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3.1 Preliminaries

In this paper we will consider the Neumann Boundary Value problem for the “sta-
tionary heat transfer" partial differential equation with variable coefficient in a two-
dimensional domain. This problem is reduced to some Boundary-Domain Integral
Equations (BDIEs). The BDIEs in the two-dimensional case have special properties
in comparison with the higher dimensions because of the logarithmic term in the
parametrix for the associated partial differential equation. Consequently we need to
set conditions on the domain or on the function spaces to insure invertibility of the
layer potentials and hence the unique solvability of the BDIEs. Equivalence of the
BDIEs to the original BVPs, BDIEs solvability, solution uniqueness/non unique-
ness, as well as Fredholm property and invertibility of the BDIE operator are anal-
ysed. It is shown that the BDIE operators for the Neumann BVP are not invertible,
and appropriate finite-dimensional perturbations are constructed leading to invert-
ibility of the perturbed operators.

Let Ω be an interior domain in R2 bounded by a smooth curve ∂Ω , and let n(x)
be the exterior unit normal vector defined on ∂Ω . The set of all infinitely differen-
tiable function on Ω with compact support is denoted by D(Ω). The function space
D ′(Ω) consists of all continuous linear functionals over D(Ω). The space Hs(R2),
s ∈ R, denotes the Bessel potential space. We define Hs(Ω) = {u ∈ D ′(Ω) : u =
U |Ω for some U ∈ Hs(R2)}. Note that H1(Ω) coincides with the Sobolev space
W 1

2 (Ω), with equivalent norms. The space H̃s(Ω) is the closure of D(Ω) with re-
spect to the norm of Hs(R2), and for s∈ (− 1

2 ,
1
2 ), the space Hs(Ω) can be identified

with H̃s(Ω), see e.g. [McL00].
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We shall consider the scalar elliptic differential equation

Au(x) =
2

∑
i=1

∂

∂xi

[
a(x)

∂u(x)
∂xi

]
= f (x) in Ω ,

where u is unknown function and f is a given function in Ω . We assume that a(x) ∈
C∞(R2), a(x)> c > 0.

From the well known theorem of Gauss and Ostrogradski, if h ∈C1
0(Ω), then∫

Ω

∂

∂xi
h(x)dx =

∫
∂Ω

γ
+h(x)ni(x)dsx, (i = 1,2) (3.1)

where, γ+h(x) is the interior boundary trace of h(x). By the trace theorem (see, e.g.,
[McL00, Theorem 3.29, 3.38]), the integral relation (3.1) holds for any h ∈ H1(Ω).

For u ∈ H2(Ω) and v ∈ H1(Ω) if we put h(x) = a(x) ∂u(x)
∂x j

v(x) and applying the
Gauss-Ostrogradski Theorem, we obtain the following Green’s first identity

E (u,v) =−
∫
Ω

(Au)(x)v(x)dx+
∫

∂Ω

T+u(x)γ+v(x)dsx, (3.2)

where E (u,v) :=
2

∑
i=1

∫
Ω

a(x)
∂u(x)

∂xi

∂v(x)
∂xi

dx is the symmetric bilinear form, and

T+u(x) :=
2

∑
i=1

ni(x)γ+
[

a(x)
∂

∂xi
u(x)

]
for x ∈ ∂Ω , (3.3)

is the interior conormal derivative. Thus holds the following Lemma.

Lemma 1. For u ∈ H2(Ω) and v ∈ H1(Ω), E (u,v) =−(Au,v)Ω +(T+u,γ+v)∂Ω .

Remark 1. For v ∈D(Ω), γ+v = 0. If u ∈H1(Ω), then we can define Au as a distri-
bution on Ω by, (Au,v) =−E (u,v) for v ∈D(Ω).

The subspace H1,0(Ω ;A) is defined as in [Cos88](see also, [Mik11])

H1,0(Ω ;A) := {g ∈ H1(Ω) : Ag ∈ L2(Ω)},

with the norm ‖g‖2
H1,0(Ω ;A) := ‖g‖2

H1(Ω)
+‖Ag‖2

L2(Ω).

For u ∈ H1(Ω) the classical conormal derivative (3.3) is not well defined, but
for u∈H1,0(Ω ;A), there exists the following continuous extension of this definition
hinted by the first Green identity (3.2) (see, e.g.,[Cos88, Mik11] and the references
therein).

Definition 1. For u∈H1,0(Ω ;A) the (canonical) co-normal derivative T+u∈H−
1
2 (∂Ω)

is defined in the following weak form,
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〈T+u,w〉Ω := E (u,γ+−1w)+
∫

Ω

(Au)γ+−1wdx for all w ∈ H
1
2 (∂Ω) (3.4)

where γ
+
−1 : H

1
2 (∂Ω)→H1(Ω) is a continuous right inverse of the interior trace op-

erator γ+, which maps H1(Ω)→ H
1
2 (∂Ω), while 〈·, ·〉∂Ω denote the duality brack-

ets between the spaces H−
1
2 (∂Ω) and H

1
2 (∂Ω), which extend the usual L2(∂Ω)

inner product.

Remark 2. The first Green identity (3.2) also holds for u ∈ H1,0(Ω ;A) and v ∈
H1(Ω) ([Cos88, Mik11]).

By interchanging the role of u and v in the first Green identity and subtracting the
result, we obtain the Green second identity for u,v ∈ H1,0(Ω ;A),∫

Ω

(vAu−uAv)dx = 〈T+u,γ+v〉∂Ω −〈T+v,γ+u〉∂Ω . (3.5)

We will consider the following Neumann boundary value problem: for ψ0 ∈
H−

1
2 (∂Ω), and f ∈ L2(Ω) find a function u ∈ H1(Ω) satisfying,

Au = f in Ω , (3.6)
T+u = ψ0 on ∂Ω . (3.7)

Here equation (3.6) is understood in distributional sense as in Remark 1, and equa-
tion (3.7) is understood in functional sense (3.4).

The following assertion is well known, cf. e.g. [Ste08, Theorem 4.9].

Theorem 1. The homogeneous problem corresponding to the BVP (3.6)-(3.7), ad-
mits solutions in H1(Ω) spanned by u0 = 1. The non-homogeneous problem (3.6)-
(3.7) is solvable if and only if

〈 f ,u0〉Ω −〈ψ0,γ
+u0〉∂Ω = 0. (3.8)

3.2 Parametrix-Based Potential Operators

Definition 2. A function P(x,y) is a parametrix (Levi function) for the operator A if

AxP(x,y) = δ (x− y)+R(x,y)

where δ is the Dirac-delta distribution, while R(x,y) is a remainder possessing at
most a weak singularity at x = y.

The parametrix and the corresponding remainder can be chosen as in [Mik02],

P(x,y) =
log |x− y|

2πa(y)
, R(x,y) =

2

∑
i=1

xi− yi

2πa(y)|x− y|2
∂a(x)

∂xi
, x,y ∈ R2.
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Similar to [Mik02, CMN09a], we define the parametrix-based Newtonian and
remained potential operators as

Pg(y) :=
∫
Ω

P(x,y)g(x)dx, Rg(y) :=
∫
Ω

R(x,y)g(x)dx.

The single and double layer potential operators corresponding to the parametrix
P(x,y) are defined for y /∈ ∂Ω as

V g(y) :=−
∫

∂Ω

P(x,y)g(x)dsx, Wg(y) :=−
∫

∂Ω

T+
x P(x,y)g(x)dsx,

where g is some scalar density function. The following boundary integral (pseudo-
differential) operators are also defined for y ∈ ∂Ω ,

V g(y) :=−
∫

∂Ω

P(x,y)g(x)dsx, W g(y) :=−
∫

∂Ω

T+
x P(x,y)g(x)dsx,

W ′g(y) :=−
∫

∂Ω

T+
y P(x,y)g(x)dsx, L +g(y) := T+

y Wg(y).

Let V∆ ,W∆ ,V∆ ,W∆ ,L
+

∆
denote the potentials corresponding to the Laplace op-

erator A = ∆ . Then the following relations hold (cf.[CMN09a] for 3D case),

V g =
1
a

V∆ g, Wg =
1
a

W∆ (ag) (3.9)

V g =
1
a
V∆ g, W g =

1
a
W∆ (ag), (3.10)

W ′g = W ′
∆ g+

[
a

∂

∂n

(
1
a

)]
V∆ g, (3.11)

L +g = L +
∆
(ag)+

[
a

∂

∂n

(
1
a

)]
W+

∆
(ag). (3.12)

If u∈H1,0(Ω ;A), then substituting v(x) by P(x,y) in the second Green identity (3.5)
for Ω \B(y,ε), where B(y,ε) is a disc of radius ε centered at y, and taking the limit
ε → 0, we arrive at the following parametrix-based third Green identity (cf. e.g.
[Mir70, Mik02, CMN09a] ),

u+Ru−V T+u+Wγ
+u = PAu in Ω . (3.13)

Applying the trace operator to equation (3.13) and using the jump relation (see, e.g,
[McL00, Theorem 6.11]), we have

1
2

γ
+u+ γ

+Ru−V T+u+W γ
+u = γ

+PAu on ∂Ω . (3.14)
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Similarly, applying co-normal derivative operator to equation (3.13), and using
again the jump relation, we obtain.

1
2

T+u+T+Ru−W ′T+u+L +
γ
+u = T+PAu on ∂Ω . (3.15)

For some functions f ,Ψ and Φ let us consider a more general, indirect integral
relation associated with equation (3.13),

u+Ru−VΨ +WΦ = P f in Ω . (3.16)

Lemma 2. Let u ∈ H1(Ω), f ∈ L2(Ω),Ψ ∈ H−
1
2 (∂Ω),Φ ∈ H

1
2 (∂Ω) satisfy equa-

tion (3.16). Then u belongs to H1,0(Ω ;A), and is a solution of PDE (3.6), i.e., Au= f
in Ω , and V (Ψ −T+u)(y)−W (Φ− γ+u)(y) = 0, y ∈Ω .

Proof. The proof follows in the similar way as in the corresponding proof in 3D
case in [CMN09a, Lemma 4.1]. ut

Let us define the subspaces Hs
∗∗(∂Ω) = {g ∈ Hs(∂Ω) : 〈g,1〉∂Ω = 0} (see, e.g.,

[Ste08, p. 147]). The following result is proved in [DM15, Lemma 2].

Lemma 3. (i) Let either Ψ ∗ ∈H−
1
2 (∂Ω) and diam(Ω)< 1, or Ψ ∗ ∈H

− 1
2∗∗ (∂Ω). If

VΨ ∗(y) = 0, in Ω , then Ψ ∗ = 0 on ∂Ω .
(ii) Let Φ∗ ∈ H

1
2 (∂Ω). If WΦ∗(y) = 0, in Ω , then Φ∗ = 0 on ∂Ω .

Let L +
∆

denote the operator L + for the constant-coefficient case a≡ 1. Its null-
space in H

1
2 (∂Ω) includes non-zero functions. One can see this by taking u(y) ≡

1 in Ω in the trace of the third Green identity (3.15) for the case a ≡ 1. Let us
introduce the operator, L̂ g :=

[
L ++ ∂a

∂n (−
1
2 I +W )

]
g = L +

∆
(ag) on ∂Ω .

Theorem 2. Let ∂Ω be an infinitely smooth boundary curve .
(i) The pseudo-differential operator

L̂ : H
1
2∗∗(∂Ω)→ H−

1
2 (∂Ω), (3.17)

is invertible.
(ii) The operator

L +− L̂ : H
1
2 (∂Ω)→ H−

1
2 (∂Ω), (3.18)

is bounded and compact.

Proof. For g ∈ H
1
2 (∂Ω) using the jump relation, one can obtain the relation,

L +g = L∆ (ag)− ∂a
∂n (−

1
2 I +W )g, or L̂ g = L∆ (ag) = L +g+ ∂a

∂n (−
1
2 I +W )g.

The hypersingular boundary integral operator L∆ : H
1
2 (∂Ω)→H−

1
2 (∂Ω) is bounded

(see, [DM15, Theorem 1 for s = 1
2 ] and the references therein). Moreover, it
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is H
1
2∗∗(∂Ω)-elliptic (cf. [Ste08, Eq. (6.38)]). Then the Lax-Milgram lemma im-

plies the H
1
2∗∗(∂Ω)−invertibility of L∆ . Hence the invertibility of (3.17) follows.

The operator W : H
1
2 (∂Ω)→ H

3
2 (∂Ω) is continuous (see e.g, [DM15, Theorem

1, for s = 1
2 ]), and since H

3
2 (∂Ω) is continuously embedded in H

1
2 (∂Ω), us-

ing the relation L +− L̂ = − ∂a
∂n (

1
2 I−W ), we obtain continuity of the operator

L +− L̂ : H
1
2 (∂Ω)→ H

1
2 (∂Ω). The embedding H

1
2 (∂Ω) ⊂ H−

1
2 (∂Ω) is com-

pact, which implies that the operator L +−L̂ : H
1
2 (∂Ω)→H−

1
2 (∂Ω) is compact.

ut

Corollary 1. The operator L + : H
1
2 (∂Ω)→ H−

1
2 (∂Ω) is Fredholm operator of

index zero.

Proof. The operator L∆ : H
1
2 (∂Ω)→ H−

1
2 (∂Ω) is Fredholm of index zero (see

e.g.,[McL00, Theorem 7.8]). Thus, the operator L̂ : H
1
2 (∂Ω)→H−

1
2 (∂Ω) is Fred-

holm of index zero. Since L + = (L +− L̂ )+ L̂ , it is the sum of a compact oper-
ator and a Fredholm operator of index zero and hence is also a Fredholm operator
of index zero (cf. eg. [McL00, Theorem 2.26]). ut

3.3 BDIEs for Neumann BVP

To reduce the variable-coefficient Neumann BVP (3.6)-(3.7) to a segregated boundary-
domain integral equation system, let us denote the unknown trace by ϕ := γ+u ∈
H

1
2 (∂Ω) and further consider ϕ as formally independent of u.
Assuming that the function u satisfies the PDE Au = f , by substituting the Neu-

mann condition into the third Green identity (3.13) and either into its trace (3.14)
or into its co-normal derivative (3.15) on ∂Ω , we can reduce the BVP (3.6)-(3.7)
to two different systems of Boundary-Domain Integral equations for the unknown
functions u ∈ H1,0(Ω ;A) and ϕ := γ+u ∈ H

1
2 (∂Ω).

BDIE system (N1), obtained from the third Green identity (3.13) and its conor-
mal derivative (3.15), is

u+Ru+Wϕ = G0 in Ω ,

T+Ru+L +
ϕ = T+G0−ψ0 on ∂Ω ,

where
G0 := P f +V ψ0 in Ω . (3.19)

Also note that, T+G0 = T+P f +W ′ψ0+
1
2 ψ0. The system can be written in matrix

operator form as N1U = G 1 where U := [u,ϕ]t ∈ H1,0(Ω ;A)×H
1
2 (∂Ω) and

N1 =

[
I +R W
T+R L +

]
, G 1 =

[
G0

T+G0−ψ0

]
. (3.20)
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From the mapping properties of the operators V and P in [DM15, Theo-
rems 1 and 3], we get the inclusion G0 ∈ H1,0(Ω ;A), and Definition 1 implies
T+G0 ∈H−

1
2 (∂Ω). Therefore, G 1 belongs to H1(Ω)×H−

1
2 (∂Ω). Due to the map-

ping properties of the operators involved in N1, the operator N1 : H1,0(Ω ;A)×
H

1
2 (∂Ω)→ H1(Ω)×H−

1
2 (∂Ω) is bounded.

BDIE system (N2), obtained from the third Green identity (3.13) and its trace
(3.14), is

u+Ru+Wϕ = G0 in Ω ,

γ
+Ru+

1
2

ϕ +W ϕ = γ
+G0 on ∂Ω ,

where G0 is given by the relation (3.19). In a matrix form it can be written as N2U =
G 2 where

N2 =

[
I +R W
γ+R 1

2 I +W

]
, G 2 =

[
G0

γ+G0

]
. (3.21)

By the trace theorem γ+G0 ∈ H
1
2 (∂Ω). Therefore, G 2 ∈ H1(Ω)×H

1
2 (∂Ω). The

mapping properties of operators involved in N2 imply the operator N2 : H1,0(Ω ;A)×
H

1
2 (∂Ω)→ H1(Ω)×H

1
2 (∂Ω) is bounded.

Remark 3. Let ψ0 ∈H−
1
2 (∂Ω) and diam(Ω)< 1, or ψ0 ∈H

− 1
2∗∗ (∂Ω). Then G 2 = 0

if and only if ( f ,ψ0) = 0. Indeed, the latter equality evidently implies the former.
Inversely, if G 2 = 0, then G0 = 0 and γ+G0 = 0. Then, G0 = 0 implies P f +V ψ0 =
0 in Ω . Multiplying by a, taking into consideration that aV = V∆ is harmonic and
applying Laplace operator, we get f = 0. And hence V ψ0 = 0 in Ω . Then by Lemma
3(i), ψ0 = 0 on ∂Ω .

3.4 Equivalence and Invertibility Theorems

In the following theorem we shall see the equivalence of the original boundary value
problem with the boundary-domain integral equation systems.

Theorem 3. Let ψ0 ∈ H−
1
2 (∂Ω) and f ∈ L2(Ω) satisfy the solvability condition

(3.8).

(i) If some u ∈ H1(Ω) solves the Neumann BVP (3.6)-(3.7), then the pair (u,ϕ),
where

ϕ = γ
+u ∈ H

1
2 (∂Ω), (3.22)

solves the BDIE systems (N1) and (N2).
(ii) If a pair (u,ϕ)∈H1(Ω)×H

1
2 (∂Ω) solves the BDIE systems (N1), then u solves

BDIE system (N2) and Neumann BVP (3.6)-(3.7), and ϕ satisfies (3.22).
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(iii) If a pair (u,ϕ) ∈ H1(Ω)× H
1
2 (∂Ω) solves the BDIE systems (N2), and

diam(Ω) < 1, then u solves BDIE system (N1) and Neumann BVP (3.6)-(3.7),
and ϕ satisfies (3.22).

(iv) The homogeneous BDIE systems (N1) and (N2) have linearly independent so-
lutions spanned by U 0 = (u0,ϕ0)T = (1,1)T in H1(Ω)×H

1
2 (∂Ω). Condition

(3.8) is necessary and sufficient for solvability of the nonhomogeneous BDIE
system (N1) and, if diam(Ω)< 1, also of the system (N2), in H1(Ω)×H

1
2 (∂Ω).

Proof. (i) Let u ∈ H1(Ω) be a solution of the Neumann BVP (3.6)-(3.7). Since
f ∈ L2(Ω), then u ∈H1,0(Ω ;A). Setting ϕ = γ+u, and recalling how BDIE systems
(N1) and (N2) were constructed, we obtain that (u,ϕ) solves them.

(ii) Let now a pair (u,ϕ) ∈ H1(Ω)×H
1
2 (∂Ω) solve the system (N1) or (N2).

Due to the first equations in the BDIE systems, the hypotheses of Lemma 2 are
satisfied implying that u belongs to H1,0(Ω ;A) and solves PDE (3.6) in Ω , while
the following equation also holds,

V (ψ0−T+u)(y)−W (ϕ− γ
+u)(y) = 0, y ∈Ω . (3.23)

If a pair (u,ϕ) ∈ H1(Ω)×H
1
2 (∂Ω) solves the system (N1) then taking the co-

normal derivatives of the first equation in (N1) and subtracting the second from it,
we get T+u = ψ0 on ∂Ω . Thus the Neumann condition is satisfied, and using it in
(3.23) we get W (ϕ−γ+u)(y) = 0 on y∈ ∂Ω . Lemma 3(ii) implies ϕ = γ+u on ∂Ω .

(iii) Let now a pair (u,ϕ)∈H1(Ω)×H
1
2 (∂Ω) solve the system (N2). Taking the

trace of the first equation in (N2) and subtracting the second from it, we get ϕ = γ+u
on ∂Ω . Then inserting it in (3.23) gives V (ψ0−T+u)(y) = 0 on y ∈ ∂Ω . Lemma
3(i) implies, ψ0 = T+u on ∂Ω . Hence the Neumann condition is satisfied.

(iv) Theorem 1 along with items (i)-(iii) implies the claims of item (iv). ut

Note that Theorem 3(iv) implies that the operators

N1 : H1(Ω)×H
1
2 (∂Ω)→ H1(Ω)×H−

1
2 (∂Ω), (3.24)

and
N2 : H1(Ω)×H

1
2 (∂Ω)→ H1(Ω)×H

1
2 (∂Ω), (3.25)

are not injective.

Theorem 4. Operators (3.24) and (3.25) are Fredholm operator with zero index.
Moreover, the kernels (null-spaces) of these operator are spanned by the element
(u0,ϕ0) = (1,1) and thus the kernels and co-kernels of the operators are one-
dimensional.

Proof. (i) By Corollary 1, the operator L̂ : H
1
2 (∂Ω)→ H−

1
2 (∂Ω) is a Fredholm

operator with zero index. Therefore, the operator

N1
0 :=

[
I W
0 L̂

]
: H1(Ω)×H

1
2 (∂Ω)→ H1(Ω)×H−

1
2 (∂Ω),
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is also Fredholm with zero index. By the properties of operators R and T+R (see,
e.g, [DM15, Corollary 2], and the reference therein) and Theorem 2(ii), the operator

N1−N1
0 =

[
R 0

T+R L +− L̂

]
: H1(Ω)×H

1
2 (∂Ω)→ H1(Ω)×H−

1
2 (∂Ω),

is compact, implying that operator (3.24) is Fredholm with zero index ([McL00,
Theorem 2.26]).

(ii) Let us consider the operator

N2
0 =

[
I W
0 1

2 I

]
Then, N2

0 : H1(Ω)×H
1
2 (∂Ω)→H1(Ω)×H

1
2 (∂Ω) is bounded. It is invertible due

to its triangular structure and invertibility of its diagonal operators, I : H1(Ω)→
H1(Ω), and I : H

1
2 (∂Ω)→H

1
2 (∂Ω). Due to the compactness properties of R,γ+R

and W (see, e.g, [DM15, Corollary 1 and 2], the operator

N2−N2
0 =

[
R 0

γ+R W

]
: H1(Ω)×H

1
2 (∂Ω)→ H1(Ω)×H

1
2 (∂Ω),

is compact. This implies that the operator (3.25) is a Fredholm operator with zero
index.

(iii) The kernels of the operators are spanned by the element (u0,ϕ0) = (1,1) due
to Theorem 3(iv). ut

The following theorem describes the co-kernels of these operators. The proof
is similar to the proofs of the corresponding assertions for 3D case in [Mik15].
Let γ∗ : Hs− 3

2 (∂Ω)→ Hs−2
∂Ω

denote the operator adjoint to the trace operator γ :

H2−s(R2)→ H
3
2−s(∂Ω), for s < 3

2 .

Theorem 5. Let diam(Ω)< 1 and u0(x) = 1.
(i) The co-kernel of operator (3.24) is spanned over the functional g∗1 ∈ H̃−1(Ω)×

H
1
2 (∂Ω) defined as

g∗1 :=

(
−aγ∗V −1

∆
γ+u0

0

)
. (3.26)

(ii) The co-kernel of operator (3.25) is spanned over the functional g∗2 ∈
H̃−1(Ω)×H−

1
2 (∂Ω) defined as

g∗2 =

(
−aγ∗( 1

2 +W ′
∆
)V −1

∆
γ+u0

−a( 1
2 −W ′

∆
)V −1

∆
γ+u0

)
. (3.27)



10 T. G. Ayele, T. T. Dufera and S. E. Mikhailov

3.5 Perturbed BDIE systems for the Neumann problem

Theorem 3 implies that even when the solvability condition (3.8) is satisfied, the so-
lutions of both BDIE systems, (N1) and (N2), are not unique. By Theorem 4, in turn,
the BDIE left-hand side operators, N1 and N2, have non-zero kernels and thus are
not invertible. To find a solution (u,ϕ) from uniquely solvable BDIE systems with
continuously invertible left-hand side operators, let us consider, following [Mik99],
some BDIE systems obtained form (N1) and (N2) by finite-dimensional operator
perturbations, cf.[Mik15] for the three-dimensional case. Below we use the nota-
tions U = (u,ϕ)T and |∂Ω | :=

∫
∂Ω

ds.

Perturbation of BDIE system (N1): Let us introduce the perturbed counterparts of
the BDIE system (N1),

N̂1U = G 1, (3.28)

N̂1 :=N1 + N̊1 and N̊1U (y) := g0(U )Z 1(y) =
1
|∂Ω |

∫
|∂Ω |

ϕ(x)ds
(

a−1(y)
0

)
,

that is,

g0(U ) :=
1
|∂Ω |

∫
|∂Ω |

ϕ(x)ds, Z 1(y) :=
(

a−1(y)u0(y)
0

)
.

For the functional g∗1 given by (3.26) in Theorem 5, since the operator V −1
∆

:
H

1
2 (∂Ω)→H−

1
2 (∂Ω) is positive definite (with additional condition diam(Ω)< 1)

and u0(x) = 1, there exists a positive constant C such that

g∗1(Z 1) = 〈−aγ
+∗V −1

∆
γ
+u0,a−1u0〉Ω =−〈V −1

∆
γ
+u0,γ+u0〉∂Ω

≤−C‖γ+u0‖2

H
1
2 (∂Ω)

≤−C‖γ+u0‖2
L2(∂Ω) =−C|∂Ω |2 < 0. (3.29)

Further, for U 0 = (u0,ϕ0)T = (1,1)T in H1(Ω)×H
1
2 (∂Ω),

g0(U 0) =
1
|∂Ω |

∫
∂Ω

γ
+u0ds = 1. (3.30)

Due to (3.29) and (3.30), [Mik99, Lemma 2], implies the following assertion.

Theorem 6. Let diam(Ω)< 1, then

(i) The operator N̂1 : H1(Ω)×H
1
2 (∂Ω)→ H1(Ω)×H−

1
2 (∂Ω) is continuous and

continuously invertible.
(ii) If g∗1(G 1) = 0 (or condition (3.8) for G 1 in form (3.20) is satisfied), then the

unique solution of the perturbed BDIDE system (3.28) gives a solution of the
original BDIE system (N1) such that

g0(U ) =
1
|∂Ω |

∫
∂Ω

ϕds = 0.
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Perturbation of BDIE system (N2): Let us introduce the perturbed counterparts of
the BDIE system (N2)

N̂2U = G 2, (3.31)

where

N̂2 :=N2+N̊2 and N̊2U (y) := g0(U )F 2(y) =
1
|∂Ω |

∫
|∂Ω |

ϕ(x)ds
(

a−1(y)
γ+a−1(y)

)
,

that is,

g0(U ) :=
1
|∂Ω |

∫
|∂Ω |

ϕ(x)ds, F 2(y) :=
(

a−1(y)u0(y)
γ+[a−1u0](y)

)
.

For the functional g∗2 given by (3.27) in Theorem 5(ii), since the operator V −1
∆

:
H

1
2 (∂Ω)→H−

1
2 (∂Ω) is positive definite (with additional condition diam(Ω)< 1)

and u0(x) = 1, there exists a positive constant C such that

g∗2(F 2) = 〈−aγ
+∗(

1
2
+W ′

∆ )V
−1

∆
γ
+u0,a−1u0〉Ω

+ 〈−a(
1
2
−W ′

∆ )V
−1

∆
γ
+u0,γ+(a−1u0)〉∂Ω

=−〈(1
2
+W ′

∆ )V
−1

∆
γ
+u0 +(

1
2
−W ′)V −1

∆
γ
+u0,γ+u0〉∂Ω =−〈V −1

∆
γ
+u0,γ+u0〉∂Ω

≤−C‖γ+u0‖2

H
1
2 (∂Ω)

≤−C‖γ+u0‖2
L2(∂Ω) =−C|∂Ω |2 < 0. (3.32)

Due to (3.32) and (3.30), [Mik99, Lemma 2], implies the following assertion.

Theorem 7. Let diam(Ω)< 1, then

(i) The operator N̂2 : H1(Ω)×H
1
2 (∂Ω)→ H1(Ω)×H

1
2 (∂Ω) is continuous and

continuously invertible.
(ii) If g∗2(G 2) = 0 (or condition (3.8) for G 2 in form (3.21) is satisfied), then the

unique solution of the perturbed BDIDE system (3.31) gives a solution of the
original BDIE system (N2) such that

g0(U ) =
1
|∂Ω |

∫
∂Ω

γ
+uds =

1
|∂Ω |

∫
∂Ω

ϕds = 0.

3.6 Conclusion

In this paper, we have considered the interior Neumann boundary value problem
for a variable-coefficient PDE in a 2D domain, where the right-hand side function
is from L2(Ω) and the Neumann data from the space H−

1
2 (∂Ω). The BVP was re-
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duced to two systems of Boundary-Domain Integral Equations and their equivalence
to the original BVP was shown.

The null-spaces of the corresponding BDIE systems are not trivial. Moreover,
the BDIE systems are neither uniquely nor unconditionally solvable. The BDIE
operators for the Neumann BVP are bounded but only Fredholm with zero index.
The kernels and co-kernels of these operators were analysed, and appropriate finite-
dimensional perturbations were constructed to make the perturbed operators invert-
ible and provide a solution of the original BDIE systems and of the Neumann BVP.

In a similar way one can consider also the 2D versions of the BDIEs for other
BVP problems in interior and exterior domains, united BDIEs as well as the lo-
calised BDIEs, which were analysied for 3D case in [CMN09a, CMN13, Mik06,
CMN09b].
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