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Abstract
Background: Quantifying cell division and death is central to many studies in the biological
sciences. The fluorescent dye CFSE allows the tracking of cell division in vitro and in vivo and
provides a rich source of information with which to test models of cell kinetics. Cell division and
death have a stochastic component at the single-cell level, and the probabilities of these occurring
in any given time interval may also undergo systematic variation at a population level. This gives rise
to heterogeneity in proliferating cell populations. Branching processes provide a natural means of
describing this behaviour.

Results: We present a likelihood-based method for estimating the parameters of branching
process models of cell kinetics using CFSE-labeling experiments, and demonstrate its validity using
synthetic and experimental datasets. Performing inference and model comparison with real CFSE
data presents some statistical problems and we suggest methods of dealing with them.

Conclusion: The approach we describe here can be used to recover the (potentially variable)
division and death rates of any cell population for which division tracking information is available.

Background
Quantifying the dynamics of cell populations involves
measuring rates of division and death. On a practical
level, knowledge of these rates can be important for the
clinical assessment of diseases characterised by dysregu-
lated cell populations such as neoplasias. Perhaps more
fundamentally, quantifying cell dynamics is important for
testing hypotheses regarding the population biology of
cells.

Studies of cell proliferation have benefited in recent years
from the development of a method to measure the

number of divisions single cells have undergone using
CFSE (Carboxy Fluoroscein Succinimidyl Ester), a fluores-
cent and cell-membrane impermeable dye. CFSE is now
used widely in immunology to study lymphocyte dynam-
ics [1] but also in oncology [2], stem cell research [3,4]
and to study the kinetics of bacterial division [5]. Briefly,
the procedure is as follows. A population of cells is stained
with CFSE, and the dye contained in each cell is shared
approximately equally among daughter cells upon divi-
sion. The fluorescence intensities of the population of
CFSE-labeled cells can then be measured at a later time
using flow cytometry. Cohorts of cells that have under-
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gone the same number of divisions are usually observed
to have approximately log-normally distributed intensi-
ties, with median decreasing roughly two-fold with each
division. Analysis of CFSE profiles allows the estimation
of the proportions of cells in culture that are in each gen-
eration. These proportions can indicate the extent of divi-
sion in a population, but CFSE information can also be
used to simultaneously quantify division and death if the
total numbers of live cells in each generation are known at
two or more timepoints. In in vitro experiments, these can
be estimated by adding known numbers of fluorescent
beads to the culture, sampling from it, counting both cells
and beads in the sample using flow cytometry and scaling
the generation proportions appropriately.

The information CFSE provides regarding this genera-
tional structure augments methods of pulse-labelling with
markers such as BrDU (5-bromo-2'-deoxyuridine) or triti-
ated thymidine, which have traditionally been used to
quantify proliferation. These compounds are taken up
during DNA synthesis and allow the measurement of the
proportion of the population undergoing mitosis during
the labelling period. This technique has been used in con-
juction with mathematical models to quantify the turno-
ver of populations that are essentially homogeneous (see,
for example, [6]). Models have been used to quantify
turnover from CFSE data in similar situations [7-11]. In
these studies, all cells are considered to be identical, and
death or entry into division are represented as Poisson
processes. ODEs are usually used, providing the expected
numbers of cells in each division. While these models are
useful as a starting point, in their simplest form they allow
for arbitrarily short inter-division times. This is a biologi-
cally unrealistic artifact which can lead to difficulties in
the interpretation of estimates of average division and
death rates [12]. Other CFSE modeling studies have over-
come this by turning to the classic Smith-Martin model of
the cell cycle [13]. In this model cells are assumed to
spend exponentially-distributed times in a quiescent A-
phase before progressing deterministically through an
'actively dividing' B-phase (roughly corresponding to
DNA synthesis and mitosis) of finite duration. However,
if different susceptibilities to death are allowed in the two
phases, as might reasonably be expected given the meta-
bolic differences between quiescence and mitosis, it has
been shown that CFSE data alone is not sufficient to iden-
tify all parameters of the general Smith-Martin model
[9,10], and additional information (such as the propor-
tion of cells in each generation that are in the A- and B-
phases) is required.

As a further complication, it has increasingly been recog-
nised that rates of division and death are usually not
homogeneous, and that it is essential to consider this if
CFSE is to be used as a practical tool for studying cell

dynamics in any depth. Rates of division and death typi-
cally vary systematically at a population level. This varia-
tion might occur with the number of divisions a cell has
undergone; with time, for example as the availability of
nutrients, inter-cellular signalling molecules or pro- or
anti-apoptotic factors changes over the course of an exper-
iment; or both. Some of these issues were tackled in a
series of elegant studies by Gett and Hodgkin [14], Deen-
ick et al. [15], and the subsequent extension of their anal-
ysis by de Boer and colleagues [12,16]. They quantified
the kinetics of in vitro stimulation of CFSE-labeled T cells,
using a hybrid model in which entry into the first division
is stochastic and subsequent divisions are deterministic.
They discuss the estimation of the distribution of entry
times into the first division, and showed a significant
improvement in fit using a division-dependent death rate.
Towards a more general approach, Leon et al. [17] pro-
posed a framework for modeling asynchronous division
with CFSE data and used this to determine the parameters
of probability distributions of inter-division times, allow-
ing for heterogeneity in cell kinetics with respect to divi-
sion history. However, their analytic approach and the
lack of treatment of the sources of discrepancy between
model and data make the fitting and comparison of mod-
els difficult, and so limits its practical usefulness.

In this paper we present a distinct and complementary
method of modeling CFSE data. We use discrete-time
branching processes to describe heterogeneous cell kinet-
ics and suggest a likelihood-based method of inference.
Branching processes have been applied successfully to
model cell growth in many areas in biology [18-22]. In
such models, cells are considered to act independently
and divide and die according to probabilistic rules. In a
discrete-time process a cell is assumed to either divide
once, die or survive undivided in each discrete time inter-
val (Figure 1).

The method we present here has at least two advantages
over existing approaches. Firstly, in many cases even time-
series of CFSE data may be insufficient to identify the
parameters of more detailed models of cell division, and
in some cases (as in the general Smith-Martin model dis-
cussed above) unique identification of all parameters with
CFSE alone is not possible. In contrast, branching proc-
esses make minimal assumptions regarding the cell cycle
– essentially, the finite timestep imposes a lower bound
on the time required to complete a division – and in gen-
eral all of their parameters are identifiable. In particular
this allows useful dynamical information to be recovered
even from limited CFSE datasets, such as a single time-
point. Secondly, the inference procedure we propose pro-
vides a statistically sound basis for model fitting. Many
studies (implicitly) ascribe the discrepancies between the
model and the counts of cells in each generation recov-
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ered from CFSE profiles as measurement error terms of
constant variance. In this paper we challenge this assump-
tion and use a standard stochastic description of cell pop-
ulation dynamics, along with a more realistic treatment of
the sources of discrepancy between model and data, to
provide the appropriate weighting to each observation
when fitting models. Specifically, when estimating param-
eters of stochastic models from data it is important to
assess the relative contributions of fluctuations arising
from the intrinsically probabilistic nature of cell dynamics
and measurement error or other forms of experimental
noise. In this paper we describe two frameworks for
parameter estimation; one when fluctuations are the most
important form of discrepancy between model and data,
and the other when other forms of measurement error
dominate. In the latter case, the procedure we describe in
this paper can be applied to any model used to describe
CFSE data that provides the expected cell counts in each
generation.

Using a likelihood-based estimation method requires cal-
culating the probability (likelihood) of a set of observa-
tions arising given a model. The generating-function
approach we describe allows us in principle to write an
exact likelihood given a specification of a branching proc-
ess model, initial cell numbers, and experimentally
observed cell counts at one or more timepoints. However,
this method becomes impractical when used with more
than a few cells or one or two cell divisions, and is essen-
tially impossible to apply to experimental situations
which involve typically tens of thousands of cells. We pro-
pose a solution to this problem with the use of a Quasi-
Likelihood estimation method. This requires only the first
two moments of the probability distribution of the total
numbers of cells in each generation – that is, their expec-
tation values and their variance-covariance matrix. We
will show that this key simplification allows the model
parameters to be inferred from CFSE information.

Results
In Section 1 we describe the theory underlying the param-
eter estimation and in Section 2 we validate it using syn-
thetic datasets. In Section 3 we describe how to deal with
statistical issues that may arise with the application of the
method to experimental data, and illustrate this with an
analysis of data from an in vitro T cell proliferation exper-
iment.

1. Cell kinetics as a branching process
Calculating the probability distribution of cell counts
To apply a maximum likelihood method to estimate
parameters of a stochastic model of cell division and
death from CFSE data, we need to characterise the proba-
bility distribution of cell counts predicted by the model.
In this section we outline this calculation for a general

branching process model in discrete time, or a Galton-
Watson process [23].

In these models, during each timestep a cell can do one of
the following: divide, with probability γ; survive without
dividing, with probability δ; or die, with probability 1 - γ
- δ (Figure 1). A particular model of the kinetics of a cell
population specifies these probabilities, which in the sim-
plest case might be assumed to be constant. In general
they may depend on either the number of divisions the
cell has undergone (which we refer to as the generation
number), explicitly on time, or both. The key assumptions
are that all cells act independently, their offspring gener-
ate their own branching processes according to the same
rules, and that cells retain no memory of events in previ-
ous timesteps other than the total number of divisions
they have undergone.

The parameters of biological interest are usually γ and α
(the probabilities of division and death). However, in the
formalism we use here it proves simpler to work with the
quantities γ and δ (the probability of survival without

A simple branching process in discrete timeFigure 1
A simple branching process in discrete time. A sche-
matic representation of a branching process. The numbers in 
the circles denote the generation of the cell or the number 
of divisions it has undergone since being labeled with CFSE. 
We begin with a population of undivided cells at time 0. In 
each timestep, each cell divides with probability γ, survives 
without dividing with probability δ and dies with probability 
α = 1 - γ - δ. At a later timestep t, sorting cells according to 
their CFSE content allows the numbers of cells in each gen-
eration to be estimated. The formalism we describe in this 
paper allows us to calculate the moments of the probability 
distribution of these counts at one timestep given knowledge 
of the number of cells in each generation at an earlier time.
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division). The probability of death α can then be calcu-
lated from 1 - γ - δ. A particular branching process model
of cell division is specified by a choice of timestep, a start-
ing condition – the number of cells in each generation at
a given time, usually all in generation 0 – and a set of
parameters that determine the probabilities γi (t) and δi (t)
for each generation at each subsequent timestep.

Let the state of the cell population at timestep t be the vec-

tor , where the components  are

random variables that represent the number of live cells
that have divided i times. The maximum division number
n is chosen to be at the limit of detectability on a CFSE
profile, or the maximum division number of interest.
Given a model and a dataset consisting of the cell counts
in each generation at two or more timepoints, we wish to
estimate the model parameters. To do this we use the data
and the joint probability distribution of Zt at each time-

point to construct a likelihood. Maximising this with
respect to the model parameters and the timestep pro-
vides us with best-fit estimates.

We use a probability-generating function (pgf) approach,
described in detail in Methods, which allows us to calcu-
late the moments of the distribution of cell numbers in
each generation at one timestep given knowledge of their
numbers in the previous timestep. Derivatives of the pgf
are used to construct a transition matrix M which maps a
measured set of cell counts Zt to their expected values E

(Zt+1) at the following timestep. For stationary (time-inde-

pendent) parameters, we show in the Methods section
that given any set of initial cell counts

E (Zt|Z0) = Z0Mt,

where

and the entries in M are the probabilities of a cell in gen-
eration i dividing (γi) or surviving without dividing (δi),

and γi + δi ≤ 1. Typically an experiment begins with a pop-
ulation of undivided cells and so Z0 = (N0, 0, ..., 0).

This stochastic approach also provides the covariance
matrix of cell counts in each generation at time t, Vt, in
terms of Z0, the E (Zt) and M (see Methods). The frame-
work is easily extended to calculate the quantities E (Zt)
and Vt when the parameters governing cell kinetics are
also functions of time. In the analyses we present below,
we used Mathematica [24] to generate E (Zt) and Vt given
initial cell counts Z0 and a set of parameters that specify a
branching process model – i.e., how the probabilities γ
and δ vary with division and/or time.

This approach can also be applied to a qualitatively differ-
ent class of models, Markovian branching processes in
continuous time. In these models cells have exponentially
distributed lifetimes, at the end of which they either
divide or die. We describe this in Appendix 1. Indeed the
method we discuss in the following section applies to any
stochastic model which provides the quantities E (Zt) and
Vt given a set of initial cell counts Z0.

Parameter estimation using quasi-likelihood
In principle a likelihood can be computed exactly for any
branching process and a dataset. While this is feasible for
small cell populations or one or two divisions, with the
cell numbers encountered in most experimental situa-
tions this becomes intractable for combinatorical reasons
(see Appendix 2 for a discussion). As a solution, we take a
Quasi Likelihood (QL) approach which requires only the
first two moments of the cell counts [25]. QL yields con-
sistent parameter estimates, (that is, the estimates con-
verge to their true values for large sample sizes or large
numbers of cells) with minimal confidence intervals [26].
Given the large numbers of cells typically observed in
experiments, one might intuitively expect that by the cen-
tral limit theorem the distribution of cell counts might be
well specified by their means and covariances alone.

Let the model parameters be components of the vector β,
at let Y be the observed cell counts obtained from a CFSE
fluorescence profile at one time point. Let μ(β) = E (Zt)
and V (β) be respectively the expectation values and cov-
ariances of the cell counts at that timepoint, expressed as
functions of the parameters. Then the following (the
'quasi score function') has properties in common with the
derivative of a log-likelihood:

These properties are E (U) = 0, cov(U) = DT V-1D ≡ i (β)

and E (∂Ui (β)/∂βj) = -i (β). A QL estimator of β, β * is
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located at a zero of U. The system U (β) = 0 is a system of
r nonlinear equations for the r components of the maxi-

mum QL estimate of the parameter vector β*. We use an
iteratively re-weighted least squares (IRLS) algorithm, or a
quasi-Newton step using Fisher scoring (that is, using the
information matrix i as an approximation to the Hessian

of U) to search for β* given an initial guess ;

We find convergence with this algorithm is robust to the
choice of initial guess. To speed convergence, particularly
with complex models, we select an initial condition by
randomly generating a large sample of candidate parame-
ter vectors and choose the one that maximises the likeli-
hood as defined in the following section.

This estimation scheme is easily generalised to use a series
of CFSE profiles obtained at multiple timepoints. This
overcomes the intrinsic limitation of single CFSE time-
points, which can provide at most 8 or 9 data points, and
so increases our confidence in fitted models and ability to
discriminate between them. Suppose the experimental
data consists of cell counts Yt from independent experi-
ments at each of a set of timepoints labeled by the index
t, and we have a model that provides the corresponding
expected cell numbers μt and the covariances Vt. Since the
data at each timepoint are independent they can be used
additively to construct the score function. Then if Dt is the
matrix of derivatives of the expected values μt with respect
to the parameters β, equation (2) holds with

and

We can extend this further to deal with multiple popula-
tions present in unknown proportions, with different
kinetics. Take a model in which the total initial cell num-
bers are known and are thought to comprise m distinct
subpopulations, present at initial (unknown) frequencies
p(i). Each subpopulation labelled by index i then has its

own expected cell numbers  and covariances . We

construct the quantities

and use these in the expressions above, with the parame-
ter vector β now including the independent unknowns
p(1), ..., p(m - 1).

The covariance matrix of the parameter estimates cov (β*)
is asymptotically the inverse of the information matrix i
(β). Since U is (asymptotically) the derivative of a log like-
lihood, i-1 (β) is an estimate of the curvature of the log
likelihood surface in parameter space. This provides con-
fidence intervals directly if we assume no error in the cell
counts Yt – that is, if all uncertainty in our parameter esti-
mates comes from the underlying stochasticity of cell
behaviour expressed by the model. These confidence
intervals are typically rather small given the large numbers
of cells usually observed in proliferation assays.

We also note that when the observations are generated by
a true branching process the weighting to datapoints pro-
vided by the covariance structure is not required for gen-
erating point estimates of parameters, since the fitting
procedure is essentially a minimisation of a sum of
squared residuals, each of which is non-negative and is
strictly zero (along with the score function) at the QL esti-
mate of the parameters. The covariance structure is impor-
tant, however, for the correct estimation of confidence
intervals on branching process parameters using the infor-
mation matrix, and for model discrimination using likeli-
hood ratio tests (see below).

A Mathematica notebook which implements the calcula-
tion of the mean and covariances of the cell counts, the
generation of the initial parameter estimate and the QL
estimation procedure is available on request from the
authors (AY and CC).

Model comparison
Typically there may be several candidate branching proc-
ess models that might describe the biology and we want
to assess the relative support for each. Again, assuming no
measurement error in the observed cell counts Yt, the
usual procedure for comparing two nested models A and
B, A with n additional parameters is to use the residual
deviance [25], defined as twice the difference between the
maximum achievable log likelihood given the data and
the log likelihood at the QL estimate of the parameters -

D (Y; μ) = 2 L (Y; Y) - 2 L (Y; μ),

where L (Y; μ) is the logarithm of the likelihood of a
model with expected cell counts μ generating the observa-
tions Y. The quantity DA – DB for models A and B is asymp-
totically χ2-distributed with n degrees of freedom. This is
the standard likelihood ratio test.
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The obvious approach would be to integrate the score
function U (β) (eqn. (1)) to obtain an estimate of L. How-
ever, U (β) cannot be expressed as the gradient of a scalar
function, and so the quasi-log likelihood is not uniquely
specified by the parameters (see refs. [25,27] for a discus-
sion). Instead, to compare models we propose using a log
likelihood based on the generalised Pearson statistic for
correlated measurements [28], which is simply the resid-
ual sum of squares weighted by the predicted covariances:

The sum is over each independent timepoint and the

expectation values μt and covariance matrices Vt are evalu-

ated at the QL parameter estimates. We note that the
derivative of this quantity with respect to the parameters
is the score function (1) if we neglect the terms propor-
tional to the derivative of the covariance matrix with
respect to the parameters. These terms are second order in
the difference between the data and the QL prediction
provided by the model. We then calculate a 'surrogate' log
likelihood  using the relation

This is essentially a multivariate normal approximation to
the true log likelihood.

To compare non-nested models, the simplest approach is
to compare the absolute values of likelihoods (see, for
example, [20]) or to use the Akaike Information Criterion.
This is necessary when comparing the fits with different
timesteps, of which there are usually a restricted set of dis-
crete choices; these are dictated by the maximum division
number observed at each timepoint, and the intervals
between these timepoints. It can also be used to compare
members of a family of models with the same number of
parameters – for example, when division or death proba-
bilities are assumed to change at a given, but unknown,
division number.

2. Validation of the method
Testing the validity of the QL estimator
A condition for consistency and normality of the QL esti-
mate β* is that cell numbers in all generations are large.
As a preliminary test of the method, and to confirm that
QL estimates are reliable when used with the numbers of
cells encountered in experimental situations, we used a

Monte Carlo procedure to examine the properties of the
estimator. We generated synthetic CFSE profiles with
repeated numerical simulations of branching processes
with three different models, each starting with 104 cells.
These cell numbers are lower than those typically used in
proliferation assays. The models are described in detail in
Figure 2 (also see table 1). In model 1, parameters change
after the first division; in model 2, the parameters change
after the first timestep, and in model 3 we include two
populations, one with division-dependent probabilities

X t t t
t

t t
2 1= − −−∑( ) ( ).Y V Yμμ μμ



 = − 1
2

2X (3)

= − − −−∑1
2

1( ) ( ).Y V Yt t t
t

t tμμ μμ (4)

Table 1: Parameter estimates with synthetic data. 

Model 1
Proportion of simulations within

Par True Mean (SD) 95% CI 99% CI

γ0 0.2 0.200 (0.003) 0.947 0.989
δ0 0.7 0.700 (0.002) 0.951 0.990
γ1 0.7 0.700 (0.006) 0.949 0.990
δ1 0.25 0.250 (0.007) 0.950 0.991

Model 2
Proportion of simulations within

Par True Mean (SD) 95% CI 99% CI

γ0 0.2 0.200 (0.002) 0.950 0.989
δ0 0.7 0.700 (0.003) 0.952 0.990
γ1 0.7 0.700 (0.005) 0.951 0.989
δ1 0.25 0.250 (0.004) 0.950 0.990

Model 3
Proportion of simulations within

Par True Mean (SD) 95% CI 99% CI

fA 0.1 0.101 (0.013) 0.953 0.987
0.15 0.150 (0.041) 0.943 0.984

0.70 0.706 (0.055) 0.951 0.981

0.70 0.699 (0.020) 0.951 0.990

0.20 0.200 (0.035) 0.942 0.981

γB 0.40 0.400 (0.003) 0.955 0.992
δB 0.35 0.350 (0.003) 0.946 0.983

For each of the models illustrated in Figure 2 we show the true 
parameter values and the mean and standard deviation of the QL 
parameter estimates generated from 10000 simulated datasets.  As a 
check of the validity of the assumption of normality of the QL 
estimators, we indicate the proportion of the simulations in which the 
true parameters lay within the predicted 95 and 99% confidence 
intervals obtained from the information matrix evaluated at the QL 
estimate
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Validation of the quasi-likelihood estimation procedure with artificial datasetsFigure 2
Validation of the quasi-likelihood estimation procedure with artificial datasets. We generated simulated CFSE data-
sets using numerical realisations of three different branching processes models of cell kinetics, and tested our estimation pro-
cedure by using these datasets to estimate the model parameters. As in Figure 1, division probabilities are represented by γ, 
survival without division as δ, and death as α = 1 - γ - δ.Model 1 – division and death probabilities change after the first divi-
sion. Changes in parameters are indicated by different shading of cells. Model 2 – Probabilities of division and death change 
after one timestep. Model 3 – Resolving two subpopulations. We generated artificial CFSE profiles by adding the contributions 
from two branching processes – one with cell type A, in which division and death probabilities changed after first division, and 
one with cell type B, with constant probabilities of division and death. Type A cells were present at initial frequency fA. For 
each Model (1, 2, 3) we generated time series of simulated CFSE data sets by running three independent branching processes 
(each starting with 104 cells) and used the counts in each generation after 2, 4 and 6 timesteps as independent timepoints. This 
ensured that the data at each timestep were uncorrelated measurements and so would contribute additively to the log likeli-
hood. 104 replicate timeseries were generated for each model and used with the QL procedure to estimate the parameters.
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Quasi-likelihood estimation in the presence of noiseFigure 3
Quasi-likelihood estimation in the presence of noise. Synthetic CFSE datasets were generated with branching process 
Model 1, in which probabilities of division and death change after the first division; parameter values were γ0 = 0.1, γ1+ = 0.6, α0 
= 0.05, α1+ = 0.2, starting with 106 cells. QL estimation was used to identify all four best-fit parameter values from a single time-
point – the counts in generations 0–6 observed after 6 timesteps – as increasing levels of Gaussian noise were added either to 
the counts in each generation (open circles) or the total cell counts, keeping the proportions of cells in each generation con-
stant (filled circles). Noise level σ indicates that the cell counts (or total numbers) were multiplied by a factor (1 + ε) where ε 
is a random number drawn from N (0, σ2)). We show the mean and standard deviation of 100 simulations. Dotted horizontal 
lines indicated the true values of the parameters.
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of division and death, and the other with constant proba-
bilities. For each simulation we calculated the QL estimate
of the parameters and their associated confidence inter-
vals assuming asymptotic normality. We then calculated
the proportion of simulations in which the predicted con-
fidence intervals contained the true value of each parame-
ter. The close agreement of true and estimated parameters
and the accuracy of the predicted 95% and 99% confi-
dence intervals validates our use of QL to estimate param-
eters with large populations of cells.

Validation of the method in the presence of measurement noise
As a more stringent test we examined how well the QL
method could recover branching process parameters in
the presence of measurement error (Figure 3). Using
model 1 (in which division and death probabilities per
timestep changed after the first division) we again used
simulated branching processes to generate multiple reali-
sations of a single CFSE timepoint, comprising the cell
numbers in 6 generations after 5 timesteps. We then
added Gaussian noise of varying amplitudes to (i) the cell
counts in each generation (Figure 3, open circles), or (ii)
the total cell count (filled circles), preserving the propor-
tions of the population in each generation. The latter sce-
nario is commonly encountered in in vivo studies in which
recovered cell numbers may be subject to significant
uncertainty but the frequencies of cells in each CFSE peak
may show little variation between experiments.

We make three simple observations here. First, the uncer-
tainty in parameters scales approximately linearly with the
amplitude of the noise, and a given fractional uncertainty
σ in cell counts translates into a comparable fractional
uncertainty in parameter estimates. Second, the division
probabilities strongly in fluence the shape of the CFSE
profile and so in general are estimated more accurately
when total counts are subject to noise than when cell
counts in each generation are subject to independent
error. Third, the division and death probabilities that
apply to more CFSE peaks or measurements (in this exam-
ple, γ1+ and α1+, which determine the division and death
probabilities for all cells in generations 1 and above) can
be estimated more accurately than those constrained by
fewer measurements (here, γ0 and α0 for undivided cells).
This effect is again more pronounced when the propor-
tions of cells in each generation are known more accu-
rately than the total numbers.

Relation of parameters to more complex models
As described in the introduction, the branching process is
perhaps a minimal description of cell kinetics. To investi-
gate how and under what conditions its parameters can be
related to those of more detailed models, we used syn-
thetic CFSE datasets generated with the homogeneous
Smith-Martin model. In this model cells spend exponen-

tially distributed times in the A-phase (G0/G1), with
mean 1/λ. Cells triggered to divide then transit through a
B-phase (S/G2/M) with duration Δ before generating two
daughter cells and returning to the A-phase. We assume
death is independent of division and occurs at rate μ in
both A-or B-phases. In Figure 4 we show that the QL pro-
cedure identifies a homogeneous model as the best
description of the data.

The parameters in the branching process (BP) and Smith-
Martin (SM) models can be related with some approxima-
tions. In this instance of the SM model the probability of
a cell dying during a finite interval τ, the branching proc-
ess parameter α, is independent of the cell being in the A
or B phase and so we predict that the QL estimate α
should be given by

α = 1 – e-μτ. (5)

To divide during an interval τ, a cell must complete a B-
phase during that interval. If Δ <τ < 2 Δ, the expected pro-
portion of cells to divide and survive is approximately

We tested the validity of the approximations (5) and (6)
by fitting BP models to a series of datasets generated by
varying the division rate λ in the SM model. For each we
compared the quasi-likelihood estimates of the BP param-
eters γ and α with their approximations. The results are
shown in Figure 5.

The QL procedure identifies the homogeneous model cor-
rectly and the estimated death probability α agrees closely
with the predicted value for all division rates. The QL esti-
mate of division probability γ agrees well with the pre-
dicted value (6) when the SM division rate λ is low, but
the two diverge as λ increases. The discrete time process
does not specify the true (continuous) distribution of
interdivision times, but instead 'coarse-grains' this distri-
bution by allowing division at any time within each
timestep. For constant probabilities of division and death,
this generates a geometric distribution in discrete time,
such that (in the absence of cell death) the probability
that a given cell observed since t = 0 divides during the
interval t' = nτ and t = (n + 1) τ is P (n) = γ (1 - γ)n; while
for the SM model with constant parameters the probabil-
ity density for the interdivision time t, P (t), is exponential
with a delay, or P (t) = 0 for 0 ≤ t ≤ Δ and P (t) = λ exp (-λ
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Using branching processes to describe data generated with the Smith-Martin model of cell kineticsFigure 4
Using branching processes to describe data generated with the Smith-Martin model of cell kinetics. Fitting dis-
crete-time branching process (BP) models to a dataset generated with the homogeneous Smith-Martin (SM) model. The data-
set comprise 104 cells in the A phase at time zero, and the total numbers in each generation (i.e. in both A and B phases) at 
days 2 and 4. We used SM parameter values λ = 0.5, Δ = 1/3 day (8 hours) and μ = 0.1. Two choices of uniform timestep gave 
reasonable fits – 12 hours (upper panels) and 16 hours (lower panels). We fitted several branching process models for all 
choices of timestep and in each case the best fit was a homogeneous model with constant probabilities of division and death. 
The 16 hour timestep gave the best fit (log likelihood (12h timestep) =426; -log likelihood (16h timestep) = 112), with γ = 
0.239 and α = 0.064 being the estimated probabilities of division and death in each 16 h time interval respectively.
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(t - Δ)) for t > Δ. These distributions converge for t = nτ
when division rates are low; that is, when the timestep τ is
smaller than the average time spent in the A-phase (τ <<
1/λ) and when the average time spent in the A-phase is
much longer than the B-phase (11/λ >> Δ).

3. Dealing with experimental CFSE data
An important issue when quantifying the dynamics of
CFSE-labeled cells is assessing our confidence in the
observed cell counts Yt. In this section we discuss how to
deal with various sources of uncertainty in the cell counts
and how these impact on model fitting and comparison.
Another significant source of disagreement between
model and observations, of course, is that the underlying
model may not represent the biology well. With this in
mind, what we discuss here applies not only to the dis-
crete time branching models we describe here but also to
any stochastic model of cell division that can be used to
provide likelihood-based parameter estimates.

Uncertainties in the assignment of cells to generations from CFSE 
profiles
The process of assigning a division number to cells in a
CFSE profile can be a significant source of error, particu-
larly if the peaks corresponding to cells in one generation

are ill-defined. The distributions of neighbouring peaks
usually overlap significantly, and cells in the tails of these
distributions may be mis-assigned to neighbouring gener-
ations. Further, the factor difference in median fluores-
cence intensity of adjacent peaks is typically not exactly 2,
and this error can amount to uncertainties of as much as
a whole division for cells that have divided multiple
times. This is particularly noticeable in CFSE profiles
which contain distinct subpopulations of cells separated
by several divisions and with few cells to mark the loca-
tion of intermediate generations. In many circumstances,
then, the 'gating' or assignment of cells to different divi-
sions is itself a process of inference.

We used a standard algorithm to perform this, based on
the Expectation-Maximisation (EM) algorithm [29]. EM is
a bounded optimisation technique for the computation
of maximum likelihoods typically used in incomplete-
data problems. CFSE histograms generated in experiments
(i.e., the plot of event counts against the logarithm of flu-
orescence intensity) can usually be approximated well by
normal mixtures (i.e. a superposition of Gaussian distri-
butions) and estimating the parameters for such a normal
mixture is a standard application of the EM algorithm. In
practice, we find that the algorithm works well only if we
provide good initial conditions for the modes (maxima)
of each normal component in the mixture, as well as some
constraint on the variance of each component. Initial
locations for modes are found by first specifying the data
range which contains 99% of the total events, then calcu-
lating the offset (alignment of entire fit) and stride (the
average fold reduction in fluorescent intensity between
peaks) that produce the average largest event count. This
works well because the inter-peak distances for CFSE pro-
files tend to be similar, as we would expect if CFSE is
equally distributed between daughter cells. As a result, the
initial modes are regularly spaced; however, the EM algo-
rithm is then free to adjust the modes to produce the best
fit. We heuristically set a constraint such that the variance
of each component is less than or equal to that of the
component with the tallest peak. Counts are then esti-
mated using the relative area under each normal compo-
nent scaled by the total number of cells.

We propose that the uncertainty in the assignment of cells
to divisions can be used with a Monte Carlo procedure to
assign confidence intervals to maximum-likelihood
model parameter estimates from a single CFSE dataset.
The method is as follows.

1. Use the EM method to identify a maximum-likelihood
set of log-normal profiles from a raw CFSE profile con-
taining N0 cells. We refer to the resulting set of counts of
cells in each generation as Y(0), where the sum of the ele-
ments of Y(0) equals N0.

Relating parameters in branching process and Smith-Martin modelsFigure 5
Relating parameters in branching process and Smith-
Martin models. Synthetic CFSE datasets were generated 
using the homogeneous Smith-Martin model with different 
division rates λ and μ = 0.2 day-1 and Δ = 12 hours. Each 
dataset contained the cell numbers in each generation at days 
2 and 4. Branching process (BP) models were fitted to each. 
In all cases the best fit was provided by a homogeneous 
branching process with a timestep of 16 hours, as measured 
by the absolute value of the log likelihood. The QL estimates 
of the division probabilities γ are shown as diamonds, and the 
death probabilities α as triangles. Predicted values using the 
approximations – eqns (5) and (6) – are shown as solid lines.
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2. Using Y(0) and a model characterised by a set of param-
eters β, calculate a best-fit (QL) set of parameter estimates
β0.

3. Generate P artificial CFSE profiles, as follows. For each

generation or peak k in the original profile, draw  ran-

dom numbers from the log-normal probability distribu-
tion used to fit that peak. This generates a population of
N0 cells with fluorescent intensities drawn from the pre-

dicted distributions. Use this to re-estimate the numbers
of cells in each division using the EM method. Repeat this
P times. This generates a set of new, artificial CFSE fluores-
cence profiles (Y(1), Y(2), ..., Y(P)) derived from the original
counts Y(0).

4. For each artificial dataset Y(i) calculate a parameter set
estimate βi.

5. We now have P samples from a probability distribution
of parameter estimates representing our uncertainty in the
assignment of division numbers to cells in the original
CFSE profile. Calculate confidence limits on β0 from this
distribution.

As noted above, if the procedure provides estimates of the
division and quiescence probabilities γ and δ, probabili-
ties of death α can be calculated using α = 1 - γ - δ. It is
then straightforward to calculate confidence intervals on
α given the distribution of estimates of γ and δ.

We also note that each estimate βi comes with its own con-
fidence limits, stemming from the stochasticity of the
branching process. We thus have at least two independent
sources of uncertainty in parameters – one that stems
from the uncertainty in the assignment of cells to different
generations, which we estimate with the Monte Carlo pro-
cedure above; and the other from the underlying stochas-
ticity of the branching processes – that is the range of
parameter values that could reasonably (i.e. with some
significant probability) have generated each of the data-
sets (Y(0), Y(1), ..., Y(P)).

This procedure assumes high levels of confidence in the
measured total cell numbers. If only a single experimental
replicate is available, one may have little a priori knowl-
edge of the uncertainty in total cell counts and its effect on
parameter estimates. This may be significant in in vitro
experiments, but is particularly important when tracking
CFSE-labeled cells in vivo. For example, if labeled cells are
transferred to an animal and recovered blood and/or lym-
phoid tissues at a later timepoint, there may be both loss
of cells in the recovery procedure as well as uncertainties
in the number transferred successfully (e.g. the initial

'take' after intravenous transfer). We suggest that in the
absence of experimental replicates, one approach to this
problem is to make a heuristic estimate of the error in
total counts, and then apply noise at this level to the total
cell counts in the Monte Carlo procedure described above.
We describe this in the example that follows.

Application to an experimental dataset
To illustrate our method of estimation with branching
processes, we apply it to an experimental CFSE dataset
(Figure 6). We modeled the response of a polyclonal pop-
ulation of CD8+ T cells to stimulation in vitro with anti-
CD3 and and anti-CD28 antibodies, in the presence of IL-
2 (a growth factor). CFSE profiles from independent cul-
tures were obtained at days 1–4. Little cell death or divi-
sion was observed in the first 24 h so the 24 h timepoint
was taken as the initial condition. The majority of T cells
were expected to respond to this stimulus and so we mod-
eled the system as a single population with division or
death parameters varying (possibly) with time and/or
generation number.

We fitted a variety of models to this data, allowing param-
eters to vary with time and/or division. The optimal
timestep for all models (as measured by the absolute
value of the likelihood) was 12 h, and assuming no divi-
sions took place before 36 h. A reasonable fit was
obtained with a four-parameter model that allowed undi-
vided cells (generation 0) and divided cells (generations
1+) to have distinct probabilities of division and death; an
extension to six parameters allowed different division and
death probabilities in generations 0, 1–3 and 4+. The
extended model gave a significantly better fit (χ2 test on
the difference in log likelihoods, on 2 degrees of freedom,
p < 10-6). The best fit using the six-parameter model and
the corresponding parameter estimates are shown in Fig-
ure 6 and Table 2.

These results suggest slow recruitment of undivided cells
into division after 36 hours, with a significant probability
of apoptosis in the undivided population. Cells that have
divided once divide again with approximately 40% prob-
ability in each 12 h interval, with increased susceptibility
to apoptosis; division slows significantly in the fourth
generation. Thus the method identifies the slow first divi-
sion commonly observed in T cell proliferation assays; it
also suggests that cells dividing rapidly have an associated
high probability of death.

We quote confidence intervals on the parameter estimates
using (i) the asymptotic properties of the QL estimator;
(ii) the Monte Carlo (MC) method, taking into account
the uncertainty of assigning cells to CFSE peaks, and (iii)
the more conservative MC method, applying an addi-
tional estimate of measurement error (5% Gaussian noise

Yk
( )0
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applied to total cell numbers) to each of the MC repli-
cates. We note that the parameters governing the 4th divi-
sion are not well constrained as their estimation depends
on the single measurement of the cell counts in genera-
tion 5 at 96 h.

Comparing models using estimation of measurement error
An alternative approach with single experimental datasets
is to incorporate a contribution Λ to the covariance matri-
ces Vt which represents the combined effects of our uncer-
tainty in the assignment of generation numbers to cells
and in total cell counts. The noise is then described by
parameters to be estimated directly, and can be consid-
ered in the comparison of the fit of different models. Per-
haps the simplest reasonable form for Λ is

where the next-to-diagonal elements ρ represent the mis-
assignment between generations, and the diagonal ele-
ments σ represent the combination of misassignment and
error in total cell counts, if any. The matrix Λ may also be
expected to vary between timepoints (Λ = Λt). We refer to
the parameters that characterize these matrices collec-
tively as η.

We cannot apply our QL procedure as it stands to estimate
these additional parameters, since they do not appear in

the expressions for the expected values of cell counts.
Instead, we suggest that the entire parameter set (β, η)
might be estimated by direct maximisation of a full mul-
tivariate normal approximation to the log likelihood,

where now the sum is over all timepoints t and over all
replicates (Monte Carlo or experimental), i.

This quantity can be used directly for model comparison,
either with likelihood ratio tests or information criteria
statistics such as the AIC [30], although obtaining the esti-
mate of  by numerical maximisation of (7) may be dif-
ficult for complex models. This has the flavour of a mixed-
effects approach [31,32] in which the original 'fixed'

effects represented by the quantities μt (β) and Vt (β) are

augmented by the 'random' effects Λ. The parallel remains
to be explored further, however, as in our case random
effects are represented at the level of the variance in the

predicted response μ rather than in the underlying param-

eters β as in standard mixed-effects models. The estima-
tion of additional parameters in the variance function has
previously been discussed as an extension to the quasi-
likelihood method [33], but the non-integrability of the

ΛΛ =

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

σ ρ
ρ σ ρ

ρ
σ ρ
ρ σ

0

0 ,

( , ) log det ( ( ) ( ))

( ) ( ( ) (

,

( )

ββ ηη ββ ηη

μμ ββ ββ

= − + +

−( ) +

∑1
2 t i t t

t
i

t t t

 V

Y V

ΛΛ

ΛΛ ηηηη μμ ββ)) ( ) ,( )− −( )1 Yt
i

t

(7)



Estimating parameters from T cell proliferation dataFigure 6
Estimating parameters from T cell proliferation data. The best fit of a heterogeneous discrete-time branching process 
model to a CFSE timecourse obtained by in vitro stimulation of 2.5 × 104 human CD8+ T cells with anti-CD3 and anti-CD28 in 
saturating quantities of IL-2. γ refers to division probability, α to death. Cells from independent cultures were recovered and 
analysed for CFSE content at 24 h intervals after stimulation. The histograms show total cell numbers in each generation (grey 
bars, observed counts obtained by the EM algorithm; black bars, predicted counts with best-fit branching process model). The 
best fit model gave a timestep of 12 h and indicated that division (γ) and death (α) probabilities changed with generation 
number (Table 2).
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score function that we note above prevents the use of this
formalism directly.

Estimation of timestep
A natural choice of timestep for single CFSE measure-
ments is provided by the number of divisions observed
during the experiment. That is, if it is clear that cells have
undergone at most n divisions times over a time t, this
suggests a timestep of t/n.

The timesteps are not required to be of equal length,
although dividing the duration of the experiment into
equal intervals provides the most intuitive interpretation
of the probabilities of division and death per time-step as
'rates' for these processes. The method we use here is to
generate a discrete set of candidate timesteps that are con-
sistent with the number of significant peaks observed at
each timepoint in a CFSE dataset, and simply search sys-
tematically for the combination of model and timestep
that maximises the (quasi-) likelihood.

For some choices of timestep, however, the model may
predict peaks that are not observed experimentally. For
example, cells that have divided more than 8–9 times
become CFSE-negative and rates of division may be
underestimated by neglecting them. Peaks at the extremes
of the CFSE profile may also be difficult to resolve. A par-
ticular choice of timestep might predict an additional
small population of cells beyond the highest observed
division number, or that some cells may have divided
beyond the limits of CFSE detectability; if this timestep
otherwise appears to provide a good description of the
data, one might wish to include it in the set of candidates.
In this case, we propose another use of the EM method to
reconstruct this 'missing' data and generate an appropriate
estimate of the likelihood. To take an example, suppose a
model predicts that n + 1 divisions should be observed at
time t but that we can only confidently identify cells in
generations 0-n. Choose a timestep of t/(n + 1) and use the
following iterative procedure to estimate parameters:

1. Start with a dataset that contains zero cells in genera-
tion n + 1.

2. Generate QL parameter estimates using this dataset.

3. Calculate the expected numbers of cells in the 'missing'
peak using these parameter values and construct a new
dataset with this number of cells in generation n + 1.

4. Repeat steps 2 and 3 until parameter estimates con-
verge.

Discussion
In this paper we have presented a method for fitting and
comparing classical branching process models of cell divi-
sion and death to data from CFSE labeling experiments.
All parameters of this class of models can be estimated
from CFSE data alone. To do this, we take a Quasi-Likeli-
hood approach, overcoming the problem of non-comput-
ability of the exact likelihood. Further, by modeling
explicitly the different sources of uncertainty in present in
CFSE data, the methods we describe here can improve on
existing approaches to estimating parameters, which use
least squares fitting with the assumption that cell counts
in each generation are subject to errors of constant vari-
ance.

Many other approaches to modeling CFSE data character-
ise the continuous distribution of interdivision times
explicitly (exponential for simple ODE models, delayed
exponential for Smith-Martin models, lognormal for the
first division in the model used by Gett and Hodgkin). In
contrast, the discrete-time branching process models we
discuss here deal only with the average probabilities of
division or death during a finite time interval. While this
might be seen as a limitation, in many cases the true dis-
tribution of interdivision times may be unknown and the
discrete-time approach may provide more robust predic-
tions than with other models. The discrete timestep also
provides a lower bound on the time taken for a cell to
divide without modeling transit through the cell cycle
explicitly, and the parameters of these models are identi-
fiable given sufficient CFSE data. We suggest that the
branching process approach is particularly suitable for
analysis of data in which prior information regarding divi-
sion kinetics is limited, as well as providing a method of
dealing simultaneously with stochastic fluctuations and
measurement errors.

Differences in the expected cell counts predicted by any
model and the data, assuming the model is a faithful rep-
resentation of the cell dynamics, stem from (1) the contri-
butions of stochastic fluctuations (if any) from the model
and (2) other forms of experimental noise. In the limit
where the contribution of (2) overwhelms that from (1),
we suggest the Monte Carlo method described here can be
used to estimate confidence intervals on model parame-
ters, and that any covariance structure predicted by the
stochastic model can reasonably be neglected and only
the expectation values need be used. In this case, proper
model comparison using the likelihood, which explicitly
contains the weightings (variances) associated with each
CFSE peak, becomes very dependent on reasonable esti-
mates being obtained for these weights. These are best
estimated simply and empirically with replicate datasets.
On the other hand, if cell numbers are small and and
measurement errors are smaller than or comparable to
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fluctuations, or when only a single replicate is available,
the covariance structure is important as a basis for infer-
ence.

By using knowledge of initial cell numbers and total cell
counts at subsequent timepoints, models applied to CFSE
data allow the estimation of death rates (averaged over all
phases of the cell cycle) without the requirement of an
assay for dead cells. This is particularly useful as dead cells
do not persist in culture for long, and are particularly dif-
ficult to identify in vivo, so direct estimates of their num-
bers are error-prone. However, a limitation of all current
methods of estimating death rates from CFSE alone is that
cells may remain CFSE-positive for a short time after death
and be counted as live. To improve the reliability of these
estimates, for example, cells can be co-stained with Pro-
pidium Iodide to exclude those whose DNA content has
been degraded.

We note that the moment-based QL estimation procedure
can be applied to any stochastic model of cell dynamics
which provides a covariance structure, and is not restricted
to branching processes. We also emphasise that the Monte
Carlo procedure for quantifying errors in the counts
derived from CFSE fluorescence profiles can be applied
directly to parameter estimation with deterministic mod-
els. Whatever description of the dynamics is used, treating
the different sources of uncertainty in cell population data
in the way we describe here allows us to more carefully
test and discriminate between models of cell dynamics.

Methods
Detailed derivation of the moments of the distribution of 
cell counts
Here we show the calculation of moments of the probabil-
ity distribution of the cell counts Zt for a stationary
branching process, one in which the probabilities δi and γi
are independent of time. We use a probability-generating
function (pgf) approach.

To illustrate the use of a pgf, first consider a very simple
(single-type) branching process in discrete time, which
models the total number of cells in a population that is
dividing and dying stochastically, and does not distin-
guish cells by generation. In each timestep every cell can
do one of three things: divide, die or survive without
dividing. These possibilities can be represented with the
following pgf,

where pi is the probability that a cell will provide i off-
spring in the next generation and s is a dummy variable.
That is, a cell divides with probability p2 = γ to produce
two cells; survives without dividing (that is, provides one
'offspring') with probability p1 = δ; and dies with probabil-
ity p0 = 1 - γ - δ. The pgf enumerates all the possible out-
comes after one timestep, and this is contained in the
property f (1) = 1, or ∑pi = 1.

Let Zt be a random variable representing the total number
of cells alive after t timesteps starting from a single cell at
time 0. The moments of the probability distribution of Zt
can be calculated from the pgf -

and
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Table 2: Parameter estimates for the best fit description of the T cell proliferation data. 

95% confidence intervals

Parameter QL estimate From QL alone Monte Carlo with EM Monte Carlo with EM + 5% 
noise

γ0 0.221 (0.211, 0.230) (0.203, 0.339) (0.181, 0.345)
α0 0.232 (0.222, 0.242) (0.175, 0.253) (0.163, 0.283)
γ1–3 0.419 (0.409, 0.430) (0.365, 0.443) (0.356, 0.444)
α1–3 0.427 (0.412, 0.442) (0.379, 0.582) (0.348, 0.595)
γ4 0.086 (0.077, 0.096) (0.067, 0.679) (0.063, 0.478)
α4 0.340 (0.244, 0.437) (0.027, 0.691) (0.094, 0.731)

Subscripts on the QL estimates of parameters refer to generation numbers – e.g., γ1–3 is the division probability in each 12 h timestep for cells in 
generations 1–3. We show the 95% confidence intervals obtained (i) using the asymptotic normality of the QL estimator, assuming no uncertainty 
in cell counts, (ii) by generating Monte Carlo (MC) samples from the original CFSE profiles using the EM method as described in the text, and (iii) 
using the MC method but also adding 5% noise to total counts as an estimate of error in the estimation of total cell counts.
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Higher moments follow in a similar way, with higher-
order derivatives of the pgf. After t timesteps, it is straight-
forward to show that the expected cell counts are obtained
by iterating the pgf t times [23]:

with a similar expression to eqn. (10) for the variance, and
where f(t) (s) is f iterated t times (that is, f(t) (s) = f (f(t - 1) (s))
= f (f (f(t - 2) (s))), etc.)

This models the total number of cells in the population.
To keep track of the numbers of cells in each division we
need to extend this procedure to a multi-type branching
process in which a cell's 'type' or 'generation' is the
number of divisions it has undergone, with undivided
cells in generation 0. To calculate the probability distribu-
tion of cells in each generation after t timesteps requires a
pgf that accounts for the type-label now associated with
each cell and the probabilities of transition between types
or generations. To do this, the pgf and the dummy varia-
ble s become vector-valued quantities with number of
components equal to the number of cell types – in our
case, the number of divisions we wish to follow using
CFSE. In addition, this allows us to specify different prob-
abilities of division and death for cells in different gener-
ations.

Define a pgf f (s), where s = (s0, s1, ..., sn) is a vector of
dummy variables and f (1) = 1, where 1 is the n + 1 com-
ponent vector (1, 1, ..., 1). By analogy with eqn. (8), the
ith component of f details the events that can occur to one
cell in generation i in one timestep; namely, remain in
that generation with probability δi; divide to give two cells
in generation i + 1 with probability γi; or die with proba-
bility 1 - δi - γi. By analogy with eqn. (11), this pgf satisfies
the following; the quantity ∂fi/∂sj evaluated at s = 1 gives
the expected number of offspring in generation j from one
cell in generation i, after one timestep. That is,

For example, taking the first entry in f, f0, in one timestep
a cell in generation 0 produces an expected number of
cells in generation 1 of ∂f0/∂s1 = 2 γ0, and an expected
number of cells in generation 0 of ∂f0/∂s0 = δ0 (all deriva-
tives evaluated at s = 1). Notice that we assume that cells
in generation n simply die or divide further with probabil-
ity 1 - δn. This would correspond, for example, to cells

dividing beyond the range of generations of experimental
interest, or to their CFSE fluorescence intensity becoming
so low that they become indistiguishable from the CFSE-
negative population in the culture – typically after 8 or 9
divisions.

Given an initial state of one cell in generation i, Z0 = ei =
(0, ..., 1, ..., 0), the expectation values of the cell counts
after one timestep are given by

where using (12)

The branching process we describe here is 'memoryless' or
a discrete-time Markov process with live cells making
probabilistic transitions between the n + 1 possible states
or generations. The matrix M is related to the transition
matrix of this Markov process, but includes not only the
transition probabilities per timestep for cells in different
generations, but also the expansion in population size
associated with division (transition from generation i to i
+ 1). In other words, it maps the cell counts at one
timestep to their expected values at the following
timestep. Note that we do not include dead cells as a state
here – an advantage of our approach is we do not require
assays for dead cells, and so do not include them as an
observable in our models.

M can be used straightforwardly to calculate the expected
cell counts at any timestep. To illustrate, consider an ini-
tial state Z0 = (c0, c1, ... cn) where ci is the number of cells
in generation i at the beginning of the experiment. Typi-
cally, in an experiment beginning with N CFSE-labeled
cells, Z0 = (N, 0, 0, ..., 0). The expected number of cells in
generation j after one timestep can be obtained by sum-
ming the expected numbers resulting from the branching
process initiated by each cell;

or in more compact (matrix multiplication) notation
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E (Z1/Z0) = Z0 M.

After t timesteps, the expectation values and higher
moments of the cell counts in each generation can be cal-
culated from the pgf f(t) (s) (eqn. (12)) using the recursive
definition [23]

f(t) (s) = f (f (t - 1) (s))

As a consistency check, each component of the pgf at time

t must satisfy the property  (s = 1) = 1. Since f (1) = 1

from the definition (12), it follows from (14) that f(t) (1)
= 1 as required.

This definition of f(t) allows repeated application of the
chain rule to calculate the expectation values of cell counts
after t timesteps given any starting state Z0. For example,
after two timesteps,

By simple extension, expected cell counts at later time-
points can be calculated with repeated matrix multiplica-
tion using M -

E (Zt/Z0) = Z0 Mt.

The covariances of cell counts in each generation, and
higher moments, can be calculated in a similar way. Our
method requires the first two moments, and so we wish to
calculate Vt, the covariance matrix of cell counts in each
generation after t timesteps given initial cell counts Z0, or

As illustrated in eqn. (10), this can be calculated from
derivatives of the pgf. For instance, given one cell in gen-
eration k (that is, Z0 = ek), after one timestep

and

At later timepoints these quantities can be calculated,
again using the recursive definition of the pgf (eqn. (14))
[23]

where MT is the transpose of M and the n + 1 matrices vk

are the covariance matrices for one timestep for one cell

beginning in state Zk = ek, calculated from the pgf  –

that is, the off-diagonal elements of vk are given by eqn.

(16), and the diagonal elements by eqn. (17). For exam-
ple,

For a general initial state Z0 = (c0, c1, ..., cn), the assump-
tion of independence of the branching processes initiated
by each cell gives V1 = ∑icivi. Again, a typical CFSE experi-
ment might start with N cells in generation 0, yielding V1
= N v0.

This framework makes it straightforward to include time-
varying probabilities of division and quiescence – that is,
γi (t) and δi (t). Essentially, the pgf and hence the matrices
M and vi become time dependent. Let Mt be the transition
matrix that maps cell counts at timestep t to their expected
values at time t + 1, as in eqn. (13) but now using the
parameters γi (t) and δi (t); and let vi, t be the covariance
matrix of the cell counts generated in one timestep by a
single cell in generation i at time t. Equations (15) and
(18) then become
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Appendices
1. The Continuous-Time Analogue
The continuous-time analogue of a Galton-Watson proc-
ess is the Markov age dependent process. This is character-
ised by cells having life spans that are exponentially
distributed random variables with parameter λ [21]. This
is conceptually a quite different model of cell behaviour
to that described above. It can be compared to a limit of
the Smith-Martin model in which death can only occur
during the B phase (during which cells are actively divid-
ing) and the duration of this phase approaches zero. Thus,
for example, it may be a reasonable model for slow home-
ostatic division in which the average time spent in the cell
cycle is negligible compared to the time spent in quies-
cence.

For a single type this process is defined by the partial dif-
ferential equation:

with initial condition F (s, 0) = s. Here, F (s, t) is the 'proc-
ess' pgf, derivatives of which generate the moments of the
distribution of the total cell numbers at time t. For exam-
ple,

The quantity f (s) is a progeny pgf which dictates the dis-
tribution of offspring numbers. This can be generalized to
the multitype case where cells that have divided k times
are assigned a type-label k, where k = 0, 1, ..., η and η is

the highest generation number of interest or observable.
Denoting s as the vector of dummy variables sk i.e. s = (s0,
s1, ..., sη), each parental type k produces offspring accord-
ing to the progeny pgf fk (s). Here, a process started by a
cell of type k is described by a process pgf Fk (s, t) where
the lifetime of each individual of type k is exponentially
distributed with parameter λk. Denoting F, f and λ as vec-
tors containing the process and progeny pgfs in addition
to the λk for each type respectively, we obtain a system of
partial differential equations for a multitype continuous-
time branching process represented by the general equa-
tion

with initial conditions Fk (s, 0) = sk. We now demonstrate
the calculation of the expected number of cells and the
covariance matrix for such a process, where each type cor-
responds to a generation. We show the simplest example
in which all generations have identically distributed life-
times, i.e. λk = λ. At the end of its lifetime a cell either
divides or dies with probabilities γ or α = 1 - γ respectively.
We also set the maximum number of types η to be one
greater than the maximum number of divisions we wish
to model. Solution of our system is simplified by mode-
ling the normalized cell counts; the cell count for each
generation k is multiplied by 2-k. This can be interpreted
as following the probabilistic evolution of CFSE dye from
one generation to another. The progeny pgfs for each
parental type are therefore fk (s) = α + γ sk+1 for k <η and fη
(s) = α + γ sη for k = η. Denoting Fk = Fk (s, t) we therefore
obtain the following cascade system of PDEs:

for k <η and

for k = η. Using the integrating factor eλt this system of
equations can easily be solved by back substitution yield-
ing

Fη = 1 + e-λαt (sη - 1)

and for k <η
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If we start with one undivided cell at time zero the expec-
tation of the normalized cell count E (Nk) for generation
k is obtained by differentiating F0 with respect to sk and
subsequently setting all sk = 1. In this simple case the
derivatives of F0 do not include terms in sk and this last
step can be omitted.

From (19) we therefore obtain the expected normalized
cell counts

We obtain the expected cell counts E (Zk) by reversing the
normalization procedure, obtaining

The off-diagonal and diagonal terms of the covariance
matrix of the quantities Zk can be obtained from eqns.
(16) and (17) respectively. The second derivatives are zero
since, as noted above, the first derivatives of Fk do not con-
tain terms in sk, giving

and

For a two-generation model beginning with one cell in
generation zero we therefore obtain the covariance matrix

where θ = λ γ t. As before, given an initial state Z0 = (c0, c1,
..., cn) the covariance matrix at time t will be V(t) =
∑icivi(t). Further extension of this model can be achieved
through altering constraints on λ and γ. In the case of the
probability of division γ this parameter can either become
a function of generation k or a function of t. In the latter
case the system of equations may become inhomogene-
ous with respect to time and therefore its solution may
prove difficult. A much more general approach to contin-
uous-time models is the use of Bellman-Harris processes
where the distribution of lifetimes is not restricted to the
exponential. However, many such processes are non-
Markovian and so also become significantly harder to
analyse.

2. Computing an exact likelihood
The pgf allows us in principle to write down an exact like-
lihood for any given set of cell counts, using combina-
tions of its derivatives. To illustrate for a simple single-
type discrete-time branching process, after t timesteps the
pgf can be written

and so the probability of i cells surviving at this time given
a single cell at time 0 is

Starting with N cells a time 0, the probability of observing
M cells in total after t timesteps is then the quantity

where the sum is over all distinct combinations of the
integers qi (the counts resulting from each of the N

branching processes) that satisfy . It is clear

that computing this quantity rapidly becomes impractical
as the number of cells or the number of divisions
increases, even in this simple single-type example. To use
it with the multi-type branching processes we deal with
here is essentially impossible; hence the moment-based
approach we take in this paper.
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