Smart Contracts Vulnerabilities:
A Call for Blockchain Software Engineering?

Giuseppe Destefanis
School of Computer Science
University of Hertfordshire, UK
g.destefanis @herts.ac.uk

Andrea Bracciali
University Of Stirling, UK
abb@cs.stir.ac.uk

Abstract—Smart Contracts have gained tremendous popularity
in the past few years, to the point that billions of US Dollars
are currently exchanged every day through such technology.
However, since the release of the Frontier network of Ethereum in
2015, there have been many cases in which the execution of Smart
Contracts managing Ether coins has led to problems or conflicts.
Compared to traditional Software Engineering, a discipline of
Smart Contract and Blockchain programming, with standardized
best practices that can help solve the mentioned problems and
conflicts, is not yet sufficiently developed. Furthermore, Smart
Contracts rely on a non-standard software life-cycle, according to
which, for instance, delivered applications can hardly be updated
or bugs resolved by releasing a new version of the software.

In this paper we advocate the need for a discipline of
Blockchain Software Engineering, addressing the issues posed by
smart contract programming and other applications running on
blockchains. We analyse a case of study where a bug discovered in
a Smart Contract library, and perhaps ‘“unsafe” programming,
allowed an attack on Parity, a wallet application, causing the
freezing of about 500K Ethers (about 150M USD, in November
2017). In this study we analyze the source code of Parity and the
library, and discuss how recognised best practices could mitigate,
if adopted and adapted, such detrimental software misbehavior.
We also reflect on the specificity of Smart Contract software
development, which makes some of the existing approaches
insufficient, and call for the definition of a specific Blockchain
Software Engineering.

Index Terms—smart contracts; blockchain; software engineer-
Ing;

I. INTRODUCTION

Smart contracts are becoming more and more popular
nowadays. They were first conceived in 1997 and the idea was
originally described by computer scientist and cryptographer
Nick Szabo as a kind of digital vending machine. He described
how users could input data or value and receive a finite item
from a machine (in this case a real-world snack or a soft drink).

More in general, smart contracts are self-enforcing agree-
ments, i.e. contracts, as we intend them in the real world, but
expressed as a computer program whose execution enforces
the terms of the contract. This is a clear shift in the paradigm:
untrusted parties demand the trust on their agreement to the
correct execution of a computer program. A properly designed

Michele Marchesi, Marco Ortu, Roberto Tonelli

University Of Cagliari, Italy
marchesi @unica.it

marco.ortu@diee.unica.it, roberto.tonelli @dsf.unica.it

Robert Hierons
Brunel University, UK
rob.hierons @brunel.ac.uk

smart contract makes possible a crow-funding platform with-
out the need for a trusted third party in charge of administering
the system. It is worth remarking that such a third party makes
the system centralized, where all the trust is demanded to a
single party, entity, or organisation.

Blockchain technologies are instrumental for delivering the
trust model envisaged by smart contracts.

In the example of a crowd-funding platform for supporting
projects, the smart contract would hold all the received funds
from a project’s supporter (it is possible to pay a smart
contract). If the project fully meets its funding goals, the smart
contract will automatically transfer the money to the project.
Otherwise, the smart contract will automatically refund the
money to the supporters.

Since smart contracts are stored on a blockchain, they are
immutable, public and decentralised. Immutability means that
when a smart contract is created, it cannot be changed again
and no one will be able to tamper with the code of a contract.

The decentralised model of immutable contracts implies that
the execution and output of a contract is validated by each
participant to the system and, therefore, no single party is in
control of the money. No one could force the execution of the
contract to release the funds, as this would be made invalid
by the other participants to the system. Tampering with smart
contracts becomes almost impossible.

The first Blockchain to go live was the Bitcoin’s Blockchain
[1]] in 2009. It introduced the idea of programs used to validate
agreement amongst untrusted parties: Bitcoin transactions are
subject to the successful termination of a non-Turing complete
program in charge of validating things like ownership and
availability of the crypto money. The biggest blockchain that
currently supports smart contracts is Ethereum, which was
specifically created and designed with an extended execution
model for smart contracts in 2014 [2]]. Contracts in Ethereum
can be programmed with Solidity, a programming language
developed for Ethereum.

A few years down the line, several detrimental software
misbehaviors, which caused considerable monetary loss and
community splits, have posed the problem of the correct

design, validation and execution of smart contracts.

In this paper we advocate the need for a discipline of
Blockchain Software Engineering, addressing the issues posed
by smart contract programming and other applications run-
ning on blockchains. Blockchain Software Engineering will
specifically need to address the novel features introduced
by decentralised programming on blockchains. These will be
discussed in more detail in the rest of this paper.

We consider a case study, the recent attack to the Parity
wallet (2017). A bug discovered in a smart contract library
used by the Parity application, caused the freezing of about
500K Ethers (see [3] for a summary).

We analyze the source code of Parity and the library, and re-
flect on the specificity of smart contract software development,
noting some shortfalls of standard approaches to software
development. We then discuss how recognized best practices
in traditional Software Engineering could have mitigated, if
adopted and adapted, such detrimental software misbehavior.

This paper aims to contribute a first step towards the
definition of Blockchain Software Engineering.

II. BACKGROUND

In this section we briefly introduce the blockchain and smart
contracts technology, their execution environment and model.
Since our study is focused on the Ethereum platform we will
use it as example but the concepts presented here are of general
validity.

A. Decentralized Ledgers

A blockchain is essentially a shared ledger that stores
transactions, holding pieces of information, in a decentralized
peer-to-peer network. Nodes are called miners and each one
maintains a consistent copy of the ledger. Transactions are
grouped together into blocks, each hash-chained with the pre-
vious block. Such a data structure is the so called blockchain,
shown in Figure [I]

Block N Header V Block N+1 Header

v
—{prevrasn | [Timestamp | [(uncles ash | L—{ o[Prevhasn | [Timestamp | [uncles Hash | |——

[Benenciary | [Logs Bioom | [Dimcuty | [Extra Data |

[Beneficiary | [Logs Boom | [Diffcuty | [Extrapata |

[Brocktum | [‘GasLimit | [[Gasused | [Mix Hash] [(Brockum | [‘GasLimit | [[Gasused | [Mix Hash |

[state root | [TransactionRoot_| [ReceiptRoot | [state Root | [Transaction Root | [ReceiptRoot |

\

Merkie-Patricia State Trie forblock N 29 | | Merkie-patricia State Trie forblock Ne1

Fig. 1. Blockchain and Ethereum architecture. Each block of the chain
consists of a large number of single transactions.

Miners use a consensus protocol in order to agree on the
validity of each block, called Nakamoto Consensus Protocol

[1]]. At any time miners group their choice of incoming new
transactions in a new block, which they intend to add to the
public blockchain. Nakamoto consensus uses a probabilistic al-
gorithm for electing the miner who will publish the next valid
block in the blockchain. Such a miner is the one who solves
a computationally demanding cryptographic puzzle. Such a
procedure is called proof-of-work. All other miners verify that
the new block is correctly constructed (e.g. no virtual coin
is spent twice) and update their local copy of the blockchain
with the new block. Bitcoin transactions essentially record the
transfer of coins from one address, a wallet say, to another
one. Differently, Ethereum transactions also include contract-
creation transactions and contract-invoking transactions. The
former ones record a smart contract on the blockchain, and
the latter ones cause the execution of a contract functionality
(which enforces some terms of the contract). We refer the
reader to the original white papers of Bitcoin and Ethereum
[1], [2] for further details.

B. Ethereum Smart Contracts

A Smart Contract (SC) is a full-fledged program stored
in a blockchain by a contract-creation transaction. A SC is
identified by a contract address generated upon a successful
creation transaction. A blockchain state is therefore a mapping
from addresses to accounts. Each SC account holds an amount
of virtual coins (Ether in our case), and has its own private
state and storage. An Ethereum SC account hence typically
holds its executable code and a state consisting of:

e private storage
e the amount of virtual coins (Ether) it holds, i.e. the
contract balance.

Users can transfer Ether coins using transactions, like in
Bitcoin, and additionally can invoke contracts using contract-
invoking transactions. Conceptually, Ethereum can be viewed
as a huge transaction-based state machine, where its state is
updated after every transaction and stored in the blockchain.

A Smart Contract’s source code manipulates variables in the
same way as traditional imperative programs. At the lowest
level the code of an Ethereum SC is a stack-based bytecode
language run by an Ethereum virtual machine (EVM) in
each node. SC developers define contracts using high-level
programming languages. One such language for Ethereum is
Solidity [4] (a JavaScript-like language), which is compiled
into EVM bytecode. Once a SC is created at an address X, it is
possible to invoke it by sending a contract-invoking transaction
to the address X. A contract-invoking transaction typically
includes:

o payment (to the contract) for the execution (in Ether).
« input data for the invocation.

1) Working Example: Figure 2| shows a simple example
of SC reported in [5)], which rewards anyone who solves a
problem and submits the solution to the SC.

A contract-creation transaction containing the EVM byte-
code for the contract in Figure [2is sent to miners. Eventually,
the transaction will be accepted in a block, and all miners

contract Puzzle { 1

2

address public owner ; 3

bool public locked ; 4

uint public reward ; 5

bytes32 public diff ; 6

bytes public solution ; 7

8

function Puzzle () {// constructor 9

owner = msg.sender ; 10

reward = msg.value ; 11

locked = false ; 12

diff = bytes32 (11111); // pre-defined 13

difficulty

} 14

15

function (){ // main code , runs at every 16
invocation

if (msg.sender == owner) { // update reward 17

if (locked) 18

throw ; 19

owner.send (reward) ; 20

reward = msg.value ; 21

} else if (msg.data.length > 0) { 22

// submit a solution 23

if (locked) throw ; 24

if (sha256 (msg.data) < diff) { 25

msg.sender.send (reward); // send reward 26

solution = msg.data ; 27

locked = true ; 28

} 29

} 30

} 31

} 32

Fig. 2. Smart Contracts example.

will update their local copy of the blockchain: first a unique
address for the contract is generated in the block, then each
miner executes locally the constructor of the Puzzle contract,
and a local storage is allocated in the blockchain. Finally the
EVM bytecode of the anonymous function of Puzzle (Lines
16+) is added to the storage.

When a contract-invoking transaction is sent to the address
of Puzzle, the function defined at Line 16 is executed by
default. All information about the sender, the amount of
Ether sent to the contract, and the input data of the invoking
transaction are stored in a default input variable called msg.
In this example, the owner (namely the user that created the
contract) can update the reward (Line 21) by sending Ether
coins stored in msg.value (if statement at Line 17), after
sending back the current reward to the owner (Line 20).

In the same way, any other user can submit a solution
to Puzzle by a contract-invoking transaction with a payload
(i.e., msg.data) to claim the reward (Lines 22-29). When a
correct solution is submitted, the contract sends the reward to
the sender (Line 26).

2) Gas system: It is worth remarking that a SC is run on the
blockchain by each miner deterministically replicating the exe-
cution of the SC bytecode on the local copy of the blockchain.
This, for instance, implies that in order to guarantee coherence
across the copies of the blockchain, code must be executed in
a strictly deterministic way (and therefore, for instance, the

generation of random numbers may be problematic).

Solidity, and in general high-level SC languages, are Turing
complete in Ethereum. In a decentralised blockchain archi-
tecture Turing completeness may be problematic, e.g. the
replicated execution of infinite loops may potentially freeze
the whole network.

To ensure fair compensation for expended computation
efforts and limit the use of resources, Ethereum pays miners
some fees, proportionally to the required computation. Specif-
ically, each instruction in the Ethereum bytecode requires a
pre-specified amount of gas (paid in Ether coins). When users
send a contract-invoking transaction, they must specify the
amount of gas provided for the execution, called gasLimit, as
well as the price for each gas unit called gasPrice. A miner
who includes the transaction in his proposed block receives
the transaction fee corresponding to the amount of gas that
the execution has actually burned, multiplied by gasPrice. If
some execution requires more gas than gasLimit, the execution
terminates with an exception, and the state is rolled back to
the initial state of the execution. In this case the user pays
all the gasLimit to the miner as a counter-measure against
resource-exhausting attacks [6].

III. CASE STUDY AND METHODOLOGY

Recently Ethereum suffered a supposedly involuntary hack,
in which an inexperienced developer froze multiple accounts
managed by the Parity Wallet application. The hack has
suddenly risen to the news since the amount of Ether coins
in the frozen account was estimated to be 513,774.16 Ether
(equivalent to 162M USD at the time). In November 2017 the
hack became (in)famously known as the Parity Wallet hack.
This was the result of a single library code deletion.

This case replicated a similar problem exploited by another
hacker on the same Parity Wallet code, a few months earlier
(July 2017). In that case, a multi-signature wallet was hacked
and set in control of a single owner, who acquired all the Ether
coins of that single wallet.

The Parity Wallet hack represents a paradigmatic example of
problems that may currently occur in the development of smart
contracts and blockchain-related software in general. Such
problems are associated to the lack of suitably standardised
best practices for blockchain software engineering.

In the rest of this paper, we will analyse the Parity Wallet
hack case by applying static code analysis to the Parity
library. We aim to understand the code structure and, more
importantly, the link between smart contracts and the functions
defined in smart contract libraries. After analyzing the Solidity
code of the Wallet, we will outline the events that ended up
with more than 500k Ether frozen. Then, we will elaborate on
viable solutions from the perspective of Software Engineering.
These represent potential general solutions for cases analogous
to the Parity Wallet hack.

IV. STRUCTURE AND FUNCTIONALITY OF PARITY

Parity is an Ethereum client that is integrated directly
into web browsers. It allows the user to access the basic

Ether and token wallet functions. It is also an Ethereum GUI
browser that provides access to all the features of the Ethereum
network, including DApps (decentralised applications). Parity
also operates as an Ethereum full node, which means that
the user can store and manage the blockchain on his own
computer. It is a complex and critical decentralised application.

A. Libraries on Ethereum

Solidity and the EVM provide three ways to call a function
on a smart contract: CALL, CALL-CODE, and DELEGATE-
CALL. The former is a call to a function that will be executed
in the environment of the called contract. The other two calls
execute the called code in the caller environment. Many library
calls on Ethereum are implemented with DELEGATE-CALL,
typically by deploying a contract that serves as a library: the
contract has functions that anyone can call, and these may
be used, for instance, to make changes in the storage of the
calling contracts. Solidity has some syntactic constructs which
allow libraries offering DELEGATE-CALLs to be defined
and “imported” by other contracts. However, at the EVM
level the library construction disappears, and DELEGATE-
CALLs and other calls are actually deployed as smart contract
functionalities.

1) Statically linked libraries: It is possible to embed all
the library code in a smart contract, e.g. the multi-signature
wallet contract itself, instead of using DELEGATE-CALLS to
an external contract. In a sense, this would be similar to the
standard static linking of libraries. However, statically linked
code increases the gas cost of contract deployment (space also
has a cost).

2) Parity library contract: Parity made the choice to adopt
library-driven smart contract development for their multi-
signature wallets. That is, Parity initially deployed a multi-
signature contract as their library, and all the other Parity
multi-signature wallets referenced that single library contract
for all their functionality. The library itself was actually
a properly working multi-signature wallet. In hindsight, it
probably shouldn’t have been.

All the Parity multi-signature wallets (except for the library
one) reference the library by declaring the following constan

address constant _walletLibrary = 1
0x863df6bfadd469f3eadlbe8f9f2aae51c91a907b4 2

Since it is a constant, it is generated at compile time, meaning
it’s permanently stored in “code”, not in “storage”. The value
would be the address of the library to DELEGATE-CALL on.
By running

eth.getCode (walletAddress) 1 ‘

on one of the affected wallets (walletAddress), it is still
possible to see the address of the now-dead library at the line
code of index 422.

Another observation is that it would probably be better
practice to allow the owners of the wallets to change the linked
library, instead of coding it in the bytecode.

Uhttps://medium.com/crypt-bytes-tech/parity-wallet-security-alert-
vulnerability-in-the-parity-wallet-service-contract-1506486c¢4160

V. ANALYSIS OF THE ATTACK

In this section we report a summary of the description
of the attack presented on ‘“ethereum.stackexchange.com” at
the link https://ethereum.stackexchange.com/questions/30128/
explanation-of-parity-library-suicide.

Remarkably, the attack that we are discussing was an-
nounced by a post of the supposedly unaware author: I
accidentally killed it’P] The author took control of a li-
brary contract, killed it, obliterating functionality for ~500
multi-signature wallets and effectively, irreversibly freezing
~$150M. A hard fork would be required to restore the contract
and/or return funds.

It is important to highlight that the library we are con-
sidering was a working wallet. However, it had not been
initialized since it was a library contract and the variable
only_uninitialized had not been set. The attack could
have been avoided if, after Parity deployed the library contract,
it would have called initWallet-once () to claim the
contract and set the uninitialized variables, including owner.

Anyone could then call the function initWallet on the library
contract. As the “hacker” did. Such a call, amongst other
things, sets the caller, i.e. the hacker, as the owner of the
contract being initialised. It is worth remarking that such a
call is perfectly legal and it just initializes a wallet which has
not been yet initialized. At this point, the owner of the library
contract (e.g., an hacker), can call any privileged function,
amongst which ki11 (). The kill function calls suicide (),
which is now being replaced by self-destruct. The
suicide function sends the remaining funds to the owner, de-
stroying the contract and clearing its storage and code. Figure
[3] shows the diagram of the functions and their dependencies
for the Parity smart contract library defined at the address
0x863df6bfad4469f3eadl0be8f9f2aaeb1c91a907b4

Every call to the library will now return false and the
multi-signature wallet contracts relying on the library contract
code would get zero (with DELEGATE-CALL). The contracts
still hold funds, but all the library code is set to zero. The
multi-signature wallets are locked and the majority of the
functionalities depend on the library which returns zero for
every function call.

Indeed, after having killed the library contract, any other
contracts depending on the killed library queried with

isowner (any_addr) 1

return TRUE, as a consequence of the delegate call made to
a dead contract (the hacker tried this, to allegedly test the
exploit).

The Ethereum Transaction that tracks the kill call is

0x47f7cf£7a5€671884629c93b368cb18f58a 1
993f4b19c2a53a8662e3£1482£690 2

Wallets deployed before July 19 used a different library
contract with a similar initWallet bug, but the library contract

Zhttps://github.com/paritytech/parity/issues/6995#issuecomment-
342409816

https://ethereum.stackexchange.com/questions/30128/explanation-of-parity-library-suicide
https://ethereum.stackexchange.com/questions/30128/explanation-of-parity-library-suicide

OwnerAdded

removeOwner
OwnerRemoved

hasConfirmed setDailyLimit @ @

resetSpent Today
create

initMultiowned

clearPending

changeRequirement
RequirementChanged

OwnerChanged

Legend:

= Black: Public function

= Gray: Internal function

= Red: Send to external address
= Blue: Constant function

confirmAndCheck underLimit

Fig. 3. Parity Wallet Dependency Graph

could not be taken over in a similar fashion as it had already
been initialized by the developers at Parity.

The choice of defining the Wallet library as a contract
instead of as a library, with the actual wallets making simple
DELEGATE-CALLSs to this linked smart contract, also needs
to be confronted with the recommended practice of clearly
defining libraries as such. Such a choice, makes the library
contract behave more like a Singleton than a proper Library.

The only way to restore wallets’ functionalities would be
a hard fork in order to re-enable the library code. It is worth
recalling that a hard fork would require an agreement by the
majority of the miner community and their coordinated effort
to develop an alternative branch of the blockchain, where the
hack has basically never occurred. Although there have been
cases in which this has been done, e.g. for the DAO attack [[7]],
such a recovery strategy is an extraordinary event of extremely
difficult realisation, which bears disastrous consequences - e.g.
the cancellation of “happened” independent transactions - and
that cannot currently be considered a routine error-correction
practice.

VI. BEST PRACTICES THAT COULD HAVE HELPED

Smart Contracts security is an open research field [S]]. The
development of bug-free source code is still an utopia for
traditional software development, after decades of analysis
and development of engineering approaches. Error freedom
is even more daunting for blockchain software development,
which started less then a decade ago. In this section we
discuss approaches that could have helped in mitigating the
effects of the attack, drawing from accepted best practices
in traditional software engineering. It is worth remarking here
that vulnerabilities like the one leading to the Parity attack had
been highlighted in literature, e.g. [8], a fact that strengthens
even more our call for the adoption of standard and best
practices in Blockchain Software Engineering.

A. Anti-patterns

An anti-pattern iS a common response to a recurring
problem that is usually ineffective and risks being highly
counterproductiveE] We have identified three anti-patterns in
our case study that are responsible for the issue under analysis.

o The creation of a SM, that serves as full-fledged library,
which is then left uninitialized.

o The creation of SMs that depend on external SM used
as a library, and the address of such external library is
hard-coded in the SMs and cannot be updated.

e The used SM library includes the definition of a public
function that might call destroying functionality, such as
suicide.

On the contrary, a pattern to be used is

o To allow SCs to re-address other SCs code whenever
these are used as a library.

Such a strategy would also enable SCs to reference new
libraries that have been deployed in more recent blocks.
Furthermore, the strategy can be exploited for debugging
purposes, refactoring, introduction of new features, and, in
general, for purposes similar to versioning in traditional soft-
ware engineering.

For example, faults could be so corrected in SC code and
the corrected version of the same SC can be successively re-
deployed and accepted by miners. Once provided with the
address of the debugged contract, the very same contracts that
were calling the faulty version can call the debugged contract.
A similar scenario can be used for any issue resolution as in
traditional versioning systems.

Such a solution applies to the present case study, in the
hypothesis that the Wallet library address would have been
saved into the private storage of each Parity wallet, and

3Definition from https://en.wikipedia.org/wiki/Anti-pattern, The term anti-
pattern was coined in 1995 by Andrew Koenig.

https://en.wikipedia.org/wiki/Anti-pattern

managed through setter and getter methods, instead of being
hard coded.

B. Testing

Testing smart contract is challenging and critical, because
once deployed on the blockchain they become immutable, not
allowing for further testing or upgrading. At present, to the
best of our knowledge, there is not a testing framework for
Solidity, like e.g. JUnit for the Java language, meaning that
every smart contract has to be tested manually.

The nature of smart contracts introduces at least two com-
plications to testing: an application may be critical and it is
very difficult to update an application once deployed. As a
result, it is desirable to use robust testing techniques. Manual
test generation is likely to form an important component but
inevitably is limited; there is a need for effective automated
test generation (and execution) techniques.

Currently available options to test contracts are:

« Deploy the contract to live (the real) Ethereum main net-
work and execute it. This costs about 5 minutes and real
money to deploy and execute (slow, public(dangerous),
$$9).

o Deploy the contract to the test-net Ethereum network
(for developers usage) and execute it. This costs about 2
minutes to deploy and free ether (slow, public(dangerous),
free(no real money))

o Deploy the contract to an Ethereum network (local)
simulator and execute it. This costs about 3 seconds and
is free (fast, private(nice!!), free), but limited interaction
and no realistic test of network related issues.

There are many automated test generation approaches that
might have value. A number of these use formal approaches,
such as those based on symbolic execution (e.g. [9]]), or search-
based methods (e.g. [10]) to produce test cases that provide
code coverage. It is unclear whether such techniques would
have found the attack on Parity since the attack involved a
sequence of operations and code coverage techniques typically
aim to cover smaller structures, such as branches in the codeﬂ
Code coverage approaches may still have value but it appears
that they are not sufficient on their own.

An alternative, and complementary, approach is to base
test automation on a model; an approach that is typically
called model-based testing (MBT) (see [11] for a survey).
Some MBT techniques aim to cover the model but there are
also more rigorous approaches that generate test cases that
are guaranteed to find certain classes of faults (defined by
a fault model) or that are guaranteed to find all faults if
certain well-defined conditions (test hypotheses) hold [12].
Such approaches provide a trade-off: as one weakens the
assumptions or widens the class of faults, the cost of testing
increases. There is also the scope to utilize formal verification
techniques in order to reason about the underlying assumptions
made by these techniques or, indeed, to find faults.

41t is possible to require, for example, the coverage of paths but such
approaches tend not to scale.

We have seen that smart contracts are state-based and so it
would be natural to use state-based models in MBT, allowing
the use of a wide range of test automation techniques. There
appears to be potential for MBT approaches to find faults such
as the one that resulted in the Parity attack. First, the process of
producing a model might have led the developers to consider
what happens if a user calls a library function without it being
initialized. Second, the attack involved a particular (short) se-
quence of operations and state-based MBT techniques focus on
the generation of such sequences. Naturally, the effectiveness
of MBT depends on the model and also the fault model (or
test hypotheses) used. An interesting challenge is to explore
smart contracts and their faults in order to derive appropriate
fault models or test hypotheses.

VII. RoAD MAP TO BOSE

The Parity wallet case study clearly showed that a
Blockchain-Oriented Software Engineering (BOSE) [13]], [14],
[15], [16]], [17] is needed to define new directions to al-
low effective software development. New professional roles,
enhanced security and reliability, modeling and verification
frameworks, and specialized metrics are needed in order to
drive blockchain applications to the next reliable level. At least
three main areas to start addressing have been highlighted by
our analysis of a specific case of study:

o Best practices and development methodology

o Design patterns

o Testing

The aim of BOSE is to create a bridge between traditional
software engineering and blockchain software development,
defining new ad-hoc methodologies, fault analysis [18]], pat-
terns [19], [20], quality metrics, security strategies and testing
approaches [21]] capable of supporting a novel and disciplined
area of software engineering.

VIII. CONCLUSIONS

In this paper, we presented a study case regarding the
Parity smart contract library. The problem resulted from poor
programming practices that led to the situation in which an
anonymous user was able to accidentally (it is not clear if he
did it on purpose) freeze about 500K Ether (150M USD on
November 2017).

We investigated the case, analyzing the chronology of the
events and the source code of the smart contract library. We
found that the vulnerability of the library was mainly due to
a negligent programming activity rather than a problem in the
Solidity language.

The vulnerability was exploited by the anonymous user in
two steps. First the attacker was able to become the owner
of the smart contract library (because it was created and left
uninitialized), then the attacker did nothing more than calling
the initialization function. After that the suicide function was
called, which killed the library, leading to the situation in
which it was not possible to execute functionality on the smart
contracts created with the library, because all the delegate
calls ended up in the dead smart contract library. This case

clearly demonstrated a need for Blockchain Oriented Software

Engineering in order to prevent, or mitigate such scenarios.
The aim for BOSE is to pave the way for a disciplined,

testable and verifiable smart contract software development.

[1]
[2]
[3]

[4]
[5]

[6]

[7]
[8]

[9]

[10]

(1]

REFERENCES

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
“Ethereum foundation. the solidity contract-oriented language.” https:
//github.com/ethereum/solidity., 2014.

“A postmortem on the multi-sig li-
brary self-destruct,” https://paritytech.io/
a-postmortem-on-the-parity-multi-sig-library-self-destruct/, 2017.
“Ethereum foundation. ethereum original white paper.” https:/github.
com/ethereum/wiki/wiki/White-Paper, 2014.

L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2016, pp. 254-269.
L. Luu, J. Teutsch, R. Kulkarni, and P. Saxena, “Demystifying incentives
in the consensus computer,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2015,
pp. 706-719.

D. Siegel, “Understanding the dao attack,” http://www.coindesk.com/
understanding-dao-hack-journalists, 2016.

N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on
ethereum smart contracts sok,” in Proceedings of the 6th International
Conference on Principles of Security and Trust - Volume 10204. New
York, NY, USA: Springer-Verlag New York, Inc., 2017, pp. 164-186.
[Online]. Available: https://doi.org/10.1007/978-3-662-54455-6_8

C. Cadar and K. Sen, “Symbolic execution for software testing: three
decades later,” Commun. ACM, vol. 56, no. 2, pp. 82-90, 2013.
[Online]. Available: http://doi.acm.org/10.1145/2408776.2408795

M. Harman and P. McMinn, “A theoretical and empirical study of
search-based testing: Local, global, and hybrid search,” IEEE Trans.
Software Eng., vol. 36, no. 2, pp. 226-247, 2010. [Online]. Available:
https://doi.org/10.1109/TSE.2009.71

R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick,
J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P. J. Krause,
G. Liittgen, A. J. H. Simons, S. A. Vilkomir, M. R. Woodward,
and H. Zedan, “Using formal specifications to support testing,” ACM

parity

(12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

Comput. Surv., vol. 41, no. 2, pp. 9:1-9:76, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1459352.1459354

M. Gaudel, “Testing can be formal, too,” in TAPSOFT’95: Theory and
Practice of Software Development, 6th International Joint Conference
CAAP/FASE, Aarhus, Denmark, May 22-26, 1995, Proceedings, ser.
Lecture Notes in Computer Science, vol. 915. Springer, 1995, pp.
82-96.

A. Pinna, R. Tonelli, M. Orrd, and M. Marchesi, “A petri nets model
for blockchain analysis,” arXiv preprint arXiv:1709.07790, 2017.

S. Porru, A. Pinna, M. Marchesi, and R. Tonelli, “Blockchain-oriented
software engineering: challenges and new directions,” in Proceedings of
the 39th International Conference on Software Engineering Companion.
IEEE Press, 2017, pp. 169-171.

H. Rocha, S. Ducasse, M. Denker, and J. Lecerf, “Solidity parsing using
smacc: Challenges and irregularities,” in Proceedings of the 12th Edition
of the International Workshop on Smalltalk Technologies, ser. IWST *17.
New York, NY, USA: ACM, 2017, pp. 2:1-2:9. [Online]. Available: http:
/lrmod.inria.fr/archives/workshops/Roch17a-IWST-SolidityParser.pdf]

S. Bragagnolo, H. Rocha, M. Denker, and S. Ducasse, “Smartinspect:
Smart contract inspection technical report,” Inria Lille-Nord Europe,
Technical Report, Dec. 2017. [Online]. Available: http://rmod.inria.fr/
archives/reports/Roch17b-TR-SmartInspect.pdf]

R. Tonelli, G. Destefanis, M. Marchesi, and M. Ortu, “Smart contracts
software metrics: a first study,” arXiv preprint arXiv:1802.01517, 2018.
M. Ortu, G. Destefanis, S. Swift, and M. Marchesi, “Measuring high and
low priority defects on traditional and mobile open source software,” in
Proceedings of the 7th International Workshop on Emerging Trends in
Software Metrics. ACM, 2016, pp. 1-7.

G. Destefanis, R. Tonelli, G. Concas, and M. Marchesi, “An analysis of
anti-micro-patterns effects on fault-proneness in large java systems,” in
Proceedings of the 27th Annual ACM Symposium on Applied Computing.

ACM, 2012, pp. 1251-1253.
G. Destefanis, R. Tonelli, E. Tempero, G. Concas, and M. Marchesi,

“Micro pattern fault-proneness,” in Software engineering and advanced
applications (SEAA), 2012 38th EUROMICRO conference on. IEEE,
2012, pp. 302-306.

S. Counsell, G. Destefanis, X. Liu, S. Eldh, A. Ermedahl, and K. Ander-
sson, “Comparing test and production code quality in a large commercial
multicore system,” in Software Engineering and Advanced Applications
(SEAA), 2016 42th Euromicro Conference on. 1EEE, 2016, pp. 86-91.

https://github.com/ethereum/solidity.
https://github.com/ethereum/solidity.
https://paritytech.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://paritytech.io/a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://www.coindesk.com/understanding-dao-hack-journalists
http://www.coindesk.com/understanding-dao-hack-journalists
https://doi.org/10.1007/978-3-662-54455-6_8
http://doi.acm.org/10.1145/2408776.2408795
https://doi.org/10.1109/TSE.2009.71
http://doi.acm.org/10.1145/1459352.1459354
http://rmod.inria.fr/archives/workshops/Roch17a-IWST-SolidityParser.pdf
http://rmod.inria.fr/archives/workshops/Roch17a-IWST-SolidityParser.pdf
http://rmod.inria.fr/archives/reports/Roch17b-TR-SmartInspect.pdf
http://rmod.inria.fr/archives/reports/Roch17b-TR-SmartInspect.pdf

	Introduction
	Background
	Decentralized Ledgers
	Ethereum Smart Contracts
	Working Example
	Gas system

	Case Study and Methodology
	Structure and functionality of Parity
	Libraries on Ethereum
	Statically linked libraries
	Parity library contract

	Analysis of the attack
	Best practices that could have helped
	Anti-patterns
	Testing

	Road map to BOSE
	Conclusions
	References

