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This paper considers psychological variables pertinent to driver automation.  It is 
anticipated that driving with automated systems is likely to have a major impact on the 
drivers and a multiplicity of factors needs to be taken into account.  A systems analysis of 
the driver, vehicle and automation served as the basis for eliciting psychological factors.  
The main variables to be considered were: feedback, locus of control, mental workload, 
driver stress, situational awareness and mental representations.  It is expected that by 
anticipating the effects on the driver brought about by vehicle automation could lead to 
improved design strategies.  Based on research evidence in the literature, the 
psychological factors were assembled into a model for further investigation.   
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1.  Introduction 

 

 Whether we like it or not, automation is gradually taking over the driver’s role.  

Full vehicle automation is predicted to be on British roads by 2030 (Walker, Stanton and 

Young, 2000).  Whilst it is accepted that some drivers will still want to control their 

vehicles manually, many may be pleased to relinquish the role to automatic systems.  

Many of the computing technologies have been grounded in aviation systems (Billings, 

1997; Stanton and Marsden, 1996), and technologies like adaptive cruise control are 

taking over from the driver already (Richardson, Barber, King, Hoare and Cooper, 1997). 

Adaptive Cruise Control (ACC) heralds a new generation of vehicle (Stanton, Young & 

McCaulder, 1997).  ACC controls both speed and headway of the vehicle, braking with 

limited authority in the presence of a slower lead vehicle, and returning to the set speed 

when the lead vehicle disappears (Richardson, Barber, King, Hoare and Cooper, 1997).  

In this way ACC differs from traditional Cruise Control (CC) systems.  In traditional 

cruise control, the system relieves the driver of foot control of the accelerator only (i.e., 

relieving the driver of some physical workload), whereas ACC relieves the driver of 

some of the decision making elements of the task, such as deciding to brake or change 

lanes (i.e., relieving the driver of some mental workload), as well as physical demands of 

accelerator control.  Potentially, then, ACC is a welcome additional vehicle system that 

will add comfort and convenience to the driver (Richardson et al., 1997).  However, 

certain psychological issues do arise when considering any form of automation and these 

need to be properly addressed to improve overall system performance.  It is envisaged 

that although the ACC system will behave in exactly the manner prescribed by the 

designers and programmers, this may lead to some scenarios in which the driver’s 

perception of the situation is at odds with the system operation (Stanton and Young, 

1998).  Indeed, even those developing the systems recognise that “headway control 

raises the issue of whether the system matches the driver expectations with regard to 

braking and headway control” (Richardson et al., 1997; p. 91). 

 

 Most of the literature on driver behaviour tends to be restricted to the examination 

of a very limited set of variables.  Whilst it might be argued by the researchers that this 

focus is necessary in order to determine the importance of the interaction between two or 
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three important variables, it does not constitute the complexity of interplay between 

variables in the world at large.  Sophisticated experimental design and analysis 

methodologies are able to cope with this complexity however, to provide an 

understanding of multiple interacting variables necessary to develop a psychological 

model of driving with automation.  The purpose of this paper is, then, to identify the 

relevant the psychological variables and, on the basis of the literature, propose a 

psychological model.  

 

 An in-depth analysis of the psychological factors associated with the operation of 

automated systems is required to enable recommendations to be developed.  The 

pertinent factors were elicited from a systems model of the driver-automation-vehicle as 

shown in figure 1, discussed by Stanton and Marsden (1996).  From this figure, some 

potential psychological constructs emerge.   

 

FIGURE ONE ABOUT HERE 

 

Figure 1.  Information flow between driver, automatics and vehicle sub-systems (from 

Stanton and Marsden, 1996).

 

 Most obvious is the issue of feedback, as can be seen as the information flows 

around the subsystems.  Of particular interest is the role of feedback to the driver from 

the automated system.  Typically, this tends to be poor (e.g., the lack of feedback from 

automated systems in the domain of aviation has been implicated in some incidents, 

Norman, 1990), because the automated systems do not require the feedback to function.  

Relatedly, the development of the driver's trust in the automated system may depend 

upon appropriate feedback.  According to Muir and Moray (1996), the amount of 

feedback sought from an automated system by a human operator is directly related to the 

degree of trust they have in it to perform without failure.  Passing control of the vehicle 

to a computer raises the issue of locus-of-control in the driver: does the driver feel that 

they, or the computer, is ultimately in control of the automobile?  The degree to which a 

symbiotic relationship exists between the driver and the automatic system could 

determine how successful vehicle automation is perceived.  One of the claims of all 
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forms of automation is that the demands placed upon human operators will be reduced 

(Bainbridge, 1983).  Therefore, the effects upon mental workload need to be considered.  

The workload literature suggests that there is an optimum level that leads to enhanced 

performance, demands greatly above or below this level could have a negative effect the 

driver (Young & Stanton, 1997), such as increased levels of stress.  Matthews and 

Desmond (1996) have found that driver stress is an important factor in the drivers like, or 

dislike, of driving and is linked to the their experience of mental workload.  One of the 

central concepts in driver automation seems to be the extent to which the driver is aware 

of the state of the automatic system, and the impact that has on the vehicle trajectory 

through the world.  This concept is called situational awareness and has been the subject 

of research in the field of aviation (Endsley, 1995).  Situational awareness depends, to a 

great extent, upon the development of an accurate model of the world, that enables 

information to be interpreted and predictions of future states made.  Therefore, the role of 

mental models will also be considered.  All of these factors are well established in the 

psychological literature but have yet to be fully explored with respect to vehicle 

automation. 

 

 

2.  Feedback 

 

 The significance of feedback to performance was recognised more than 40 years 

ago, when Annett and Kay (1957) wrote about ‘knowledge of results’ (KR).  KR takes 

many forms, from a summary end score at the end of a task to augmented feedback 

during a task.  This is analogous to the distinction between action feedback (immediate 

notification of the un/successful completion of an action) and learning feedback (more in-

depth knowledge of one’s performance during a trial, typically given through tuition).  

The former type of feedback predicts fast learning, but also fast decay of the relevant 

skill when feedback is removed; whilst the latter predicts slower learning and slower 

decay.  The content of feedback can be about system actions and/or responses. Or it can 

be simply registering a user’s input.  Either way, KR has been popularly assumed to be a 

motivator by providing knowledge of goal achievement. 
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 Welford (1968) reviews the early experiments into the effects of KR on 

performance.  It was widely found that feedback is instrumental in skill acquisition.  

Performance that shows no change under control conditions can rapidly improve upon 

the introduction of KR.  The same skill can then rapidly deteriorate when KR is removed, 

as people have a tendency to overcompensate for their own behaviour.  However, this is 

not the whole story - most training regimes rely on feedback for instruction.  These 

would ultimately fail when the apparent skills were applied in the field, when feedback is 

absent.  Training can be effective if it uses less direct feedback, information that directs 

the participant to remember the feel of their actions, rather than simply the outcome.  By 

utilising cues that are inherent in the task, the participant can then transfer these skills to 

the operational environment.  If s/he comes to depend on extra cues that are available in 

training but not in the actual job, skill transfer will not occur. 

 

 There are also a number of experiments reviewed by Welford (1968) on the 

timing and quality of KR.  Feedback only seems to be effective if there is minimal delay 

between action and feedback, and between feedback and the next trial.  Any intervening 

activity will be particularly destructive to learning from feedback.  Learning will also be 

disrupted if the quality of the information given is distorted or inaccurate.  The key seems 

to be providing full and accurate information about the discrepancy between required and 

achieved performance.  However, there is a danger of giving too much feedback, as 

superfluous information can be distracting.   

 

 More recently, however, Kluger and Adler (1993) found that feedback about the 

outcome of an action actually reduced motivation, whether the feedback came from 

another person or from a computer.  It was also found in this study that feedback from 

another person can be detrimental to performance, although given a free choice people 

are more likely to seek feedback from a computer than another person. 

 

 It is well understood that KR is a crucial factor in the early stages of skill 

acquisition (Groeger, 1997).  This has been applied to many diverse fields, from 

consumer products (Bonner, 1998) to aviation (White, Selcon, Evans, Parker and 
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Newman, 1997).  In the latter study, it was found that providing redundant information 

from an additional source can actually elicit a performance advantage. 

 

 One study that is relevant to the driving domain examined the effects of feedback 

on performance of controlled and automatic tasks (Tucker, Macdonald, Sytnik, Owens 

and Folkard, 1997).  Driving, as a highly skilled activity, is an archetypal automatic task.  

That is, it requires very little cognitive processing effort, and is very rapidly executed.  In 

the Tucker et al. (1997) study, it was found that feedback can reduce error rates on tasks 

requiring controlled processing, however automatic tasks are resistant to the effects of 

feedback.  Furthermore, a vigilance decrement was observed only in the controlled task, 

suggesting automatic responses do not suffer from such a decrement.  This vigilance 

decrement was also unaffected by feedback. 

 

 Moving on to consider studies more specific to driving and automation, Duncan, 

Williams and Brown (1991) examined the performance of a group of normal 

(experienced) drivers with that of novices and experts (observers from the Institute of 

Advanced Motorists) on a subset of driving skills.  They found that on half of the 

measured skills, the normals actually performed worst, with novices performing at a 

similar level to the experts.  It was concluded that these skills were those which did not 

benefit from immediate, task-intrinsic feedback.  For instance, a bad gear change is 

immediately recognised from the noise and movement of the car.  However, failing to 

check a mirror at a junction may not necessarily result in any negative consequences.  In 

short, the normal drivers had succumbed to a range of bad habits in the absence of 

learning feedback. 

 

 Fairclough, May and Carter (1997) examined the effects of continuous time 

headway (THW) feedback on following behaviour.  Their results demonstrated that 

feedback reduces the percentage of time spent at low headways (i.e., <1s), particularly 

for those people who were habitual close followers.   

 

 

3.  Trust 
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 The concept of trust has only been applied to technological devices relatively 

recently.  Muir (1994) hypothesised that supervisory control is based on trust, such that 

intervention behaviour depends on the supervisor’s level of trust in the automated 

system.  By building on previous theories of interpersonal trust, Muir developed a model 

of trust in automated systems. 

 Muir (1994) reviews the literature on trust, and finds “surprisingly little research” 

on trust in other people.  There are, however, a number of attempts to define trust, 

suggesting it is a multidimensional construct consisting of confidence in, expectations of, 

and reliance upon others.  Muir (1994) finds that trust is commonly oriented toward the 

future, and always has a specific referent.  She then settles on and cites the definition of 

Barber (1983), which refers to three specific expectations which underline trust: the 

persistence of the natural order, technically competent role performance, and the 

fiduciary obligations and responsibilities of others.  A model of the development of trust 

in another person is then reviewed by Muir (1994), which is later adapted to trust in 

machines.  The model is hierarchical, proposing that trust develops in three stages, such 

that the outcome at each stage determines later development.  Predictability governs the 

first stage, the second is dependent on dependability, and faith dominates mature levels 

of trust. 

 

 A key element of the model when applied to automated systems appears to be 

predictability, such that supervisors more readily come to trust consistent systems.  

However, it is important to distinguish perceived trust from the objective trustworthiness 

or reliability of the system, as an imbalance can lead to mistrust or distrust.  This is 

critical to the performance of the system, as distrust can lead to under-utilisation of the 

system (and hence suboptimal performance), whereas mistrust can lead to overreliance 

and the possibility of errors. 

 

 This model was later tested empirically (Muir and Moray, 1996).  Subjective 

ratings of trust were gathered for a simulated milk pasteurisation plant.  One of the best 

predictors of trust was found to be expectation of competence, although development of 

trust over time did not match the model predictions.  Development of trust apparently 
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follows a logarithmic function, with initial development being conservative, however this 

moves to extremes with further experience.  It was also found that distrust can spread 

within components of a subsystem but not across different systems.  The most significant 

practical finding, however, was that trust determines the use of automation - a trusted 

system will be used appropriately, however a system which does not foster trust will be 

neglected. 

 

 Lee and Moray (1994) extended this argument by considering the role of 

confidence in one’s own ability.  A process control simulation and subjective ratings of 

trust and self-confidence were used to determine that, in general, operators will use 

automation when trust exceeds self-confidence, however will revert to manual control 

when the opposite is true.  Again, these effects were restricted to individual subsystems, 

and did not generalise across systems. 

 

 These ideas have been addressed by a few other authors.  Parasuraman and his 

colleagues (Parasuraman, 1997; Parasuraman, Singh, Molloy and Parasuraman, 1992) 

considered the effects of automation on the human operator.  Parasuraman et al. (1992) 

were interested in the concept of automation-related complacency, and developed a scale 

for attitudes toward automation which reflect a potential for complacency.  Complacency 

was found to be comprised of trust, confidence, reliance, and safety-related complacency.  

It was not clear, however, whether complacency is situationally induced or an individual 

difference variable.  It has been argued elsewhere (Kaber and Endsley, 1997) that 

inappropriate allocation of function can induce complacency, and complacency can lead 

to overtrust. 

 

 Parasuraman (1997) concentrated on the factors that can influence use of 

automation.  Reliability of the system affects trust, which in turn interacts with self-

confidence to determine reliance on the automation.  Conversely, a propensity of false 

alarms can lead to distrust and disuse of an automated system.  Overall, then, it seems 

that trust is an important factor in determining the extent to which an operator will 

exploit the automation at his/her disposal.  There is some evidence to suggest that 

operators will not abandon using a system even when it is completely unreliable 
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(McFadden, Giesbrecht and Gula, 1998), however the majority of the literature indicates 

that trust, complacency, and task allocation should all be considered as important factors 

in the design of an automated system. 

 

 

4.  Locus of Control 

 

 Locus of control refers to how much people attribute the causes of events to 

internal or external factors.  People with a high internal locus of control (“internals”) tend 

to believe that most things that happen are their own fault, regardless of objective cause.  

On the other hand, those with a high external locus of control (“externals”) tend not to 

accept blame for anything, preferring instead to believe in environmental reasons, even if 

they have clearly instigated an event.  This stems from research by Rotter (1966) into the 

effects of reinforcement on preceding behaviour.  People who believe that the outcome of 

a situation is controlled by external forces are less likely to raise or lower expectancies 

for future reinforcement following success or failure than those who perceive the 

reinforcement to be dependent upon their own skill or efforts. That is, externals do not 

make the connection between behaviour and reward as strongly as internals do, and this 

can consequently influence the learning process.  People may have specific beliefs about 

certain situations, and they also differ in global attitudes to life in general.  Rotter (1966) 

provides support for the hypotheses that internals: are more alert to those aspects of the 

environment which provide useful information for their future behaviour; take steps to 

improve their environmental condition; place greater value on skill or achievement 

reinforcements and are generally more concerned with their ability, particularly their 

failures; and are resistive to subtle attempts to influence them.  Locus of control research 

can therefore clearly relate to driving, in areas such as skill and accident involvement.  

As such, there have been a few studies specifically addressing the issue of locus of 

control in the driving context. 

 

 In an attempt to measure driving locus of control, Montag and Comrey (1987) 

developed a specific driving internality-externality (I-E) scale.  They asserted that 

previous I-E scales had a more successful record when tailored to be more domain-
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specific, rather than using a general scale.  Montag and Comrey (1987) found that driving 

internality and driving externality are actually two independent constructs, as opposed to 

one bipolar dimension.  Therefore, the use of two separate scales to measure these 

constructs is justified.  They also found that externality correlates positively with fatal 

accident involvement, consistent with previous research which suggests that those with 

an external locus of control exhibit a lack of caution.  Individuals with an internal locus 

of control are more attentive, motivated, and adept at avoiding aversive situations; hence 

internality is negatively related to accident involvement.  

 

 In developing these scales, Montag and Comrey (1987) used postdictive 

validation, and did not investigate the predictive strength of the scales.  Arthur and 

Doverspike (1992) attempted to predict accident involvement using the Montag and 

Comrey (1987) Driving Internality-Externality (MDIE) scales.  However, they found that 

locus of control was generally not associated with accident involvement, the only 

significant result was a positive relationship between driving internality and not-at-fault 

accidents - a result contrary to Montag and Comrey’s (1987) findings. 

 

 Other research on driving locus of control has found that internality has been 

positively associated with alertness (Lajunen and Summala, 1995) and self-bias in 

accident involvement (Holland, 1993); whilst externality has shown to be positively 

correlated with aggression and tenseness (Lajunen and Summala, 1995), susceptibility to 

an alcohol placebo (Breckenridge and Dodd, 1991), and negatively correlated with 

perceived skill (Lajunen and Summala, 1995). 

 

 

5.  Mental workload 

 

 The topic of mental workload has been well documented in general texts (e.g., 

Sanders and McCormick, 1993; Singleton, 1989) and in more specific papers (Gopher 

and Kimchi, 1989; Schlegel, 1993; Wickens and Kramer, 1985).  A general consensus is 

evident that there is no universally accepted definition of mental workload, although an 

analogy is often drawn with physical load.  There has been a growing concern to rectify 
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this state of affairs, for a quantifiable definition of mental load would have vast 

implications for safety and reliability, particularly in providing guidelines for what 

constitutes underload or overload (Singleton, 1989).  This interest has stemmed primarily 

from the aviation industry (Sanders and McCormick, 1993).  As Singleton (1989) points 

out, technology has made problems of mental load predominant, thus a solution may only 

come from multidisciplinary collaboration.  An illustration of the diversity of the concept 

is reflected in the following research. 

 

 Schlegel (1993) views mental workload as a multidimensional interaction of task 

and system demands, operator capabilities and effort, subjective performance criteria and 

operator training and experience.  This leads to the analogy between stress (task 

demands) and strain (impact upon the individual; capacity to meet demand).  Similarly, 

Wang (1990) advocates a multidimensional construct of workload related to skills, 

motivation and emotion. 

 

 Alternatively, Leplat (1978) attempts to identify some of the factors determining 

workload.  These may be divided into two broad classes - the worker and the conditions 

of work (though Leplat states that the critical problems here are of interactions between 

the two).  Thus the specific factors may result from the requirements of the task (overload 

and underload); anatomical/physiological factors (e.g., fatigue, which has a cause and 

effect relationship - limiting possibilities thus forcing the operator to choose less efficient 

measures); factors of the physical surroundings; psychological factors (skill, personality, 

motivation); social factors (rules/conditions of work); and factors outside work.  In 

addition, Okada (1992) finds that mental workload decreases as the number of indefinite 

(variable) factors involved in decision-making decreases. 

 

 A more theoretical approach is offered by Gopher and Kimchi (1989).  Two 

models are posited: a computational model (parallel distributed processing) and one of 

behavioural energetics (motivational and intensive aspects).  The former of these 

emphasises processing, the latter is concerned with resources.  By integrating these, 

workload is viewed as the balance of automatic (attention-free) and controlled (resource-

demanding) processing. 
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 Mental workload is a major concern for automation.  Reinartz and Gruppe (1993) 

argue that automated systems present cognitive demands, which increase workload.  In 

their view, operators and the automated system are members of the same team.  Thus 

effective control is dependent upon how well that team works and communicates 

together.  The performance of the operator is hindered by the increase in processing load 

resulting from the additional task of collecting information about the system state.  This 

is further complicated by the extent of the operator’s knowledge about the system.  In the 

event of manual takeover, the operator must either disable interlocks to other systems, or 

else match his/her actions to those of related process functions. 

 

 These issues are generally symptomatic of the transition in the role of the human 

from operational to supervisory control (Parasuraman, 1987).  Such a situation has the 

paradoxical potential for imposing both overload and underload: reduced attention during 

normal operations, however difficulties increase when faced with a crisis or system 

failure (Norman, 1990).  In the latter scenario, the human is forced to immediately return 

to the operator role, gather information about the system state, make a diagnosis and 

attempt a resolution.  It has been argued (e.g., Wilson and Rajan, 1995) that whilst 

physical workload should be minimised, mental workload needs to be optimised to 

prevent performance decrements.  This has been demonstrated in a driving context by 

Matthews and Desmond (1997), who found that stress impaired performance in 

underload conditions, suggesting a breakdown of adaptive regulation of effort. 

 

 Such concerns about workload have prompted many authors to review the issue 

of task allocation.  Goom (1996) states that determining the optimum workload for the 

human should be the clearest single driver for the allocation process.  Others have 

espoused the merits of dynamic task allocation, which can improve performance and 

workload ratings under situations of high demand (Tatersall and Morgan, 1997), and 

even in more complex cognitive tasks (Hilburn, 1997).  These extend to investigations of 

MWL in car driving.  Certain driving tasks have been found to increase mental workload 

and consequently present potentially dangerous situations (see e.g., Dingus, Antin, Hulse 

and Wierwille, 1988; Hancock, Wulf, Thom and Fassnacht, 1990).  Some researchers 
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(e.g., Brookhuis, 1993; Fairclough, 1993; Wildervanck, Mulder and Michon, 1978) have 

therefore explored the use of monitoring systems to detect situations of driver underload 

or overload, and to intervene either directly or indirectly if the situation becomes critical.  

This type of monitoring popularly utilises physiological channels.  Other researchers 

(e.g., Schlegel, 1993; Verwey, 1993) are interested in the determinants of driver 

workload with a view to developing adaptive interfaces which may reduce such workload 

in future.  These studies are generally in recognition of the fact that modern drivers are 

presented with increasingly complex information, with the advent of Intelligent Vehicle 

Highway Systems (IVHS).  These ideas have been applied to driving in the form of 

adaptive driver systems such as GIDS, which aim to improve the quality of system 

behaviour by designing a human-centred system (Hancock and Verwey, 1997).  Future 

technologies such as ACC will increase this need radically. 

 

 

6.  Driver stress 

 

 Stress has been defined as that which we appraise as harmful, threatening, or 

challenging, and research into stress has received a great deal of attention in the latter 

half of this century (see e.g., Cox and Griffiths, 1995; Holmes and Rahe, 1967; Wortman 

and Loftus, 1992).  This is probably due to the fact that more people have realised the 

important role which stress plays in physical and psychological health, and its consequent 

impact on performance.  Wortman and Loftus (1992) review strong evidence of a 

connection between stress and lowered immune system function, although it is not clear 

whether this is due to a direct effect on the immune system or indirect results of 

depression, poorer health habits etc. 

 

 Wickens (1992) reviews the effects of stressors on performance and human error.  

Arousal has long been associated with performance, as demonstrated by the classic 

inverted-U function of the Yerkes-Dodson law (Yerkes and Dodson, 1908).  This was 

later modified by Easterbrook (1959) into cue utilisation theory.  This effectively states 

that excessive arousal can affect the selectivity of attention, such that there is a narrowing 

(or “tunnelling”) of attention to different environmental or internal cues.  The 
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phenomenon of attentional narrowing under stress has been applied to areas as diverse as 

recovered memories of childhood sexual abuse (see Memon and Young, 1997, for a 

review) and the design of peripheral vision displays (Stokes, Wickens and Kite, 1990). 

 

 Stressful events can be one-off occurrences that happen to the individual (acute 

stress or daily hassles), or lifestyle changes instigated by the individual (chronic stress).  

Such events need not necessarily have negative connotations - getting married, for 

example, can be a source of stress.  One common theme to all stressful events is that they 

evoke some adaptation or coping response.  Indeed, the role of appraisal is primary in 

stress management, and this involves two steps (Lazarus, 1990; cited in Wortman and 

Loftus, 1992).  Primary appraisal refers to a judgement of whether the event or situation 

is a threat to our well-being, whereas secondary appraisal involves determining whether 

we have the resources to cope with the threat.  Such appraisal can very much determine 

individual strategies of coping, which can also take two forms (Lazarus and Folkman, 

1984; cited in Wortman and Loftus, 1992).  Problem-directed coping is an attempt to do 

something constructive about the stressful situation, and emotion-focused coping is an 

effort to regulate the emotional consequences of a stressful situation. 

 

 Driving in high congestion increases state stress, and can elicit a whole range of 

coping behaviours.  Whilst individuals may express a general preference for direct 

(problem-focused) coping, when faced with high congestion there emerges an equal split 

between direct and indirect (emotion-focused) coping behaviours (Hennessy and 

Wiesenthal, 1997).  Moreover, stress has been linked with road traffic offending, whether 

the source of stress comes from driving or other aspects of life (Simon and Corbett, 

1996). 

 

 A good deal of the research into the stress of driving has been conducted by Gerry 

Matthews and his colleagues (Gulian, Glendon, Matthews, Davies and Debney, 1990; 

Matthews and Desmond, 1995a, 1995b).  Their research uses the Dundee Driving 

simulator to investigate stress reactions in a variety of situations.  Gulian et al. (1990) 

found that stress is associated with time of day as well as driving conditions, in that 

elevated stress levels were observed in the evening and in midweek.  More importantly, 
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the results suggested that driving stress is a global process with multiple causes, both 

intrinsic and extrinsic to driving.  By simulating loss of control on an icy road, Matthews 

and Desmond (1995b) reported that this source of stress increases task-related 

interference and decreases perceived control.  There was also evidence that the 

combination of stress and fatigue can disrupt the adaptive regulation of effort, such that 

their detrimental effects are exacerbated in low workload conditions.  A logical 

conclusion from these results is that stress is an influence on accident risk. 

 

 Matthews and Desmond (1995a) considered the role of stress in the design of in-

car driving enhancement systems.  It was concluded that any adverse effects of in-car 

guidance systems (e.g., overload/attentional distraction) may be accentuated when under 

stress.  Again, the mechanism for this was thought to be a disruption of effort 

mobilisation to match the varying workload of the task. 

 

 

7.  Situation awareness 

 

 Situation awareness (SA) is defined as “...the perception of the elements in the 

environment within a volume of time and space, the comprehension of their meaning, and 

the projection of their status in the near future” (Endlsey, 1995, p. 36).  It is a state of 

knowledge of a dynamic system, rather than a process, and is separate from decision-

making and performance. 

 

 The concept of SA appears to have emerged from the anecdotes of aircrew in 

operational contexts.  The term was first coined in research texts in the latter half of the 

1980s.  Since then it has primarily been studied by researchers in the defence and 

aviation industries, who popularly quote poor SA as a major source of human error. 

 

 A related notion is alluded to by Woods (1988), who writes about situation 

assessment in complex dynamic systems.  This is more concerned with problem solving 

as the state of the world changes.  For instance, consider the incident that occurred at the 

Three Mile Island nuclear power plant.  An initiating event sets of a chain of failures 
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such that the problem is continually evolving over time.  The problem solver must 

therefore keep track of this development and constantly update their understanding of the 

situation.  Otherwise, they might fixate on a snapshot of the system, and attempts to 

resolve the problem at that point in time may not be relevant further down the line.  

Adaptability is therefore the key, and this can go wrong if the problem solver either fails 

to adapt or adapts in an inappropriate manner.  How closely this is related to defined SA 

is a matter of debate.  There is certainly some overlap between SA and mental 

representations.  We believe this is a debate worth pursuing, so it is returned to  later. 

 

 Research in SA has primarily been instigated by Mica Endsley (Endsley, 1995; 

Endsley and Kiris, 1995; Jones and Endsley, 1996), who has developed a model of SA in 

dynamic systems.  SA is hypothesised to consist of three levels.  Level 1 SA is the 

perception of elements in the environment, level 2 SA is the comprehension of the 

current situation, and level 3 SA is the projection of the future status of the system.  

These levels translate onto a taxonomy of SA errors, which are particularly relevant in 

automated systems, where the out-of-the-loop performance problem can result from a 

loss of SA.  Most SA errors arise from a failure to obtain the needed information, a 

problem that will only be exacerbated in automated systems.  Since SA is a product of 

applying skills (MacLeod, 1997), any skill degradation caused by automation will 

undermine SA, which can be particularly malignant following automation failure. 

 

 Although SA is relevant in a variety of systems operation, it seems to be most 

popularly applied in aviation and air traffic control (ATC).  SA is hypothetically related 

to the creation and maintenance of the air traffic controller’s ‘picture’, a vital concept in 

ATC research (Isaac, 1997).  

 

 

8.  Mental representations 

 

 The concept of a ‘picture’ of one’s working environment has a high degree of 

overlap with the theory of mental models, or mental representations.  Johnson-Laird 

(1983, 1989) describes mental models as a dynamic representation or simulation of the 
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world.  Indeed, our experience and perception of events is indirect, depending on our 

ability to construct models of them: “...what we perceive depends on both what is in the 

world and what is in our heads” (Johnson-Laird, 1989; p. 471).  These models can either 

be physical or conceptual, and can be constructed directly (via observation), vicariously 

(through explanation), or indirectly (by analogy).  Mental models theory is intended to 

explain the higher processes of cognition, particularly comprehension and inference.  

Johnson-Laird (1989) goes on to describe how mental models can be applied to 

syllogistic reasoning or to the representation of knowledge and expertise.  It is the latter 

case that is most relevant here, however some explanation of models in syllogistic 

reasoning is pertinent.  Given a set of premises, a model is constructed from them and a 

putative conclusion formed.  This conclusion is then subjected to falsification attempts, 

and if it is not possible to find any counterexamples to it, the inferred conclusion is 

judged to be valid.  Most of this takes place without conscious awareness, and errors can 

arise if the conclusion calls for more than one possible model. 

 

 Whilst this review is primarily concerned with the application of models in the 

real world, it would be incomplete if it did not acknowledge the theoretical research into 

mental models.  Rips (1986) explores the use of mental models as semantic models, as 

simulations, and compares models to inference rules.  Rips has problems with the mental 

model concept, finding that in most realistic situations, probabilistic reasoning is more 

plausibly explained through rules of thumb than simulation.  Meister (1990) is more 

forgiving, stating that models can be used as simulations to simplify planning and 

decision-making.  Finally, Brewer (1987) attempts to clear up any confusion over 

terminology between schemas, mental models, and imagery.  In brief, schemas are 

generic mental structures underlying knowledge and skill, whilst mental models are 

inferred representations of a specific state of affairs which give rise to images.  

According to Brewer, the models relevant to this review are strictly termed causal mental 

models.  That is, a domain-specific subclass of mental models which use causal 

representations to deal with physical systems (cf. the simulations mentioned previously). 

 

 So we turn to mental models of the world.  In attempting to understand physical 

systems, it is hypothesised that people develop approximate representations in their 
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heads, which are incomplete, unstable, ad hoc and unscientific, even superstitious 

(Eysenck and Keane, 1990).  As an example, consider how thermostat on a home heating 

system works (Kempton, 1986).   There are generally two theories which naive people 

hold, a feedback theory and a valve theory.  Although the valve theory is not technically 

correct, it does prove functional and can even lead to better heat management.  Around 

25-50% of people subscribe to the valve theory, due to the fact that these models are 

based on everyday experience.  This also explains why around 75% of people hold naive 

physical laws about projectile motion, which do not concur with the fundamental laws.  

Intriguingly, these ‘natural’ laws which are abstracted from experience reflect early pre-

Galilean physics. 

 

 In a more specific example, Bainbridge (1992) uses industrial process operation 

to investigate the role of mental models in cognitive skill.  The interpretation is 

reminiscent of the role of models in syllogistic reasoning.  System information (e.g., from 

an alarm panel) leads to multiple inferences about the system state based on the 

operator’s knowledge or models.  The operator then begins an active search for 

confirmatory evidence about the inferences s/he has made.  Skill plays its part if there is 

no direct information on system state, then the operator assumes a model and controls the 

system on prospective anticipation, rather than retrospective feedback.  It is therefore 

crucial that the assumed model is correct, and Bainbridge suggests that in practice, 

operators should be provided with supplementary overviews of the system to enhance 

their mental models.  This is especially important in automated systems, when the 

overview may be less apparent from direct interaction.  Indeed, Wilson and Rajan (1995) 

believe that the notion of mental models, whether accurate or inaccurate, is useful for 

ergonomists for precisely that reason: 
“...if we can predict or understand even in some fashion what mental models a new operator or 

user might hold about a system and its relevant domain, and what model they might build through 

subsequent interaction with the system, then we can improve interface design, training operating 

procedures and so on.  By understanding the potential users’ mental models, and by adapting their 

own conceptual model accordingly, designers might develop a ‘system image’ that better 

matches, sustains and helps develop an appropriate user mental model.” (p. 373) 
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9.  A Research Framework and Hypothesised Psychological Model 

 

 From the review of the literature, we believe that the interdependency between 

the psychological concepts underrepresented.  The mental model that a user develops 

about a system is critical to performance and operations with that system.  Given the 

previous review of psychological factors associated with the use of automation, there are 

some obvious (and some not-so-obvious) interrelations between the variables.  From the 

literature, it would seem that mental workload plays a central role in the relationship.  

For instance, it is apparent that high workload in the form of traffic congestion can 

increase stress (Wilson and Rajan, 1995), but there is some evidence that this 

relationship is bi-directional.  Matthews and Desmond (1995a; 1997) provide evidence 

for the mechanism behind this relationship, and from this there are two novel yet logical 

conclusions relating workload to stress.  The first is that stress can affect performance in 

low as well as high workload conditions.  The second is that the effort involved in coping 

with stress actually adds to the task demands. 

 

 The question of whether feedback affects mental workload is contentious.  

Becker, Warm, Dember and Hancock (1995) found that performance feedback generally 

lowered mental workload in a monitoring task.  However, the results of Fairclough et al. 

(1997) suggest that time headway feedback has no effect on workload in a car-following 

scenario.  Either way, any relationship here is obviously unidirectional, and the results of 

the present study will hopefully shed some light on it. 

 

 Workload has also been known to affect situation awareness (Endsley, 1995; 

Jones and Endsley, 1996), however there is no evidence that this relationship is 

reversible.  High workload is detrimental to SA, as attentional resources are primarily 

engaged in maintaining performance rather that SA.  Indeed, workload is evidently a 

causal factor in approximately 30% of SA errors. 

 

 Situation awareness is also related to some of the other factors in this review.  

Stress weakens level 1 SA (perception) by causing attentional narrowing (Endlsey, 

1995).  Trust can also affect SA, as Jones and Endlsey (1996) found that 2.7% of level 1 
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SA errors were due to overreliance on automation.  Finally, as has been stated 

previously, SA is highly related to mental models theory.  Endsley (1995) sees SA as a 

situation model, or a context-specific mental model.  This is supported by evidence from 

Jones and Endsley (1996) that 6.9% of level 2 SA errors, and 0.4% of level 3 SA errors 

are due to poor mental models. 

 

 From all of this evidence, then, we can construct a hypothesised model of the 

relationship between these factors as shown in figure 2.  It must be stressed that although 

the individual links have been established in the scientific literature, the assembly of the 

model is purely conjectural for now.  However it is our intention to investigate this 

model and, using structural equation modeling, to refine it and determine exactly what 

influences driver behaviour with automation. 

 
FIGURE TWO ABOUT HERE 

 
Figure 2.  Hypothesised relationship between psychological factors 

 
 

10.  Conclusions 

 

We have proposed a psychological model of the driver when using vehicle automation, 

which we believe has distinct advantages for applied research.  The strength of the model 

lies in the fact that it is derived from the established literature in human factors and 

psychology.  Furthermore, the literature review covered a variety of domains, from 

automotive, through human supervisory control, to aviation.  All of the direct links 

between elements in the model have been reported elsewhere, but this paper assembles 

all of the factors in a unified structure for the first time. 

 

Moray (1999) argues that “we need to offer … strong, preferably quantitative models of 

human-machine interaction” (p. 233).  He describes three main advantages of modeling 

in research.  Firstly, since engineers are used to working with quantitative models of the 

physical processes, presenting psychological processes by the same method can help 

ergonomists to communicate their arguments.  Moray argues that the ergonomics 
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discipline is now in a position to begin formulating such decent quantitative models.  

Next, quantitative models that are supported by data enable researchers to make 

predictions about behaviour in any given situation.  The model we have proposed has 

been derived from a broad knowledge base, which we then intend to test in a specific 

environment, namely vehicle automation.  Following the validation and refinement of the 

model, it is hoped that we can then feed back to make more generic quantitative 

predictions, for other automotive situations as well as other domains.  This brings us on 

to the final advantage for modeling, which is to guide the design of automated systems.  

Currently, there is little in the way of design guidance from a theoretical base for 

automotive applications.  The few studies in this area have been comparative studies, 

using traditional hypothesis testing to make their point.  However, Moray states that 

“hypothesis testing does not lead directly to design recommendations in the way that 

modeling does” (p. 230).  In particular, he argues that cognitive ergonomics should reject 

hypothesis testing in favour of the modeling approach to advance research and 

development.  We hope that the model proposed in this paper represents a step in that 

direction. 

 

In conclusion, then, we have attempted to bring together all of the psychological factors 

involved with using automation into one single model.  Such a meta-analysis has been 

based on a considerable research effort using traditional hypothesis testing methods.  

Now, though, rather than examine one or two factors in isolation, it is necessary to test 

the interplay of factors within this model if useful design recommendations are the 

ultimate goal. 
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