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A semi-infinite elastic strip, subjected to traction free boundary conditions, is stud-
ied in the context of in-plane stationary vibrations. By using normal (Rayleigh-
Lamb) mode expansion the problem of existence of the strip eigenmode is reformu-
lated in terms of the linear dependence within infinite system of normal modes. The
concept of Gram’s determinant is used to introduce a generalized criterion of linear
dependence, which is valid for infinite systems of modes and complex frequencies.
Using this criterion, it is demonstrated numerically that in addition to the edge
resonance for the Poisson ratio ν = 0, there exists another value of ν ≈ 0.22475
associated with an undamped resonance. This resonance is best explained phys-
ically by the orthogonality between the edge mode and the first Lamé mode. A
semi-analytical proof for the existence of the edge resonance is then presented for
both described cases with the help of the augmented scattering matrix formalism.
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1. Introduction

The phenomenon of so-called edge resonance was first observed by Shaw (1956)
in his experiments on vibration of circular disks. When excited at a particular
frequency, seemingly independent of the disc radius, vibration tended to localize
near the disc edge. However, the observed vibration frequency lied below the first
cut-off frequency of the corresponding infinite layer and could not therefore be
related to thickness vibration modes. The phenomenon defied an explanation, for
it seemed that the discovered vibration mode was not a disc natural mode.

First explanation was provided by Mindlin & Onoe (1957). They noted that at
every particular frequency, in addition to a finite number of propagating Rayleigh-
Lamb modes, an unbounded plate possesses an infinite family of non-propagating
modes associated with complex wave numbers. These exponentially decaying modes
form an infinite system of standing waves, which can be used to satisfy the bound-
ary conditions at the edge of a semi-infinite plate. To illustrate this point, Gazis &
Mindlin (1960) used a refined plate theory, approximating first couple of complex
modes, to reproduce an edge resonance type response in the problem of the funda-
mental mode reflecting at the plate edge. The resonance phenomena was linked to
excitation of the higher complex modes.
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The resonance frequency predicted by the somewhat crude approximation of
Mindlin and Gazis substantially differed from the experimental observations of
Shaw. Thus, Torvik (1967) implemented a more elaborate numerical procedure that
used the fundamental and 10 pairs of complex modes to reproduce the experimen-
tally observed edge vibration frequency with 1% accuracy. The method of Torvik
was based on expanding the solution into an infinite series of normal (Rayleigh-
Lamb) modes, which was subsequently truncated and used to approximately satisfy
certain variational condition at the strip end.

Most of the following work followed this pattern. In particular, a version of the
microwave network technique has been implemented for the solution of the same
reflection problem by Auld & Tsao (1977). These authors have provided detailed
numerical analysis of the reflection in a vicinity of the edge resonance, as well as
derived a simple variational formula, which enabled an accurate estimation of the
edge resonance frequency using only one pair of complex modes. Another numerical
procedure based on the “method of projection” was presented by Gregory & Glad-
well (1983). Although their main interest lied in the behavior of higher reflected
normal modes, Gregory and Gladwell demonstrated very strong resonance-like be-
havior in a strip with traction free faces that is composed of an isotropic elastic
material with Poisson’s ratio ν = 1/4. Thorough discussion of the edge vibration
has also been given in the book by Grinchenko & Meleshko (1981).

While the numerical work has been mainly concerned with normal strip modes
(with a notable exception of Grinchenko & Meleshko (1981), who used regular
Fourier series), some progress has been recently made for stationery vibrations of
a strip with mixed boundary conditions at the faces. For this problem Kaplunov
et al. (2000) found an infinite discrete spectrum of edge-localized solutions, which
are naturally related to the surface wave traveling along the strip edge. In her later
work Wilde (2004) has also been able to use this spectrum in order to provide an
empirical formulae for the edge vibration frequencies in the case of strip with free
faces. However, in the latter case any direct results that would link edge vibration
with edge surface waves are still evading the researchers.

Although various numerical techniques enabled quite accurate prediction of the
frequency and modal shapes for the edge vibration phenomena, some important
questions still remained unanswered. On the one hand, the complex mode excitation
amplitudes in the problem of fundamental mode reflecting at the strip end were
repeatedly demonstrated to be finite. This suggested that the observed resonance
must in fact be damped. On the other hand, significant variations between observed
relative amplitudes (from about 35 by Torvik (1967) to over 3000 by Gregory &
Gladwell (1983)) did not allow such straightforward interpretations, as truncating
an infinite system of equations could, in principle, introduce errors sufficient to
damp the resonance.

First, and so far the only, significant result in this direction was obtained by
Roitberg et al. (1998), who were able to prove that when Poisson’s ratio ν = 0 the
problem indeed possesses a positive real eigenvalue, therefore proving the existence
of edge resonance in this case. The authors also conjectured that in the case of non-
zero Poisson ratios the symmetry, which enabled their solution, would be destroyed.
The associated eigenvalue would then move into the complex plane, thus indicating
a damped resonance.

We aim to extend the existing understanding of the edge vibration phenomena
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for non-zero Poisson’s ratios. Section 2 is devoted to precise description of the con-
sidered boundary value problem. By introducing normal mode expansion for the
stress field at the end of the strip, the existence of the edge mode is described in
terms of the linear dependence within the infinite system of normal stress modes.
An appropriate criterion for the linear dependence, based on the notion of Gram’s
determinant, is introduced in Section 3. It is valid for infinite systems of stress
modes and complex frequencies. Particular kinds of internal symmetries of the gov-
erning elasticity operator are also considered. In addition to the internal symmetry
that enables edge resonance at ν = 0, we demonstrate that similar symmetry is
available at the frequencies associated with Lamé (purely distortional) modes, see
Lamb (1917). The developed methodology is applied in Section 4 to determine
complex eigenvalue of the semi-infinite elastic strip that lies below first cut-off fre-
quency. The dependence of the eigenvalue on the Poisson ratio is investigated in
great detail. While generally the eigenvalue is demonstrated to be complex and,
therefore, correspond to a damped resonance, an undamped resonance is observed
for two values of the Poisson ratio, ν = 0 and ν ≈ 0.22475. The resonance at the
non-zero Poisson ratio is linked to interaction between the edge and Lamé modes.
Finally, in Section 5 the analysis of the augmented scattering matrix in the spirit of
Kamotskii & Nazarov (2002) is used to prove semi-analytically the existence of the
edge resonance in both observed cases. This technique has previously been used to
study eigenvalues of the acoustic half-plane with periodic boundary, see Kamotskii
& Nazarov (1999a,b).

2. Statement of the problem

We consider a semi-infinite strip {(x, y) : x > 0 , |y| 6 1}, composed of a homo-
geneous, isotropic, linearly elastic material, see Figure 1. The strip boundary is
subjected to traction free boundary conditions. In this paper we deal with station-
ary vibrations, i.e. the time dependence is assumed to be in the form e−iωt, with
the (possibly complex) angular frequency ω. The resulting displacement field may
be described by the vector equation of motion

k2∆u + (K2 − k2) grad divu + k2K2u = 0 , (2.1)

and the following boundary conditions

τxy(x,±1) = σyy(x,±1) = 0 , x > 0 , (2.2)

σxx(0, y) = τxy(0, y) = 0 , |y| 6 1 . (2.3)

O
x

y

−1

1

Figure 1. Semi-infinite strip configuration.
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Scalars k and K are non-dimensional frequency parameters associated with the
angular frequency ω through k = ω/c1 and K = ω/c2 and normalised to the unit
half-thickness. k and K are related as

K

k
=

√
2− 2ν

1− 2ν
, (2.4)

where ν is the Poisson ratio.
If for some value of angular frequency ωe ∈ R there exists a function u(x, y)

that satisfies equation (2.1), boundary conditions (2.2), (2.3) and is summable over
the region occupied by the strip, we shall call it a pure eigenmode. The associated
angular frequency ωe would be the corresponding eigenvalue. It is worth reiterating
that the existence of such mode has been proven by Roitberg et al. (1998) for the
case of zero Poisson’s ratio.

For other values of Poisson’s ratio, this definition ought to be generalized. The
natural expectation is that for non-zero Poisson ratios the eigenvalue (and therefore
the associated vibration frequency) moves off the real axis into the complex plane.
A negative imaginary part of the angular frequency implies decaying in time, so
the corresponding eigenmode will have a component that does not decay along axis
Ox, thus leaking the energy to infinity.

It is well known that an infinite strip with the traction free faces y = ±1 may
sustain two-dimensional waves of the form

u(x, y, t) = U(y)ei(αx−ωt), (2.5)

where scalar α is a wave number and ω is the associated angular frequency. In this
paper we restrict our attention to solutions, which are symmetric with respect to the
strip thickness. Thus, wave numbers α must satisfy the symmetric Rayleigh-Lamb
secular equation, given by

(2α2 −K2)2 cosh γ sinh δ − 4α2γδ sinh γ cosh δ = 0 , (2.6)

γ =
√

α2 − k2 , δ =
√

α2 −K2 , (2.7)

see e.g. Graff (1991). Displacement solutions to satisfy (2.6) have the following form

U(y) =
(

u1(y)
u2(y)

)
≡

(
iα cosh γy + δB cosh δy

γ sinh γy − iαB sinh δy

)
, (2.8)

B =
(2α2 −K2)2 cosh γ

2iαδ cosh δ
. (2.9)

Further developments would ask for stresses at the end of the strip. The appropriate
stress components of the waves (2.5) may be written as

(
σxx

τxy

)
= µS(y)ei(αx−ωt) , (2.10)

in which

S(y) =
(

σ(y)
τ(y)

)
≡

(−(2γ2 + K2) cosh γy + 2iαδB cosh δy

2iαγ sinh γy + (2α2 −K2)B sinh δy

)
, (2.11)
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and µ is the shear modulus.
For every real value of angular frequency ω equation (2.6) possesses at least one

positive real solution α (generally, a finite number of such solutions is available).
These solutions are associated with propagating waves (2.5) and are typically re-
ferred to as normal or Rayleigh-Lamb (symmetric) modes. It is worth noting that
with the exception of some special cases that will be further discussed in this paper,
the superposition of propagating Rayleigh-Lamb modes cannot usually satisfy the
boundary conditions at the strip edge, x = 0. In addition to these real solutions, for
every value of the angular frequency there exists an infinite number of the complex
solutions of (2.6). In the context of harmonic wave propagation in an infinite strip
the associated wave solutions transport no energy and, if =(α) < 0, exponentially
grow as x →∞ and therefore are non-physical. However, modes with complex wave
numbers α such that =(α) > 0 form an infinite system of standing waves that are
bounded for x > 0 and may therefore be used to satisfy the free-end boundary
conditions at the strip edge.

Taking this into account we shall say that function u(x, y) is an eigenmode
of the problem (2.1)–(2.3) provided it satisfies boundary conditions (2.3) and can
be represented as a superposition of Rayleigh-Lamb modes, associated with both
outgoing propagating waves (carrying energy to infinity) and exponentially decaying
standing modes. Thus, we assume that the associated stress field is given by

S(x, y) ≡
N∑

j=1

AjSj(y)eiαjx +
∞∑

j=N+1

AjSj(y)eiαjx , (2.12)

with the first (finite) sum taken over Rayleigh-Lamb modes propagating energy
in the positive x-direction (αj ∈ R, j = 1, 2, 3, .., N , please note that αj may be
negative for modes whose phase and group velocities are of opposite signs). The
second (infinite) sum in (2.12) is taken over damped modes (αj ∈ C, =(αj) > 0,
j = N +1, N +2, . . . ). When the frequency is real the concepts of phase and group
velocity are well-defined and the described choice of modes constitutes the assumed
radiation conditions. We will also use expansion (2.12) for negative imaginary per-
turbations of the frequency. This is common technique used e.g. in scattering theory,
see Veksler (1993) and references therein. Boundary conditions (2.3) take then the
form

S(0, y) ≡
∞∑

j=1

AjSj(y) = 0 . (2.13)

The use of the normal mode expansions (2.12), (2.13) assumes completeness of the
infinite family of stress modes. To the best of our knowledge the completeness of
the dynamical problem for a semi-infinite strip with the stress boundary conditions
at the end has never been proved and is usually assumed a priory. The proofs
of completeness for the elastic strip modes are currently available in elastostat-
ics, see Ustinov & Iudovich (1973), Kovalenko (1992), and in elastodynamics for
displacement, see Kostyuchenko & Orazov (1977), and bonded interface boundary
conditions at the strip end, see Kirrmann (1995).
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3. Properties of normal modes

(a) Linear dependence

Since we are interested in non-trivial solutions for S(x, y), equation (2.13) may
be interpreted as the requirement of linear dependence within the infinite system
of modes Sj(y). With this in mind we introduce linear space L2

2(−1, 1) of the two-
dimensional vector functions S(y) with the scalar product

(S1, S2) = (σ1, σ2) + (τ1, τ2) =
∫ 1

−1

σ1(y)σ2(y)dy +
∫ 1

−1

τ1(y)τ2(y)dy , (3.1)

where σ(y), τ(y) ∈ L2(−1, 1), see (2.11). A characteristic function of linear depen-
dence can now be constructed using the so-called Gram determinant. For a given
finite set of elements S1,S2, . . . , SN ⊂ L2

2(−1, 1), the Gram determinant

Gr(S1,S2, . . . , SN ) =

∣∣∣∣∣∣∣∣

(S1, S1) (S1,S2) . . . (S1, SN )
(S2, S1) (S2,S2) . . . (S2, SN )

. . . . . . . . . . . .

(SN , S1) (SN , S2) . . . (SN ,SN )

∣∣∣∣∣∣∣∣
(3.2)

is equal to the squared volume of N-dimensional parallelepiped formed by the vec-
tors (S1, S2, . . . , SN ). Gram’s determinant for a finite set of vectors is equal to
zero if and only if these vectors are linearly dependent. However, we cannot use
this fact directly because for the normalized sequence of normal mode vectors
(S1, S2, . . . , SN ) determinant (3.2) tends to zero everywhere as N → ∞. It is
therefore necessary to introduce new function

φN (Sj) =

√√√√√Gr
(

S1, S2, . . . , Sj−1,
Sj

‖Sj‖ ,Sj+1, . . . , SN

)

Gr(S1, S2, . . . , Sj−1, Sj+1, . . . , SN )
(3.3)

that is equal to the distance between normalized vector Sj and linear space ΛN
j

formed by the vectors (S1, S2, . . . , Sj−1, Sj+1, . . . , SN ). It may alternatively be
defined as the solution for the following optimization problem

φN (Sj) = min
Cn∈C
n 6=j

∥∥∥∥∥∥∥∥

Sj

‖Sj‖ −
∑

n=1,...,N
n6=j

CnSn

∥∥∥∥∥∥∥∥
. (3.4)

Definitions (3.3) and (3.4) imply that

0 6 φN (Sj) 6 1 , φN+1(Sj) 6 φN (Sj) , (3.5)

which enables us to formulate characteristic function for infinite vector systems in
the form

φ(Sj) = lim
N→∞

φN (Sj) . (3.6)

Let Λj be the closure of infinite-dimensional space spanned by (S1, S2, . . . , Sj−1,
Sj+1, . . . ). It is easy to see that φ(Sj) exists for every system of vectors and has
the following properties

1. φ(Sj) = 0 ⇔ Sj ∈ Λj ; (3.7)
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2. φ(Sj) = 1 ⇔ Sj ⊥ Λj . (3.8)

Thus we constructed a tool for investigating linear dependence within the system
of stress modes (2.11). In the following sections it will be applied to find a complex
eigenvalue and the associated eigenmode of the semi-infinite strip.

(b) Orthogonality

The proof for the existence of pure eigenmode by Roitberg et al. (1998) has
been enabled by the special symmetry of the governing elasticity operator for zero
Poisson’s ratio. The crucial simplification cames from the fact that when ν = 0 the
fundamental mode of an elastic strip becomes non-dispersive, with α1 = ±K/

√
2.

Associated stresses

S1 = C

(
1
0

)
, C = const , (3.9)

may then be combined into a standing wave, which would satisfy zero traction
boundary conditions at the end of the strip. In other words, the fundamental mode
impinging at the end of the strip would reflect into itself without generating de-
caying modes. This circumstance allowed Roitberg et al. (1998) to separate the
essential spectrum of the elasticity operator for frequencies below the first cut-off†
and, therefore, to isolate the strip eigenvalue.

The situation is best formulated in terms of mode orthogonality. Indeed, by
considering formulae (2.11), (3.1) and (3.9), as well as taking into account dispersion
relation (2.6), it may be shown that

(S1, Sj) =

C

∫ 1

−1

(
(2α2

j −K2) cosh γj

cosh δj
cosh δjy − (2γ2

j + K2) cosh γjy

)
dy = 0 , j > 2 ,

(3.10)

so we are justified to use the following notation

S1 ⊥ Sj , j > 2 . (3.11)

Thus, any linear combination of modes Sj , j > 2, cannot excite fundamental mode
S1 and vice versa; this is true for all frequencies provided ν = 0. Since fundamental
mode is the only one propagating mode for frequencies below the first cut-off, the
conclusion can be made that if there is an eigenmode below the first cut-off then it
must be a pure eigenmode.

A similar kind of internal symmetry is available in the case of the so-called
Lamé modes. These belong to the special kind of Rayleigh-Lamb modes, which
produce purely distortional motions. There exists an infinite number of such modes
associated with the frequencies

K =
√

2
(π

2
+ πn

)
, n = 0, 1, . . . (3.12)

† Here the physical cut-off frequency ωc is implied, i.e. the frequency at which second Rayleigh-
Lamb mode becomes propagating. It must not be mistaken for a long-wave high-frequency limit
of the second mode ωe, since ωc < ωe for most physically significant values of the Poisson ratio.
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We are mostly interested in the first Lamé mode (n = 0) with the corresponding
stress field given by

S1(y) = C

(
cos π

2 y

0

)
, C = const . (3.13)

By considering scalar products (S1, Sj), j > 2, it is possible to demonstrate that
in this case again

S1 ⊥ Sj , j > 2 . (3.14)

It is worth reiterating that this solution only exists at a particular frequency, which
for most positive values of the Poisson ratio lies below the first cut-off. Nevertheless,
this kind of internal symmetry is very similar to the symmetry present in the case of
zero Poisson’s ratio. It is therefore natural to expect that if the frequency associated
with Lamé mode coincides with the strip eigenvalue then a pure eigenmode exists.
In the next section we will demonstrate that this is indeed possible and happens at
a particular non-zero value of the Poisson ratio.

4. Numerical examples

Boundary conditions (2.13) for the end of the strip were interpreted in the previous
section as the requirement of linear dependence within the infinite system of normal
stress modes. If K∗ is the eigenvalue associated with the edge mode, then the
stress modes with non-zero amplitudes in the normal expansion (2.13) are linearly
dependent. Therefore, we can use zeros of the characteristic functional φ(Sj) to
locate edge mode, see (3.7), but we need to ensure that the amplitude Aj of the
associated mode Sj in (2.13) is not equal to zero. In particular, this may happen
when the chosen stress mode is orthogonal to the rest of modes. For example,
for zero Poisson’s ratio S1 ⊥ Sn, n = 2, 3, . . . , see (3.11), and the characteristic
functional φ(S1) cannot be used to locate the edge mode, because φ(S1) = 1 for
all K, see (3.8). Our tests indicated that S2 is not orthogonal to the rest of stress
modes for Poisson ratios ν ∈ [0, 0.5] and frequencies below the first cut-off. Thus,
φ(S2) will be used as a characteristic functional for linear dependence. φ(S1) will
only be used to demonstrate cases when S1 is orthogonal to the rest of the modes.

In practical numerical computations functionals φN (S2) have to be used as
estimates for φ(S2), see (3.3). Examples given in this section were computed using
60 complex Rayleigh-Lamb modes, so N=61. Instead of looking for zeros of the non-
negative functional φ60(S2), we seek local minima of the functional, which indicate
proximity of eigenvalues.

A typical behaviour of the characteristic functional is presented in Figure 2
for ν = 0.31. The associated eigenvalue of the semi-infinite strip is computed in
this case as K∗ ≈ 2.32816 − 0.00151i. The left-hand plot illustrates behavior of
φ60(S2) for =(K) = 0. The right-hand plot demonstrates the effect of moving into
the complex domain with fixed <(K) = 2.32816. These plots show that the local
minimum of φ60(S2) is sufficiently well-defined to allow for accurate computation
of both real and imaginary parts of the eigenvalue K∗.

It is well-known that edge vibration strongly depends on the Poisson ratio, see
e.g. Grinchenko & Meleshko (1981). This is further illustrated in Figure 3, in which
right-hand and left-hand plots correspond to ν = 0.2 and ν = 0.31, respectively.
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φ60(S2)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

2.62.42.22.0

<(K)

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

0.0-0.001-0.002-0.003

=(K)
Figure 2. Behaviour of the characteristic functional φ60(S2) in the vicinity of eigenvalue

K∗ ≈ 2.32816− 0.00151i, where ν = 0.31.

φ(S1)

1.0

0.8

0.6

0.4

0.2

0.0
2.282.242.202.16

<(K)

1.0

0.8

0.6

0.4

0.2

0.0
2.52.42.32.22.1

<(K)
Figure 3. Behaviour of the characteristic functional φ(S1) in the vicinity of the Lamé
reflection frequency. The Poisson ratio is ν = 0.2 and ν = 0.31 for the left-hand and
right-hand plots, respectively.

Both of these plots illustrate the dependence of φ(S1) on <(K), assuming that
=(K) = 0. It follows from (3.8) that φ(S1) = 1 when S1 ⊥ Sj , j = 2, 3, . . . , which
is happening at the frequency of first Lamé mode K = π/

√
2 ≈ 2.22. Another

interesting features are the local extrema, which correspond to the strip eigenvalue.
Because of the continuity considerations, we may conclude that at the certain value
of the Poisson ratio ν∗ ∈ (0.2, 0.31) frequencies of the strip eigenmode and Lamé
mode must coincide.

In order to fully characterize the dependence of complex eigenvalue on the Pois-
son ratio, Figures 4 and 5 were prepared. First of these figures provides real part
of the eigenvalue for the Poisson ratios between 0 and 0.45. The value of ν where
the frequency of the Lamé mode coincides with the real part of the strip eigenvalue
may be accurately determined to be ν ≈ 0.22475. Similar figure was prepared by
Le Clézio et al. (2003) for the range of Poisson’s ratios between 0.2 and 0.4. Rela-
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<(K∗)

 2

 2.1

 2.2

 2.3

 2.4

 2.5

0.40.30.20.10.0
ν

Figure 4. Solid line is a real part of complex eigenvalue of the semi-infinite strip, shown
as a function of the Poisson ratio. Dotted line indicates a corresponding frequency of the
Lamé mode.

tive flatness of the curve prompted the authors to suggest that the dependence of
the strip eigenvalue on Poisson’s ratio may be linear. Figure 4 clearly shows that
<(K∗(ν)) is not a linear function. It is, however, simple enough to be accurately
approximated by a quadratic fit of the following form

<(K∗) ≈ 151 + 68ν + 50ν2

76
. (4.1)

This formula predicts the frequency of the strip edge mode with the relative error
below 0.05% for all positive Poisson’s ratios.

The imaginary parts of the eigenvalues, shown in Figure 5, characterize the rate
of energy leakage from the edge. Real (undamped) edge resonance is associated with

−=(K∗)

 1e-006

 1e-005

 0.0001

 0.001

 0.01

0.40.30.20.10.0
ν

Figure 5. Imaginery part of complex eigenvalue of the semi-infinite strip, shown as a
function of the Poisson ratio.

pure eigenmodes and corresponds to local extrema on Figure 5. As predicted in the
previous section, two pure eigenmodes can be observed, first of them corresponds
to ν = 0, second — to ν ≈ 0.22475.
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|A2|

 500

 1000

 1500

 2000

 2500

 3000

 3500

1.30051.30041.30031.30021.3001

k

Figure 6. Dependence of relative amplitude of the first decaying mode on the frequency
of the reflected mode (ν = 0.25). Dots are taken from Figure 10 in the paper by Gregory
& Gladwell (1983), solid line corresponds to the approximation (4.2).

The described numerical results clearly confirm our conjecture and indicate that
there may exist second pure eigenmode associated with the Lamé mode. For a broad
band of the Poisson ratios (0 6 ν 6 1/4) the imaginary part of the eigenvalue is
found to be under 10−4, which indicates extremelly low amounts of energy leakage.
The possible proximity of the second pure eigenmode serves as a good explanation
for the unusually high edge excitation amplitudes, observed by Gregory & Gladwell
(1983).

(a) Application to free end reflection

The analogy with the problem considered by Gregory & Gladwell (1983) may be
elaborated yet further. It is worth reminding that these authors observed damped
edge vibration in the problem of the Rayleigh-Lamb fundamental mode impinging
at the end of the strip from the infinity for the Poisson ratio ν = 1/4. The strip
eigenmode manifested itself as a sharp increase in the amplitude of the reflection
coefficient for the first complex mode.

Our technique does not allow accounting for the external excitation, therefore it
is not possible to compute reflection coefficient directly. Instead we use a numerical
estimate of the eigenvalue k∗ to approximate observed edge vibration with the
formula for a simple harmonic oscillator

|A2| = C

|k − k∗| , (4.2)

where C = const has to be chosen to match heights of the amplitude peaks.
Numerical computations indicated that k∗ = 1.30031 − 0.00004i when ν =

1/4. The reflection coefficient for the first complex mode is shown in Figure 6.
Approximation (4.2) (solid line) is shown along with individual dots taken from the
paper by Gregory & Gladwell (1983). The real part of the eigenvalue matches the
result of Gregory and Gladwell within fractions of a percent. Very good correlation
between the widths of the damped resonance peaks indicates that we obtained
correct result for the imaginary part of the eigenvalue as well.
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5. Augmented scattering matrix

In order to prove the existence of the real eigenvalue associated with the Lamé
mode, we use the method based on the theory of general elliptic problems with
cylindrical outlets to infinity, see Nazarov & Plamenevsky (1994). The object that
will be constructed in this section allows extracting discrete eigenvalues from the
continuous spectrum. The main advantage of the described method is that it does
not depend on internal operator symmetries and, consequently, does not require
separation of the continuous spectrum, necessary for variational techniques.

Let us consider several pairs of the Rayleigh-Lamb modes, both growing and
decaying exponentially along axis Ox. The augmented scattering matrix arises when
one simulates physical radiation conditions† by selecting linear combinations of
these modes. This requires some rearrangements, and first of all we enumerate the
Rayleigh-Lamb modes and the corresponding roots of (2.6). It is worth reiterating
that for every fixed real frequency secular equation (2.6) has finite number T of
positive real roots, as well as T negative real roots, which we denote as

α+
1 < · · · < α+

T < 0 < α−T < · · · < α−1 . (5.1)

Our arrangement assumes that the root multiplicity never exceeds one. In particu-
lar, this is true below the first cut-off frequency of the strip.

The secular equation (2.6) also has an infinite number of complex roots, but
we only need to consider a finite subset of complex roots, situated close to the real
axis. Let us specify γ > 0 such that the lines =(α) = ±γ do not cross any roots of
the equation (2.6). Since (2.6) is essentially a function of α2, the number of roots
between these two lines is even and we denote it as 2N . 2T of these roots are real,
the rest 2(N − T ) = 4F are complex (for every complex root α equation (2.6) has
three more roots −α, α and −α). The complex roots are denoted as follows

=(α+
j ) > 0 , j = T + 1 . . . N , (5.2)

=(α+
T+1) = =(α+

T+2) < · · · < =(α+
N−1) = =(α+

N ) , (5.3)

<(α+
T+2j−1) > 0 , <(α+

T+2j) < 0 , j = 1 . . . F , (5.4)

α−j = α+
j , j = T + 1 . . . N . (5.5)

We denote by w±j the Rayleigh-Lamb waves (2.5) corresponding to the roots
α±j . The quadratic form that describes generalized bi-orthogonality conditions may
then be introduced as

q(wi, wj) = (Ui, Sj)− (Si, Uj) , (5.6)

where (·, ·) signifies the inner product on the edge {x = 0, y ∈ (−1, 1)}. The reci-
procity theorem states that q(wi, wj) 6= 0 if and only if αi = αj , thus we intro-
duce ci = q(w+

i , w+
i ) 6= 0. For the propagating waves it describes the energy flux

through the strip cross-section and, consequently, allows to formulate physical radi-
ation conditions. Moreover, the form (5.6) allows generalizing radiation conditions
for arbitrary Rayleigh-Lamb wave. In order to satisfy physical radiation conditions

† Hereafter, we are using the nomenclature of Kamotskii & Nazarov (1999a,b).
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we bring quadratic form (5.6) to the principal axes. This is achieved by considering
superpositions of the Rayleigh-Lamb waves, which define the new basis

u±i = |ci|−1/2w±i , i = 1 . . . T , (5.7)

u±i =
1√
2

(
(−ci)−1/2w+

i ∓ i (−ci)−1/2w−i
)

, i = T + 1 . . . N . (5.8)

The quadratic form is brought to the principal axes in this basis and the following
equalities hold

q(u−i , u−j ) = iδij , q(u+
i , u+

j ) = −iδij , q(u+
i , u−j ) = 0 , i, j = 1 . . . N . (5.9)

We shall call the waves u+
1 , . . . , u+

N (u−1 , . . . , u−N ) incoming (outgoing) waves. For
propagating waves, i = 1, . . . , T , this definition obviously coincides with the physical
radiation conditions, but is also extends the notion for the non-propagating waves,
i = T +1, . . . , N . It turns out that it is more convenient to deal with the basis (5.7)–
(5.8), rather than with the original basis, see Nazarov & Plamenevsky (1994).

Our argument is based on two principal facts, which are reformulated theorems
from the paper by Kamotskii & Nazarov (1999a).

Theorem 1 (Kamotskii & Nazarov (1999a, p. 121, Theorem 2.11)). There exist
functions Y1, . . . , YN that satisfy equation of motion (2.1) and boundary conditions
(2.2), (2.3) and can be represented in the form

Yi = u+
i +

N∑
n=1

Sinu−n + o(e−γx) , x →∞ , (5.10)

where matrix S = (Sjn)N
j,n=1 is unitary, i.e. S∗ = S−1.

The matrix S is called the augmented scattering matrix. It is closely related to
the standard scattering matrix and, in fact, may be represented in terms of it. Let us
now introduce block s of the matrix S, which corresponds to the non-propagating
Rayleigh-Lamb waves, namely s = (Sjn)N

j,n=T+1. The next result enables using s
to gather information about edge eigenmodes.

Theorem 2 (Kamotskii & Nazarov (1999a, p. 124, Theorem 2.17)). If det(s−
I) = 0 then the boundary value problem (2.1)–(2.3) has a pure eigenmode that can
be represented in the following form

Y =
N∑

n=T+1

Anw+
n + o(e−γx) , x →∞ , (5.11)

in which some of An are not equal to zero.
In the vicinity of a real eigenvalue only one propagating Rayleigh-Lamb mode

exists, so T = 1. We also know from a numerical experiment that A2 6= 0 in the
expansion (5.11). It is therefore sufficient to take F = 1 or N = T + 2F = 3. In
both cases of the fundamental mode reflecting totally at the edge, as described in
Section 3.2, the first function in (5.10) has the form

Y1 = u+
1 − u−1 , S11 = −1 , S1n = 0 , n = 2 . . . N . (5.12)
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arg λ
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Figure 7. Behaviour of arg λ in the vicinity of real eigenvalues.

Since stresses associated with the damped waves are orthogonal at the edge to the
stresses formed by the reflected fundamental mode, we have

Yi = u+
i +

N∑
n=2

Sinu−n + o(e−γx) , Si1 = 0 , i = 2 . . . N . (5.13)

Therefore, both when ν = 0 and when K = π/
√

2, the augmented scattering
matrix has the following form

S =



−1 0 0
0
0

s


 , (5.14)

and since S is a unitary matrix then the matrix s must be unitary as well. Thus,
if λ is an eigenvalue of s then |λ| = 1.

Analytical expression for S is rather cumbersome, therefore we continued this
investigation numerically. The computation demonstrated that in both cases of
interest the function arg λ changes its sign, which is depicted in Figure 7. Left-hand
plot demonstrates the dependence of arg λ on the frequency when ν = 0, right-
hand plot shows the dependence of arg λ on the Poisson ratio at the frequency of
the Lamé wave, i.e. when K = π/

√
2. Because of the continuity of arg λ, it means

that in both cases we found the value of parameter, for which matrix s has the unit
eigenvalue λ = 1. Therefore, the Theorem 2 guaranties the existence of the pure
eigenmode in both of these cases.

The formulation and solution of the problem for the pure edge mode associated
with the non-zero Poisson ratio may appear somewhat unconventional. The fre-
quency of the edge mode is fixed, so the Poisson ratio assumes the role of spectral
parameter. This situation is reminiscent of the concept of the Cosserat spectrum,
which has been proved useful in elastostatics, see Markenscoff & Paukshto (1998)
and references therein.
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