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The applicability of credit-scoring models in emerging economies: Evidence 

from Jordan 

Abstract 

Purpose: The main aim of this paper is to propose an objective and efficient method for assessing 

credit risk by introducing and investigating to a greater extent the applicability of credit-scoring 

models in the Jordanian banks and to what range they can be utilized to achieve their strategic and 

business objectives. 

Design/methodology/approach: The research methodology comprises two phases. The first phase is 

the model development. Three modelling techniques are the utilized to build the scoring models 

namely logistic regression (LR), neural networks (NN) and support vector machines (SVM) and the 

best performing model will be selected for next stage. The second phase is two-fold: 1) linking the 

credit expert knowledge in a way that can enhance the outcomes of the scoring model, 2) a 

profitability test to explore if the selected model is efficient in meeting banks strategic and business 

objectives. 

Findings: The findings showed that LR model outperformed both ANN and SVM across various 

performance indicators. LR model also fit best with achieving the bank’s strategic and business 

objectives. 

Originality/value: To the best of our knowledge, this study is the first that applied several modelling 

and classification techniques for Jordanian banks and calibrating the best model in terms of its 

strategic and business objectives. Furthermore, credit experts’ knowledge was engaged with the 

scoring model to determine its efficiency and reliability against the sole use of an automated scoring 

model in the hope to encourage the application of credit scoring models as advisory tool for credit 

decisions. 

Keywords: Credit scoring techniques, Classification techniques, Jordanian banks, Emerging market 
countries. 
  
Paper type: Research paper. 

1. Introduction 

Loan granting is considered one of the main income sources for banks and financial institutions. 

Therefore, due to rapid growth of consumer credit and large amounts of financial data, careful 

assessment should be taken when deciding to grant credit to potential customers. However, emerging 

financial economies still utilize subjective, judgemental approaches, and have inefficient policies and 

guidelines for evaluating credit.  
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Credit-scoring has been a challenging and widely discussed topic in literature since the inspirational 

work of Altman (1968). Many credit-scoring models using statistical and artificial intelligence (AI) 

techniques have been proposed by researchers and financial risk modelers in industry (Thomas, 2000). 

Consequently, the Basel Committee on Banking Supervision (2000) required all financial institutions 

to have rigorous and complex credit-scoring systems in order to help them improve their credit risk 

levels and capital allocation. 

Most of developed economies (e.g. US and UK) adopted credit-scoring systems as the main source 

of decision to admit and extend credit. However, these systems are not used in the emerging financial 

economies, where subjective and judgmental analyses are more commonly utilized. Nevertheless, 

several related studies, which will be discussed later on, show how there is a movement towards 

developing automated scoring models for banking systems in such countries. Given these new 

developments, the motivation of this paper is to investigate the effectiveness of three well-known 

classification methods, namely, LR, ANN and SVM in the Jordanian retail banking.  

The Jordanian banking sector is considered as one of the fundamental pillars of the Jordanian 

economy. It provides several financial credit facilities to customers and various industry sectors, while 

handling different types of risk. Retail banking systems in Jordan, however, commonly use subjective 

methods to evaluate loans (Bekhet and Eletter, 2014).  Additionally, they use the opinion of credit 

officers and other factors (e.g. reputation and financial capabilities of loan applicants). The process of 

loan assessment in Jordanian retail banking usually begins with an interview with the loan applicant, 

then gathering of the essential information needed to decide whether he/she is eligible for a loan. 

Subsequently, there is processing of the application form by the credit analyst to decide, whether or 

not the loan will be granted.  These forms of loan evaluation are not efficient as they are subject to 

human error and bias along with being time-consuming (Handzic et al., 2003). It is, therefore, 

necessary to investigate the application of a credit-scoring modelling based on several classification 

techniques and to choose the best model that will satisfy the bank’s strategic objectives. To the best of 

our knowledge, this is the first study that will apply several classification techniques to Jordanian 

retail banking and calibrate the best model in terms of the business objectives of the banks. 

Hence, this research will address three research questions: 

1. Is there a need for credit-scoring models in the Jordanian banking system? 

2. Are these models applicable in the Jordanian banking system and what is their role in achieving 

the banks' strategic and business objectives in terms of profitability? 

3. What is the role of credit expertise and how can this enhance the credit-scoring model decision? 

This paper is organized as follows: section 2 highlight the related work, section 3 gives an overview 

of the Jordanian banking sector, section 4 describes the methodology adopted in the study, section 5 

demonstrates results of the proposed models, section 6 calibrates the best model to meet banking 

objectives and finally, section 7 draws conclusions as well as providing guidelines for future research 

directions. 
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2. Related work 

Researchers have been considering developing credit-scoring methods for decades. A lot of 

complex credit-scoring models were developed using classifiers categorized as traditional and 

advanced techniques, for example LR in Baesens et al. (2003), West (2000) applied several ANNs, 

whereas, Bellotti and Crook (2009) applied SVM. As discussed above, credit-scoring systems are 

widely used in developed financial industries, where they became a main source of decision of 

granting and extending credits. However, in emerging countries, there are several studies which show 

the trend in developing scoring models for their banking systems.  

Abdou and Pointon (2009) carried out an investigation on the existing methods in credit decision 

making within the Egyptian banking sector and proposed using credit-scoring techniques to examine 

to what extent decision making can be improved. Both studies considered the use of LR and ANN, 

their results are shown to provide more efficient classification results than the judgmental 

techniques. Furthermore, ANN give better accuracy rates than LR.  

Bazmara and Donighi (2014) used fuzzy rules expert systems to evaluate bank customer credit in one 

bank in Iran. They benchmarked their results among others such as LR and ANN showing better 

performance. Dinh and Kleimeier (2007) proposed a multi-purpose credit-scoring model for the 

Vietnamese retail banking market using LR. Firstly, they show how to identify borrower 

characteristics that should be part of a credit-scoring model. Then they focused on achieving the 

strategic objectives of the bank. Finally, they assess the use of credit-scoring models in the context 

of transactional versus relationship lending. In Triki (2016) they compared LR and ANN against a 

sample collected from a Tunisian bank, their results reveal that LR outperformed ANN. Sharma et al. 

(2012) examined the challenges and complexities relating to credit-scoring model development within 

the Nepalese banking sector. The developed model was deployed using LR. 

Akkoc (2012) proposed a model based on statistical techniques and Neuro Fuzzy on credit card 

data in Turkey and compared its results to LR and ANN. Bekhet and Eletter (2014) and Ala’raj et al 

(2015) explored the use of credit-scoring techniques in Jordanian banking sector. In their studies LR, 

ANN and SVM were investigated but what distinguishes our study from theirs is that we are 

considering extra benefits of the developed credit-scoring model rather than just raw scores. 

 

3. Jordanian banking sector: an overview 

This section provides the status of present banking and credit risk analysis 

characteristics in Jordan. According to Zeitun and Benjelloun (2013) the banking industry 

in Jordan is considered to be one of the most important sectors.  
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Figure 1 illustrates the significant role of the Jordanian banking sector in financing the major 

economic activities in the country, which in return reflects on the growth and the prosperity of the 

economy.  World Bank data indicate that approximately 50% of businesses surveyed receive 

financing from banks in Jordan.  Figure 1 provides examples of industries supported by banks in 

Jordan. 

 

Figure 1. Distribution of credit facilities according to economic sectors (2003– 2016) (CBJ) 

The Association of Banks in Jordan (ABJ, 2015) stated in a recent report the number of banks 

operating in Jordan reached 25 banks at the end of 2015. The services of these banks cover most parts 

of Jordan through a network of branches that consist of 786 branches. These statistics clearly 

demonstrate the rapid growth of the banking industry in Jordan, which results in the growth of the 

credit environment. 

 

Figure 2. Total credit facilities by licensed banks in Jordan (CBJ) 

Figure 2 demonstrates the growth of total credit facilities extended by banks operating in Jordan to 

individuals, companies and governments which, in turn, contributes to the national economy.  Credit 
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facilities by banks extended from 5.3 billion Jordanian Dinars (JDs) in 2003 to 22.9 billion JDs in 

2016. This 17.6 billion JDs increase represents 335% growth with a 14% annual growth rate 

indicating that economy is developing and banks are generating profits but this should be backed with 

strict credit assessment to avoid any discarded events to occur. According to (ABJ, 2013,p.42) total 

credit facilities as a percentage of GDP ranged between 73-93% during the period of 2003-2012, 

reflecting the vital role of these institutions in financing and supporting all sectors of the Jordanian 

economy. 

Retail banking in Jordan is growing. Figure 3 below provides an overview of overdrafts, 

discounted bills, loans and advances distributed by year from 2003 through 2016.  Figure 3 indicates 

that the volume of overdrafts gradually increased annually, loans and advances grew at a rate of 

450%, and discounted bills were reduced by 28.4%.  Clearly, Jordan is experiencing rapid growth and 

changes within the banking sector.  These changes indicate that a more effective method of analyzing 

credit risk will be needed in order to maintain positive economic growth and to avoid negative 

consequences of irresponsible lending.  

 

 

Figure 3. Credit Facilities According to Type (CBJ) 

 

Figure 4 indicates that an increase in lending of 10 billion JDs in 2003 to approximately 33 billion 

JDs in 2016 occurred.  This increase equates to 230% and averages to an annual growth rate of 13%.  

Jordanian banks participate in market competition by providing numerous financial services to 

individuals and companies, which causes them to need to manage different forms of risk (ABJ, 2015), 

thus contributing to additional need for implementing more effective credit risk analyses.  
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Figure 4. Total Deposits by licensed banks in Jordan (CBJ) 

The World Bank (2014) reported that approximately 5.6% of businesses applying for credit were 

rejected; however, the percentage of non-performing loans in Jordan remains high.  According to ABJ 

(2015) that the percentage of non-performing loans to total loans reached 8.4% in the middle of 2012, 

then it regressed to 7% in 2014 before landing to around 5%. Despite the fact non-performing loans 

rate is decreasing year after year history can still repeat itself.  According to the Jordan Economics 

report (2015) the ratio of non-performing loans reached 7% at the end of June 2014.  Regardless of 

the decrease, ratio of default loans is still higher than the international average for default rates which 

is lower than 5% (Al-Shawabkah and Tambyrajah, 2009), this indicates that there are problems 

remain in assessing risk in Jordan.   

Regardless of the risk associated with issuing credit, the nature of loan evaluation and assessment in 

Jordanian banks remains subjective and is based on the analyst’s experience and some minor 

guidelines set by the bank (Handzic et al., 2003), resulting in an approach that is inefficient and 

inconsistent. Accordingly, lenders should search for more computerized ways of completing credit 

evaluation and decision. The goal of this paper is to provide evidence to encourage Jordanian banks to 

consider implementing an effective and effcient computerized credit-scoring systems. 

 

4. Research methodology 

This section introduces and describes three classification techniques in the field of credit-scoring, 

namely, LR, ANN, and SVM.  LR is the industry standard for building credit-scoring models due to 

its flexibility and the fact that it has a binary outcome (Akkoc, 2012).  ANN and SVM are advanced 

tools for creating credit-scoring models that also allow for non-linear relationships among variables; 

whereas LR is restricted by the assumption of linearity (Huang et al., 2007).  

The methodology framework and how the classification techniques will be used is illustrated in 

Figure 5. Looking at the figure the workflow is divided in to 2 stages, in the first stage is the model 

development which comprises the aforementioned techniques. The best performing classifier will 
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qualify to the next stage. Stage 2 covers 2 approaches that involve expert judgments in a way that can 

enhance outcomes of the model and then a profitability test is carried out to explore if credit-scoring 

models are efficient approaches to be considered to be applied within Jordanian banks. This stage will 

be discussed in the coming sections. Experimental analyses were performed using Matlab 2013b 

software. 

 

 

Figure 5. Research workflow 

 

 

 

 

 

 

 

 

 

Page 7 of 35 International Journal of Islamic and Middle Eastern Finance and Management

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



International Journal of Islam
ic and M

iddle Eastern Finance and M
anagem

ent

4.1.  LR 

In credit-scoring, the classification is a binary problem in which the decision is characterized by 0 

(grant/good loan) or 1 (reject/ bad loan) (Thomas, 2000). Therefore, LR was developed to address this 

issue by reducing the output to either 0 or 1. LR studies the relationship between several independent 

variables and the probability of a loan being granted by fitting them to a logistic curve (Sweet & 

Martin, 1999). In this context, LR is expressed as:  

������1 − �	
 = 	� + 1�	1 + 2�2 +⋯+ ���													                                                                                           

Where p is the probability of outcome of interest (0/1), β₀ is the intercept term, and βi represent 

the coefficient related to the independent variables Xi_(i=1…n), and log[p(1-p)] is the dependent 

variable which is the logarithm of ratio of two probabilities outcome of interest. The objective of LR 

in credit-scoring is to determine the conditional probability of a specific input (customer’s 

characteristics) belonging to a certain class. Despite the wide application of LR, its accuracy 

decreases when the relationship between variables is non-linear (Akkoc, 2012). ANN and SVM were 

introduced to solve the problem of linearity (Huang et al., 2007). 

  

4.2.  ANN 

ANN is an AI technique that was originally inspired by how the human brain processes 

information. ANN mimics this process by allowing for concurrent complex processing of inputs in 

order to achieve an output (Bhattacharyya and Maulik, 2013).   

One of the most common architectures for ANNs is the multi-layer perceptron (MLP), which 

consists of one input layer, one or more hidden layers and one output layer. One of the key issues 

needing to be addressed in building ANNs is their topology, structure and learning algorithm Angelini 

et al. (2008). The most commonly utilized topology of ANN model in credit-scoring is the three-layer 

feed-forward back propagation.  

As shown in Figure 6. The ANN model is made up of three layers: input, hidden and output 

layers. The “nodes” represent neurons, much like the human brain.  For credit-scoring, the structure of 

the ANN model is to enter the attributes of each applicant in the input layer to process them, then they 

are transferred to the hidden layer, which contains an algorithm for processing all attributes based on 

weights, then the values are sent to the output layer that provides the final answer, which is to give or 

not to give a loan. The output is calculated by using weights. In summary ANN tend to establish the 

relationship between a customer’s probability of default and their given characteristics. To have more 

insight about the pros, cons and various technicalities of ANN please refer to (West, 2000). 
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Figure 6. ANN topology  

4.3. SVM 

SVMs are a machine learning technique used in classification and credit-scoring problems (Huang 

et al., 2007). The SVM was first proposed by Cortes and Vapnik (1995) and is used to find an optimal 

hyperplane that categorizes the training input data in two classes (good/ bad loans).  Figure 7 shows 

the hyperplane characteristics and the SVM. 

 

Figure 7. The basics of SVMs  

As it can be seen in Figure 7, the dashed lines parallel to the optimal hyperplane measure the 

distance to the solid line. The dashed lines are called margins, and the training data that lies on the 

margins is called support vectors, however, the SVM attempts to find the best optimal hyperplane that 

separates the data correctly, so the margin width between the optimal hyperplane and the support 

vectors are maximized to fit the data. Based on the features of the support vectors, this form of 

statistical modelling can be used to predict whether an applicant has good or bad credit. To have more 

insight about the pros, cons and technicality of SVMs please see (Cortes and Vapnik, 1995). 
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4.4. Data collection 

This study presents analysis based on a historical loan dataset gathered from one public 

commercial bank in Jordan. These data are confidential and sensitive; hence, acquiring it was detailed 

and time-consuming process.  The dataset consists of 500 loans, of which 400 are good loans and 100 

are bad loans. Bad loan cases were more difficult to obtain due to manual storage at the banking 

institution. Therefore, bad loan data also include current cases as opposed to historical cases.  These 

are loans that are currently 90 consecutive days past due, which is considered to be in default status in 

Jordanian banking policy. It is clear that the dataset is biased towards good loans due to the low 

default rates occurred at that time in the bank.  Each loan in the dataset is made up of 12 independent 

variables with various types and the dependent variable, which indicates the status of the loan as 

either good or bad. A summary of the dataset and variables are described in Table 1.  

No. Description Definition Type Code 

X1 Age Applicant’s Age Continuous AGE 

X2 Gender Male/ Female Categorical GEN 

X3 Marital Status Married/ Single Categorical MAR STA 

X4 Job Type of Job Nominal JOB 

X5 Monthly Income Applicant’s monthly salary Continuous MON INC 

X6 Years at Job Years at present job Continuous YAJ 

X7 Loan Purpose Personal/Auto/Housing loan Nominal LOANP 

X8 Loan Amount Loan amount in JD Continuous LOANA 

X9 Loan Duration Duration of the loan in months Continuous LOAND 

X10 Loans from other Banks Does applicant have loans from other banks Categorical LFOB 

X11 Liabilities Obligations to his bank Categorical LIAB 

X12 Property Applicant owns a house or not Categorical PROP 

Y Class 0 (Good applicant)/ 1(Bad applicant) Continuous LOANS 

Table 1. Description of the Jordanian dataset attributes 

 

According to Abdou and Pointon (2011) in the credit-scoring process, there are certain and specific 

criteria that are looked at. The main determinants of whether a default will take place or not can be 

classified into the following four areas: 

1. Financial Indicators (MON INC, LIAB). 

2. Demographic Indicators (AGE, GEN, MAR STA, PROP). 

3. Employment Indicators (YAJ, JOB). 

4. Behavioural Indicators (LFOB). 

 

Therefore, regarding our collected data, the majority of the features fall in the above categories. 
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4.5. Data splitting 

Accoridng to Garcia et al. (2015) data splitting is a fundamental step in model evaluation, where 

the data is partitioned into a training set for building and learning of the model and a testing set for 

evaluating and assessment of the model. Both a large training and test set produces more accurate 

performance estimates.  Data splitting is essential in credit-scoring modelling because the data are 

usually limited and these partitioning strategies have great impact on consistent model evaluation. As 

data is limited, it is necessary to ensure adequate balance of training set and testing set size. 

Several splitting techniques are available. This paper presents data that adopted the K–fold cross 

validation technique. This technique involves dividing the datasets into K subsets (or folds) of equal 

size (K = 1, 2…, K) but K cannot exceed the size of the dataset. Therefore, the model training is based 

K-1 folds, and the left K folds will be saved for model evaluation or testing. The process continues 

until all K folds are used for evaluation. All the tested K fold predictions are used to estimate the 

model accuracy (by taking the average). 

 

4.6. Data normalization 

Each variable in the dataset comprises values that vary in range. Data were standardized to avoid 

bias. Standardization was accomplished by normalizing variable values to the range of 0 to 1 This 

transformation is done by taking the maximum value within each attribute and dividing all the values 

in the attributes with its maximum value (Alaraj et al., 2014). 

4.7. Performance measures indicator  

To measure the accuracy and discriminate ability of a developed model, many performance 

evaluation measures can be used. Accuracy, error rate, Type I and II errors and area under the curve 

(AUC) (Abdou and Pointon, 2011) are commonly used as performance measure indicators in the field 

credit-scoring.   

The most applied evaluation measurements in credit-scoring literature are accuracy, Type I and 

Type II errors (Nanni and Lumini, 2009). A combination of these measurements is used, in order to 

measure the performance of the proposed credit-scoring models. Accuracy measures the percentage of 

the correctly classified loans (both good/ bad): 

- Accuracy = TP+TN / TP+FN+TN+FP 

While the Type I and II error evaluations measure the percentages of the misclassified bad loans 

and good loans respectively, which are not evaluated by the accuracy measure. 

- Type I error = FP/ TN+FP (Bad as Good, lose money)                                              

- Type II error = FN/ TP+FN  (Good as Bad, lose potential income)  
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Type I error is related to financial loss, and Type II is related to the opportunity of profit loss. In 

the financial point of view, risks associated with Type I error are more costly than Type II (West, 

2000), in other words it can be seen as a ‘Financial vs. profit loss’.TP represents good loans that are 

classified as good, TN represents bad loans that are classified as bad, FN (Type II) represents a good 

loan misclassified as bad loan and FP (Type I) represents a bad loan misclassified as a good loan. All 

these measures can be derived from a 2x2 confusion matrix (see Table 2). 

 Some additional measures can be included in the modelling. These items which are limited in the 

literature, such as positive prediction values (PPV) and negative prediction value (NPV) measures.  

PPVs are the percentage of how many loans were predicted by the model as good loans, in other 

words, it also shows how many good loans were correctly predicted by the model. NPVs are the 

percentages of how many loans were predicted by the model as a bad loan, indicating how many bad 

loans were correctly predicted by the model. PPV and NPV can also help in calibrating the model to 

meet its strategic objectives on the percentages of FP and FN. 

- PPV = TP/ TP+FP 

- NPV = TN/ TN+TN 

 Predicted (%)  

Actual Good loans Bad loans Accuracy (%) 

Good applicant  TP FN (Type II error) Accgood 

Bad applicant FP (Type I error) TN Accbad 

 PPV  NPV  Acctotal 

Table 2. Confusion Matrix for Credit-scoring 

  

5. Results and discussion 

The 5-fold cross validation sampling technique was used for training and testing of the developed 

models for the dataset. To decrease the effect of the variability of the training set and to achieve 

reliable results, each trial was repeated ten times; and, hereafter the test results are the average of 50 

trials.  This section will demonstrate the development and results of several credit-scoring models 

using LR, ANN, and SVM.  

 

5.1.  LR 

Table 3 summarizes the classification results of the LR credit-scoring model. The average total  

accuracy of the model is 88% with 93.75% accuracy for good loans and 65% accuracy for bad loans. 

The Type I and II error rates were 35% and 6.25% respectively.  91.46% of the data was predicted as 

good loans (PPV) and 72.2% of data were predicted as bad loans (NPV).   
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 Predicted class   

Actual class  Good loans Bad loans Accuracy  

Good loans 75 5 0.9375 

Bad loans 7 13 0.65 

 0.9146 0.722 0.88 

Table 3. LR classification results 

 

5.2.  ANN 

Hidden nodes need to be accurately determined in the ANN model to avoid model over fit.  With 

ANN, it is also important to choose the optimal model or topology. To achieve this, a trial and error 

process can be carried out using various ranges of parameters until choosing the topology with the 

best accuracy. First a range of 20 to 40 neurons in the hidden layer was tested. The ideal topology was 

selected based on the lowest Mean Square Error, and the highest accuracy, mainly for bad loans. The 

activation function used was ‘logistic sigmoid’. The Results of the ANN model is described in Table 

4, the model achieved a total accuracy of 85% with ability to classify good loans by 92.53% and 55% 

for correctly classifying bad loans. The Type I error was worse than Type II error with 45% and 7.5% 

respectively. 89.15% was predicted by the model as good loans (PPV) and 64.7% as bad loans (NPV). 

 Predicted class   

Actual class  Good loans Bad loans Accuracy  

Good loans 74 6 0.9250 

Bad loans 9 11 0.55 

 0.8915 0.647  0.85 

Table 4. ANN classification result 

5.3.  SVM 

Selecting the appropriate kernel function is important for the model determination of SVM. The 

proposed SVM credit-scoring model was developed using a linear kernel. Table 5 shows the SVM 

classification results where the model recorded 86% accuracy, on classifying good loans, of 92.5% 

and 60% accuracy on classifying bad loans. Regarding Type I and II error rates, misclassification 

occurred of good and bad loans by 40% and 7.5%, respectively. 90.24% of the data was assigned as 

good loans (PPV), 66.66% of the data to be bad loans (NPV). 
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 Predicted class   

Actual class  Good loans Bad loans Accuracy  

Good loans 74 6 0.9250 

Bad loans 8 12 0.60 

 0.9024 0.666 0.86 

Table 5. SVM classification results 

5.4. Models results summary 

When comparing all models, LR achieved the best accuracy results. LR attained an accuracy of 

88% while ANN and SVM scored 85% and 86% respectively. LR’s superior performance lies in its 

ability in recognizing good and bad loans where it achieved lower Type I and II error rates. For the 

PPV and NPV rates, LR scored higher than ANN and SVM, which also indicates the predictive power 

of its classifying good and bad loans in the LR credit-scoring model. Regarding ANN and SVM, 

SVM was better in classifying bad loans as it did produce lower a Type I error than ANN, while in the 

Type II error, both models performed the same. The SVM model PPV and NPV rates were superior to 

ANN. However, in conclusion, the LR credit-scoring model achieved the best model classification 

and predictive ability, followed by the SVM, and finally, the ANN credit-scoring models. 

 All variables were assessed in these analyses; however, in many research fields such as pattern 

recognition, it may be more accurate to select a group set of representative variables with more 

predictive information (Tsai, 2009). Variables that do not fit the model well or are redundant may 

affect the performance of the model. Additionally, decreasing the number of irrelevant or redundant 

variables significantly reduces the running time of the models and gives more generalizable ability 

(Guyon and Elisseeff, 2003). For this reason, three additional models were assessed. These models 

incorporated the inclusion of variables in a step-by-step fashion, providing the ability to determine 

model fit and accuracy with each variable addition. This form of modeling includes initiating the 

model with no variables, then entering the variables one by one to test the improvement of model 

performance with the addition of each variable.  To determine the most effective model, an additive 

process is used until the addition of a variable does not improve the model fit. 

 

5.5. Simplified LR (SLR) 

 Table 6 reports the results of the simplified LR credit-scoring model with selected features. Model 

accuracy did not improve with the addition of an eighth variable; therefore, seven variables out of 

twelve showed significance and were selected for building the model.  These included AGE, MAT 

STA, JOB, YAT, LOANP, LOANA and LFOB. The accuracy result was 89% with good loan 

classification accuracy of 93.75% and bad loans classification accuracy of 70%. Type I and II error 

rates attained 30% and 6.25% respectively. The predictive power of good loans reached 92.6% and 

for bad loans it reached 73.7%. 
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 Predicted class   

Actual class  Good loans Bad loans Accuracy  

Good loans 75 5 0.9375 

Bad loans 6 14 0.70 

 0.926 0.737 0.89 

Table 6. SLR classification results 

 

5.6. Simplified ANN (SANN) 

 Five variables were selected for the final model using ANN.  These variables included AGE, MAR 

STA, JOB, LOANP, LFOB. Table 7 demonstrates that accuracy results achieved 88% with 90% 

accuracy of good loan classification and 60% accuracy of bad loan classification. Misclassifications 

of good and bad loans scored 5% and 40% respectively. 90.5% of good loans predicted by the model 

were true while 75% of the bad loans predicted were true. 

 Predicted class   

Actual class  Good loans Bad loans Accuracy  

Good loans 76 4 0.95 

Bad loans 8 12 0.60 

 0.905 0.75 0.88 

Table 7. SANN classification results 

 

5.7. Simplified SVM (SSVM) 

  Table 8 summarizes the performance of the simplified SVM credit-scoring model with seven 

variables selected into the model, which included AGE, GEN, MAR STA, JOB LOANP, LFOB.  

Results are 89% for total accuracy, where 95% was of good loans classification accuracy and 65% 

classification accuracy for bad loans. The Type I and II error rates show 35% and 5% loans 

misclassification respectively. Finally, from all loans predicted as good (PPV), 91.6% were true good 

loans and from all loans predicted as bad loans (NPV) 76.5% were true bad loans. 

 Predicted class  

Actual class  Good loans Bad loans Accuracy  

Good loans 76 4 0.95 

Bad loans 7 13 0.65 

 0.916 0.765 0.89 

Table 8. SSVM classification results 
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5.8. Simplified Models results summary  

When using the step forward fashion to assess variable accuracy, the SLR model is superior to 

SANN and SSVM. SLR and SSVM models both scored 89% but the SLR ability in classifying bad 

loans was better than the SSVM model. However, misclassifying a bad loan is more expensive and 

the resulting cost is higher than misclassifying a good loan (West, 2000; Abdou, 2009). SANN 

performance was the lowest in both cases, whether using selected variables or all of them. 

Results of the three credit-scoring models with selected variables achieved classification results 

better than that of the models that were initially created which included all variables. This indicated 

that some variables affected the model performance, and it is best to leave those variables out of the 

model.  In comparison to the models (LR, NN and SVM) that used all variables. The SLR credit-

scoring model outperformed the LR model by 1%; The SANN model was significantly better than the 

ANN model by 3%. Finally, the SSVM model also was superior to SVM model by 3%.  

Table 9 presents all model results for comparison. Accuracy in classifying bad loans, low Type I 

error rate and high PPV are all considered the essential indicators for banks when assessing credit 

worthiness of loan applicants. The best model among all the developed models that can be chosen as 

the best credit-scoring model to be applied in Jordanian retail banking is the SLR model. 

 Acctotal Accgood Accbad Type I error Type II error PPV NPV 

LR 0.88 0.9375 0.65 0.35 0.0625 0.9146 0.722 

SLR 0.89 0.9375 0.7 0.3 0.0625 0.926 0.737 

ANN 0.85 0.925 0.55 0.45 0.075 0.8195 0.647 

SANN 0.88 0.95 0.6 0.4 0.05 0.905 0.75 

SVM 0.86 0.925 0.6 0.4 0.075 0.9024 0.666 

SSVM 0.89 0.95 0.65 0.35 0.05 0.916 0.765 

Table 9. Models results comparison  

According to Garcia et al (2015) it is not applicable to verify that one model achieves results better 

than another, because of the different performance measures or splitting techniques used. For a 

complete performance evaluation, it would seem proper to implement some hypothesis testing to 

emphasize that the experimental differences in performance are statistically significant, and not just 

due to random splitting effects. Choosing the right test for specific experiments depends on factors 

such as the number of datasets and the number of classifiers to be compared. 

 SLR SSVM LR SANN SVM ANN 

SLR 1 0.082 0.046 0.027 0.008 0.003 

SSVM 0.082 1 0.039 0.031 0.015 0.009 

LR 0.046 0.039 1 0.281 0.026 0.019 

SANN 0.027 0.031 0.281 1 0.042 0.037 

SVM 0.008 0.015 0.026 0.042 1 0.452 

ANN 0.003 0.009 0.019 0.037 0.452 1 

Table 10. p-values for pairwise model comparsion using McNemar method 
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For this purpose, a McNemar statistical test (West, 2000) is conducted to determine whether SLR 

performance was not a matter of random process or due to data splitting effect.  As we can see from 

Table 10, SLR is statistically better than other models except SSVM at 5% significance level, whereas 

it is better than SSVM at 10% significance level. The large values reflected in Table 10 indicate that 

the corresponding row and classifiers perform at the same level and there is little difference in the 

prediction vectors of these classifiers. 

 

Figure 8. Average p-value for all classifiers 

Figure 8 is constructed as an average of Table 10 for each row (excluding the 1's on the diagonal). 

This is seen in Figure 8 and when taking Table 8 and 9 into consideration, we can see that the lowest 

average p-value is the SLR classifier. This is a strong sign that the prediction vector of SLR is 

statistically closer to the vector of actual values than the prediction vectors of other classifiers. 

 

6. Banks’ business and strategic objectives 

Implementing a model that can capture a potential bad loan is of a great importance to banking 

institutions as it allows these institutions to avoid financial loss by granting loans that are not paid 

back. However, at the same time, it is important to accurately assess potential good loan applications 

due to higher generation of income.  When managing a loan portfolio it is to also good to have a low 

rate of default loans.  This rate varies from bank to another.   

There is a threshold that must be achieved when assigning good or bad categories.  Basically, 

when loan applicant characteristics are above the threshold, they are rated as good, and when below, 

they are rated as bad. The common choice of threshold values in credit-scoring literature is 0.5; All 

previous models in this study used 0.5 to distinguish between good and bad loans. According to 

Bellotti and Crook (2009) the choice of the threshold value depends on the earlier assumption of the 

0

0.02

0.04

0.06

0.08

0.1

0.12

SLR SSVM LR SANN SVM ANN

Average p-value for each classifier

Page 17 of 35 International Journal of Islamic and Middle Eastern Finance and Management

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



International Journal of Islam
ic and M

iddle Eastern Finance and M
anagem

ent

misclassification costs of good and bad loans. For example if a banks’ focus is on decreasing the 

misclassification of bad loans, the bank should tend to reduce the threshold in order to have more bad 

loans classified correctly.  However, misclassifying good loans will exist as well. This is called a 

trade-off between bad and good loans. Therefore, as the cost of misclassifying bad loans is associated 

with more losses than misclassifying a good loan, we aim to calibrate the chosen model (SLR) by 

determining an optimal cut-off score that meet the banks business and strategic objectives. 

 

6.1.  Model calibration 

In general, banks in Jordan don’t use credit-scoring systems in their loan evaluation processes, but 

the credit policies and guidelines they follow state that there should be a specific rate for the non-

performing or defaulted loans within their portfolio. However, technically setting an optimal cut-off 

score that can lead to better bad loans classification is associated with banking behaviour. Based on 

the credit expert’s knowledge from the bank we collected the data from, the target rate of non-

performing loans was roughly 1.6% (It means that from all good loans accepted by the model 1.6% of 

good loans are predicted to be the limit for misclassification), in other words the desired PPV = 100% 

- 1.6% = 98.4% .  

 If we consider this target default rate of 1.6% as a cut-off score, it means that any loan that falls 

below 1.6% is considered good; hence we obtained the results below: 

 Predicted class  

Actual class Good loans Bad loans Accuracy  

Good loans 46 34 0.575 

Bad loans 0 20 0.1 

 0.1 0.3703 0.66 

Table 10. SLR classification results with 1.6% cutt-off score. 

 

Table 10 summarizes the results of the SLR credit-scoring model with a cut-off score of 1.6%.  

The results reveal that using the 1.6% cut-off which is also the target rate of non-performing loans has 

no bad loans, thus resulting in the PPV leading to 100%. Conversely, the rate of correctly classified 

good loans is 57.5% with a total accuracy of 66%. Therefore despite having 0% misclassified bad 

loans (Type I error), there is 42.5% misclassified good loans (Type II error). Instead, this cut-off can 

be calibrated via trade-off between good and bad loans in order to increase the rate of correctly 

accepted good loans and sacrifice with a bad loan, while still achieving the bank’s target of having 

1.6% of non-performing loans. As a result the best cut-off that leads to the anticipated results is 

17.21%.  These results are presented in Table 11. 
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 Predicted class   

Actual class  Good loans Bad loans Accuracy  

Good loans 64 16 0.80 

Bad loans 1 19 0.95 

 0.9846 0.5428 0.83 

Table 11. SLR classification results with 17.21% cutt-off score 

Table 12, presents the results of SLR credit-scoring model with a cut-off score of 17.21%. 

Although, the PPV rate is lower than the PPV rate with 1.6% cut-off score, the target rate of non-

performing loans is better because there are more good loans classified correctly (22.5% increment of 

18 good loans). The results of good and bad loans classified is 80% and 95%, respectively, with 83% 

total classification accuracy.  The Type I error rate achieved is 5% and Type II error rate is of 20%. 

The NPV rate is higher than the NPV rate of 1.6% cut-off by 17.25%. A superior balance between 

good and bad loan misclassification is achieved with the cut-off of 17.25% because there is a higher 

rate of correctly classified good loans, thus increasing income. 

6.2.  Model profitability  

According to Schreiner (2003), banks can estimate the effects of a scoring model in terms of 

profitability even before it is applied. According to the bank’s presumed target on the non-performing 

loans, a cut-off score of 17.21% reached this target. To check the reliability of the proposed model on 

the banks’ strategic objectives, we aimed to test the effectiveness of the model on the bank’s 

profitability. To estimate the effects of the proposed credit-scoring model on profit, Schreiner (2003) 

proposed to measure the profitability a model can make by considering the cost of losing a good loan 

to avoid misclassifying a bad loan. The net profit of a credit-scoring model can be calculated as:   

(The financial cost of each bad loan* TN) – (The opportunity cost of each good loan * FN) 

Where TN is the number of bad loans avoided or correctly classified, and FN is the number of lost 

or misclassified good loans. Figure 8 illustrates the number of good loans lost against each bad loan 

avoided over several cut-off scores.   
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Figure 8. The ratio of FN loans per TN avoided 

     The figure displays the trade-off between good loans and bad loans, the cut-off score of 17.21% 

shows that 0.8% of good loans need to be sacrificed to save each bad loan, while at the cut-off of 

1.6% the loss is around 1.6% good loans to avoid misclassification of a bad loan.  

 To estimate the effects of this model on bank profits, prior knowledge about the costs of loans 

should be available because the costs are associated with future loan applicants. Intuitively, banks 

believe that the costs related to bad loans are higher than that of losing good loans. However, it is a 

complicated task to deliver consistent estimates of the misclassification costs associated with loans, 

consequently valid expectations might not be available mainly in the environment of Jordanian 

banking. In the case of our bank, no such information or assumptions is available. Schreiner (2003) 

stated that banks in rich and developed countries assume that it takes 10 good loans to pay off the 

losses of one bad loan. Moreover, in the credit-scoring literature, the widely public German credit 

dataset showed a ratio of misclassification costs of 5:1 (West, 2000). Here we will consider different 

ratios as a benchmark to measure the profit in our bank over different cut-off scores. Four different 

scenarios will be carried out using ratios of 10:1, 10:5, 10:10; 10:12 and 5:1.  These rations are tested 

to measure the effect on the profit change of the model. Figure. 7 illustrate the results. 

 As indicated in Figure 9, all ratios lead to an increase of profits at the 17.21% cut-off score, while 

at the cut-off score of 1.6% one ratio makes a profit loss and three ratios make profits, but these 

profits are less than the profits at the 17.21% cut-off score. These results indicate that the bank’s 

target rate of non-performing loans of 1.6% is well identified. At the ratio 10:1, the cut-off score 

17.21% achieved the highest increase in profit among other ratios across all cut-off points. One more 

finding is that all four ratios achieve profits at cut-off values around 15% or higher. 
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Figure 9. The profit change of SLR model over different ratios 

6.3. Quantitative and qualitative lending approaches 

Based on the previous experimental findings, and the effects of the proposed credit-scoring 

model, the question that arises is to what extent these scoring systems can be applied or adopted by 

the banking system in Jordan?  As discussed earlier in this paper, the lending policies of Jordanian 

banks are subjective based on analyses of conducted by credit officers and analysts.  These analysts 

provide expertise in addition to minimal guidelines established by management. Moreover, Jordanian 

banks lend to customers based on collaterals and relationships (Al-Shawabkah and Tambyrajah, 

2009). Credit-scoring systems give a single quantitative measure based on a determined cut-off score 

which determines the customer’s eligibility for a loan or not. In practice, a scoring model could accept 

a customer who is known to the bank of his bad history and could reject a customer who is known to 

the bank for his good reputation and financial capabilities. Anderson (2007) states that judgmental 

techniques are still used with lending decisions, based on little or unstructured data and experience.  

Thus, this portion of the paper presents analyses that consider that there can be a qualitative risk that 

the quantitative scoring models do not discover or capture. Additionally, another question can arise 

for those customers who sit at the border of the cut-off score, either good or bad, and to what extent 

they are eligible for a loan or if they need another chance or further assessment. A bit of human 

assessment may be needed in situations where a cut-off based on a quantitative evaluation is not 

enough to make an appropriate determination. 
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Mester (1997) and Schreiner (2003) provided some examples of countries’ experience on using 

scoring systems, for example Mester referred to a bank that uses scoring systems up to certain 

amounts and Schreiner provided an example of a bank that filed bankruptcy because it solely trusted 

the scoring systems. These examples raise the concern about relying totally on a credit-scoring system 

while limiting the expertise of the credit officer. In such cases, credit officers can identify and 

discover risks that cannot be directly or indirectly recognised by an automated scoring system.  These 

analysts and credit experts provide expertise in certain situations based on their experience, 

knowledge and relationship with the customer.  

 To overcome such issues, and to take advantage of the expertise and the knowledge of credit 

officers and analysts, a combination of a quantitative and qualitative credit-scoring system is proposed 

to determine its efficiency and reliability against the sole use of an automated credit-scoring model. A 

Model of 2 cut-off points is assessed and presented in this section of the paper, where 2 automatic cut-

offs are predetermined.  These cut-off points have customers who scored less than the first cut-off and 

are automatically accepted and where customers greater than the second cut-off point are 

automatically rejected.  In this scenario, the customer predictions which fall between the 2 cut-off 

points will be further examined and evaluated by the credit officer or analysts. 

 According to Jensen (1992), the determination of the cut-off points is considered a complex task 

because the predictions of good and bad customers’ loans frequently overlap. One strategy to 

overcome this complexity is to assign these cut-off points as stated in the Credit Risk: Estimation 

Techniques report (www.crisil.com), where the two cut-off scores are selected, such that it minimizes 

the cost of evaluation (0<Cut-off1<Cut-off2<1). Usually, the first cut-off and the second cut-off points 

are selected as follows: 

-  The maximum rate of the misclassification of bad loans (bad loan → good loan) should not 

be more than 5%. 

-  At least 75% of bad loans should be correctly classified by the model (bad loan → bad loan), 

this stress that bad loans are associated with its high costs of misclassifications that have 

occurred  

The following are the rules for predicting the default:  

- If the model prediction is < Cut-off1 then loan is accepted. 

- If the model predictions is > Cut-off2 then the loan is rejected. 

- If the model predictions are between the 2 cut-offs the loans are further evaluated and 

examined further (Cut-off1<Predictions< Cut-off2). 

Based on the above discussion, the results of the model are demonstrated in Table 12.  
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Actual class Predicted class 

Good loans  (0.1522<loans to Review<0.3961) Bad loans  

Good loans  62 11 8 

Bad loans  1 4 15 

Misclassified bad loans  5   

Correctly classified bad loans    75 

Table 12. SLR model with 2 cut-off scores 

 

 The model was trained and tested on cut-off points of 0.1522 and 0.3961. The model correctly 

classified 62 good loans and misclassified 8 good loans. While it classified 15 bad loans correctly and 

missed only 1 bad loan. The loans that needed further review and assessment were 11 good loans and 

4 bad loans. Let’s assume that that the credit officer accepted all the 11 good and rejected all the 4 bad 

loans, the total accepted good loans will be 73 and the rejected bad loans will be 19. However, if the 

credit analyst rejected the good loans and accepted the bad loans, the total will be 19 misclassified 

good loans and 5 misclassified bad loans.  

 In comparison with the SLR model with cut-off scores of 0.5 and 0.1721, the accepted good loans 

were 75 and 64 loans respectively, and the rejected bad loans were 14 and 19 loans respectively. It 

can, thus, be concluded that the SLR credit-scoring model of 0.5 cut-off score recognizes good loans 

better than the combined scoring model, while the combined model was superior to recognise bad 

loans if the credit officer evaluated the loans precisely. For the SLR credit-scoring model of 0.1721 

cut-off score, the combined model performed better assuming that all reviewed loans were correctly 

evaluated. In the case that the credit officer falsely evaluated the loans, the combined model will be 

worse than SLR with 0.5 and 0.1721 cut-off points respectively.  

In summary, due to common lending nature in Jordanian banks the integration of the credit 

analysts’ knowledge and expertise in credit-scoring models shows that it could enhance the model 

outcome, but it depends on the efficiency and precision of the credit analyst in evaluating the loans 

that need further assessment. 

 

7. Conclusion 

This paper presented a set of automated credit-scoring models to choose among the best fit model 

that can stand as an effective and supportive decision tool in the process of credit evaluation. The 

credit-scoring models were designed using well-known classification techniques, namely LR, ANN 

and SVM.  

In the light of the study’s results and discussion, adopting credit-scoring models in Jordanian 

banking sector could be a great and profitable tool and hand for decision making process. The 

existence of a consistent credit-scoring model helps in reducing processing and analysis costs and 

efforts, allow faster decisions, guarantying credit collectively and reduce any exposure to risks, hence 

having greater impact on credit and portfolio risk management policies and practices. 
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One limitation in this study is the use of a relatively small dataset. Finally, there is no overall 

optimal model because the choice of the classification technique depends on the nature of the 

problem, dataset size, and economic conditions of the market. Nevertheless, the bank’s management 

will need to decide on the best model to be applied. This paper can help provide guidance in the 

transformation to automated systems in future. Ultimately, future research could be extended by: 

1) Collecting a larger dataset to validate the selected model.  

2) Testing different classification techniques such as Decision Trees and Naïve Bayes.  

3) Developing behavioural scoring systems which focus on the payment behaviour of existing loan 

customers. 
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No. Description Definition Type Code 

X1 Age Applicant’s Age Continuous AGE 

X2 Gender Male/ Female Categorical GEN 

X3 Marital Status Married/ Single Categorical MAR STA 

X4 Job Type of Job Nominal JOB 

X5 Monthly Income Applicant’s monthly salary Continuous MON INC 

X6 Years at Job Years at present job Continuous YAJ 

X7 Loan Purpose Personal/Auto/Housing loan Nominal LOANP 

X8 Loan Amount Loan amount in JD Continuous LOANA 

X9 Loan Duration Duration of the loan in months Continuous LOAND 

X10 Loans from other Banks Does applicant have loans from other banks Categorical LFOB 

X11 Liabilities Obligations to his bank Categorical LIAB 

X12 Property Applicant owns a house or not Categorical PROP 

Y Class 0 (Good applicant)/ 1(Bad applicant) Continuous LOANS 

Table 1. Description of the Jordanian dataset attributes 

 

 Predicted (%)  

Actual Good loans Bad loans Accuracy (%) 

Good applicant  TP FN (Type II error) Accgood 

Bad applicant FP (Type I error) TN Accbad 

 PPV  NPV  Acctotal 

Table 2. Confusion Matrix for Credit-scoring 

 

 Predicted class   

Actual class  Good loans Bad loans Accuracy  

Good loans 75 5 0.9375 

Bad loans 7 13 0.65 

 0.9146 0.722 0.88 

Table 3. LR classification results 
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 Predicted class   

Actual class  Good loans Bad loans Accuracy  

Good loans 74 6 0.9250 

Bad loans 9 11 0.55 

 0.8915 0.647  0.85 

Table 4. ANN classification result 

 Predicted class   

Actual class  Good loans Bad loans Accuracy  

Good loans 74 6 0.9250 

Bad loans 8 12 0.60 

 0.9024 0.666 0.86 

Table 5. SVM classification results 

 Predicted class   

Actual class  Good loans Bad loans Accuracy  

Good loans 75 5 0.9375 

Bad loans 6 14 0.70 

 0.926 0.737 0.89 

Table 6. SLR classification results 

 

 Predicted class   

Actual class  Good loans Bad loans Accuracy  

Good loans 76 4 0.95 

Bad loans 8 12 0.60 

 0.905 0.75 0.88 

Table 7. SANN classification results 

 

 Predicted class  

Actual class  Good loans Bad loans Accuracy  

Good loans 76 4 0.95 

Bad loans 7 13 0.65 

 0.916 0.765 0.89 

Table 8. SSVM classification results 
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 Acctotal Accgood Accbad Type I error Type II error PPV NPV 

LR 0.88 0.9375 0.65 0.35 0.0625 0.9146 0.722 

SLR 0.89 0.9375 0.7 0.3 0.0625 0.926 0.737 

ANN 0.85 0.925 0.55 0.45 0.075 0.8195 0.647 

SANN 0.88 0.95 0.6 0.4 0.05 0.905 0.75 

SVM 0.86 0.925 0.6 0.4 0.075 0.9024 0.666 

SSVM 0.89 0.95 0.65 0.35 0.05 0.916 0.765 

Table 9. Models results comparison  

 

 SLR SSVM LR SANN SVM ANN 

SLR 1 0.082 0.046 0.027 0.008 0.003 

SSVM 0.082 1 0.039 0.031 0.015 0.009 

LR 0.046 0.039 1 0.281 0.026 0.019 

SANN 0.027 0.031 0.281 1 0.042 0.037 

SVM 0.008 0.015 0.026 0.042 1 0.452 

ANN 0.003 0.009 0.019 0.037 0.452 1 

Table 10. p-values for pairwise model comparison using McNemar method 

 

 Predicted class  

Actual class Good loans Bad loans Accuracy  

Good loans 46 34 0.575 

Bad loans 0 20 0.1 

 0.1 0.3703 0.66 

Table 10. SLR classification results with 1.6% cutt-off score. 

 

 Predicted class   

Actual class  Good loans Bad loans Accuracy  

Good loans 64 16 0.80 

Bad loans 1 19 0.95 

 0.9846 0.5428 0.83 

Table 11. SLR classification results with 17.21% cutt-off score 
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Actual class Predicted class 

Good loans  (0.1522<loans to Review<0.3961) Bad loans  

Good loans  62 11 8 

Bad loans 1 4 15 

Misclassified bad loans  5   

Correctly classified bad loans    75 

Table 12. SLR credit-scoring model with 2 cut-off scores 
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Figure 1. Distribution of credit facilities according to economic sectors (2003– 2016) (CBJ) 

 

 

 

Figure 2. Total credit facilities by licensed banks in Jordan (CBJ) 
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Figure 3. Credit Facilities According to Type (CBJ) 

 

 

 

 

Figure 4. Total Deposits by licensed banks in Jordan (CBJ) 
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Figure 5. Research workflow 
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Figure 6. ANN topology  

 

 

Figure 7. The basis of support vector machines  
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Figure 8. Average p-value for all classifiers 

 

Figure 9. The ratio of FN loans per TN avoided 
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Figure 10. The profit change of SLR model over different ratios 
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