrays of 12 +N  par-
ticles these conditions may be written as 

NN fu −− = , NN fu = , (2) 

with parameters Nf−  and Nf  generally depending on Ω . Equations (1) and 
conditions (2) form the system of 12 −N  linear equations in 12 −N  un-
knowns nu , 1,,1 −+−= NNn � . As long as Ω  is distinct from one of the 
natural frequencies, this system has a unique solution that describes configu-
ration of the array subjected to a force excitation at the specified frequency. 

It may reasonably be expected that if a long wave is to propagate through 
such a periodic structure, the resulting motion can be described by a contin-
uum theory. It is easy to see that to the leading order 

K
q
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l −=Ω+
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∂ 2

2

2
2 , (3) 

within which nn uxu ≡)(  is the continuous displacement field, nn qxq ≡)(  the 
continuous mass force, nlxn = , and l  the distance between particles. This 
leading-order Helmholtz-type approximation does not reproduce any micro-
structural behaviour and is a form of the effective continuum theory, very 
similar to the classical rod theory. A more advanced higher-order model that 
we will use in this paper is derived in [3] and has the following form 
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where α  and γ  are arbitrary constants and q  is assumed to be smooth to 
the extent that differentiation with respect to x  does not change its asymp-
totic order. Model (4) is strongly elliptic when 0≥γ . A particular case of 
(4) with 12/1−=α  and 0≡q  was presented in [4]. It is worth remarking 
that most long-wave models for longitudinal waves in elastic structures are 
formally equivalent; thus, after trivial modifications, our results are also 
valid for higher-order theories of rods and plates. 

In the absence of mass forces, the performance of an asymptotic model 
like (4) may be assessed by comparing its dispersion relation with the exact 
dispersion relation. For harmonic waves 

xiikx
nn UeUeuxu n η≡=≡)( , (5) 

the exact dispersion relation for (1) is given by ηcos222 −=Ω , in which 
kl=η , πη ≤ , is the non-dimensional wave number, see [6]. Fig. 2(a) pre-

sents typical dispersion curves for the array. Thin straight line that acts as a 
tangent to the exact solution at 0=η  corresponds to the leading-order 
model (3). Dotted line indicates the response of long-wave theory (4) when 

0=γ  and 12/1−=α . This model produces dispersion and may be expected 
to accurately simulate behaviour of the array at higher frequencies. 

Dispersion relations only characterise the approximation accuracy of as-
ymptotic models on unbounded domains. In order to indicate the perform-
ance of theories (3) and (4) when solving boundary value problems, we use a 
model example of finite array of 25 particles ( 12=N ) with fixed ends 

1=− Nf  and 1−=Nf . The distance between particles Nl /1=  and no mass 
force is applied 0≡q . Second-order differential equation (3) may be easily 
solved subject to (2) with aforementioned parameters. However, fourth-order 
equation (4) generally requires additional boundary conditions. The choice 
of these conditions is discussed in Section 3; meanwhile we remark that 
choice of 0=γ  reduces the order of (4) and enables solving it subject to (2). 

Fig. 2(b) illustrates the configuration of the array when 5.0=Ω . It is 
clear that leading-order theory (3) fails to accurately reproduce the array 
configuration at this frequency, whereas the use of higher-order theory (4) 
with 0=γ  and 12/1−=α  results in a remarkable agreement with the exact 
solution. Asymptotic model (4) with 0=γ  is special because it enables so-
lution of boundary value problems without additional boundary conditions. 
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Figure 2. (a) Dispersion curves showing scaled frequency against scaled wave number for 
exact dispersion relation (thick solid), leading-order theory (thin solid) and theory with modi-

fied inertia that uses 0=γ  and 12/1−=α  (dotted). (b) Configuration of the array of 25 
particles when 5.0=Ω , computed for the same set of theories. 

In the context of theories of plates and shells such models are termed “theo-
ries with modified inertia”, see [1]; we will follow this nomenclature. Unfor-
tunately, it is generally not possible to reduce the order of non-scalar asymp-
totic theories, see e.g. [3]. At the same time, certain 0>γ  may result in a 
better numerical approximation of the exact dispersion relation. Therefore, it 
would still be useful to develop rational procedure for deriving additional 
boundary conditions to be used with (4). 

It is worth remarking that the considered long-wave theory (4) is some-
what unusual in that it contains two auxiliary parameters α  and γ . Any 
choice of these parameters produces a long-wave model with an equivalent 
or better truncation error. Such classes of equivalent asymptotic theories may 
be generated by a simple formal procedure described in [3] for a variety of 
examples. An alternative approach to homogenisation that also results in 
parameterised classes of asymptotic theories is described in [4]. 

3. ESSENTIAL BOUNDARY CONDITIONS 

We start by rescaling equation (4) so that differentiation no longer 
changes asymptotic orders of long-wave quantities. To this end we introduce 

Nlx /ξ= ,   η/Ω=c ,   luw 2η= ,   KlqQ /= ,   NlfF ±± = 2
1 η , (6) 

so that η~Ω  and, for the sake of determinacy, 1~c . Please note that this 
scale results in discrete N/1=η . The result of rescaling (4) according to (6) 
is a non-dimensional representation that reveals the asymptotic structure of 
the governing equation as well as specifies the implied truncation error: 
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First question that we ought to ask ourselves is how sensitive our prob-
lem is to the choice of additional boundary conditions. Would it actually be 
possible to guess the correct boundary condition without deriving one? Thus, 
we begin with a numerical experiment in which we attempt to solve govern-
ing equation (7) subject to one of the following sets of boundary conditions 

11 −−= = Fw ξ ,   11
Fw ==ξ ,   0

11

=
∂
∂=

∂
∂

=−= ξξ ξξ
ww

, (8a) 

11 −−= = Fw ξ ,   11
Fw ==ξ ,   0

1
2

2

1
2

2

=
∂
∂=

∂
∂

=−= ξξ ξξ
ww

. (8b) 

The resulting solutions are compared with both the exact and leading-order 
approximate theories in Fig. 3. The left hand plot demonstrates striking 
250% error in the magnitude obtained when using theory (7) with boundary 
conditions (8a). The use of boundary conditions (8b) results in a better 
agreement with the exact solutions, see the right hand plot, however, the re-
sulting accuracy is still of the same order as obtained with the leading-order 
“rod” theory (3) subjected to (2). The benefits of using higher-order theory, 
evident, for example, from the performance of the theory with modified iner-
tia in Fig. 2(b), are no longer apparent. This is especially alarming in view of 
the fact that the frequency used in Fig. 2(b) is double of that in Fig. 3. There-
fore, we must explain the poor performance of the theory (7) in considered 
boundary value problems as well as attempt to formulate additional bound-
ary conditions that will not distort the solution to such an extent. 

First, let us consider the dispersion relation for (7), written as 

)1())(1(
12
1 22224 γηηηαγα +=Ω−++Ω�
�

�
�
�

� + . (9) 

It is a bi-quadratic equation in η , thus, it associates two (right-propagating 
or decaying as ∞→ξ ) wave numbers η  to each fixed frequency Ω . Please 
note that there is only one physical solution branch in the exact problem 
formulation.   Relation  (9)  is  particularly  simple  to  interpret  in  the  low- 
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Figure 3. Configurations of the array of 25 particles using exact and asymptotic theories when 
25.0=Ω . Dots and thin solid line correspond to the exact solution and leading-order “rod” 

theory, respectively. Dotted line presents the response of the higher-order theory with 
5.0=γ , 12/1−=α  and additional boundary condition (8a) and (8b). 

frequency limit 0→Ω . In this case both solutions of (9) are explicit and 
given by 0~η  and γη /~ i− . The first of the solutions is the expected 
long-wave component, whereas the second one does not satisfy the long-
wave assumption. Particular solution of (7) associated with γη /~ i−  de-
scribes an evanescent component that is not relevant for describing wave 
motion in unbounded array, but produces a boundary layer whenever a 
boundary condition is imposed. It is worth reiterating that such solutions are 
short-wave and, therefore, non-physical; they are, essentially, artefacts left 
after the truncation of an infinite series performed when (7) was formulated. 
We will refer to these solutions as “extraneous”. 

Because of the linearity of our problem, any of its solutions may be inter-
preted as a superposition of long-wave w  and extraneous *w  components: 

*www += . (10) 

Essentially, we are treating governing equation (7) as a composite asymp-
totic expansion. It is clear that in the coordinate system defined by (6) differ-
entiation of the long-wave component w  does not affect its asymptotic or-
der. Thus, we can say that to the leading order 

)( 22
2

2

η
ξ

Oc Qw
w =+

∂
∂

+ , (11) 

as in (3). On the other hand, the extraneous solutions are not long-wave and, 
therefore, have different asymptotic structure from what is assumed by (7). It 
is best revealed by rescaling the spatial coordinate as ηξζ /=  that, to the 
leading-order, transforms governing equation (7) into 
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Equation (12) is independent of Q  because it describes rapidly varying solu-
tion. Decaying solution of (12) may be written in the following form 

ηγ
ξ

γ
ζ −−

≡= BeBew* . (13) 

We were originally interested in solving (7) subject to essential boundary 
conditions; let us focus our attention on the left end of the array. Because of 
assumption (10), whenever we impose 

11 −−= = Fw ξ ,   it results in   
1*11 −=−−= −= ξξ wFw . (14) 

Therefore, in order to minimise the influence of an extraneous boundary 
layer we need to minimise its contribution to (14). At the same time, we 
must formulate an additional boundary condition for governing equation (7). 
The derivative of boundary layer (13) with respect to ξ  is )( 1−ηO . This pre-
sents us with the opportunity to separate contributions of long-wave and ex-
traneous components by using one of boundary conditions given by 

0
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, (15) 

where 3,2,1=n . Condition (15) ensures that contribution of the extraneous 
component is )( nO η . It also makes it clear why )( 2ηO  conditions (8b) are 
so much better at reproducing the exact solution of boundary value problem 
(1), (2), if compared to )(ηO  conditions (8a). The correction term of higher-
order model (7) is )( 2ηO ; it would therefore require boundary conditions 
with an error below )( 2ηO  to achieve accuracy that may compete with the 
theory with modified inertia (i.e. (4) or (7) with 0=γ ). Condition (15) satis-
fies this requirement when 3=n ; thus, we propose our first variant of essen-
tial boundary conditions for (4) in the following dimensional form 

NNlx
fu
��

=
=

,   03

3
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∂
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x
u

l
�

. (16) 
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Conditions (16) are simple and attractive, however, numerical tests reveal 
that the theory with modified inertia is still more accurate at higher frequen-
cies. This can be rectified only when we reduce the error in boundary condi-
tions below the model truncation error that is )( 4ηO  for (7). 

The accuracy may be improved if we choose to reformulate boundary 
conditions (15) is a slightly different manner. Specifically, let us seek 

nnn

n

n

n

n

n

Pw
ww =−+

∂
∂≡

∂
∂

−=
−=−=

1*

11

)1(
ξ

ξξ γηξξ
,   3,2,1=n , (17) 

with parameter nP  given by 1)/( −=∂∂= ξξ nn
n wP . This suggests a two-step 

numerical scheme for solving (7). At the first step leading-order equation 
(11) is solved subject to (2), which gives w  with )( 2ηO  error. At the second 
step equation (7) is solved subject to (17) using w  known from the first step. 
Corresponding dimensional boundary conditions for (4) have the form 
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where 3,2,1=n . These boundary conditions would result in )( 2+nO η  error. 
The described technique is rather general and may be extended to higher-
order governing equations, where it would require additional iteration steps, 
and non-scalar problems with, potentially, more complex boundary layers. 

For some models it may also be possible to re-formulate boundary condi-
tions (17) analytically. For example, if the additional condition is sought as 
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then we can use leading-order governing equation (11) together with condi-
tion (14) to conclude that the error is )( 4ηO  provided 1

2
2 −−−= FcQP . In 

terms of the original dimensional variables this yields 
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The efficiency of boundary conditions (20) is demonstrated in Fig. 4, where 
model (4) exhibits the accuracy comparable with the modified inertia theory 
used in Fig. 2(b).   Similar numerical tests were also performed for boundary 
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Figure 4. Configurations of the array of 25 particles using exact and asymptotic theories when 
25.0=Ω . Dots and thin solid line correspond to the exact solution and leading-order “rod” 

theory, respectively. Dotted line presents the response of the higher-order theory with 
5.0=γ , 12/1−=α  and additional boundary conditions (20). (a) 25.0=Ω . (b) 5.0=Ω . 

conditions (16) and (18). The asymptotic accuracy estimates presented in 
this paper seem to correlate well with the results of these computations. 

4. CONCLUDING REMARKS 

Presence of extraneous solutions, typical to higher-order theories, may 
significantly distort predictions of long-wave models considered on bounded 
domains. Thus, the formidable task of deriving additional boundary condi-
tions ought to be perceived as an opportunity to eliminate the influence of 
these extraneous solutions. Considered model problem for a periodic lattice 
structure clearly demonstrates the benefits of the proposed approach. 
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