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Abstract—In this paper, a new method termed as new sigma
point Kalman filter (NSKF), is proposed for generating sigma
points and weights for estimating the states of a stochastic
nonlinear dynamic system. The sigma points and their corre-
sponding weights are generated such that the points nearer to
the mean (in inner product sense) have a higher probability
of occurrence, and the mean vector and covariance matrix are
matched exactly. Performance of the new algorithm is compared
with the existing unscented Kalman filter (UKF), the cubature
Kalman filter (CKF), the cubature quadrature Kalman filter
(CQKF) and higher order unscented filter (HOUF) for two
different problems. Comparison is done by calculating the root
mean square error (RMSE), relative computational time and
track-loss. From simulation results, it can be concluded that the
proposed algorithm performs with superior estimation accuracy
when compared to the UKF, CKF, CQKF and HOUF.

Index Terms—Kalman filtering, Stochastic systems, Estima-
tion.

I. INTRODUCTION

MANY real-life problems require estimation of state of
a dynamic system from noisy measurement data. For

linear systems with additive white Gaussian noise, Kalman
filter (KF) [1] is the optimal estimator. However, most of the
real life problems are nonlinear and they can be represented
with the help of process and measurement equations given by

Process equation: xk+1 =φ(xk)+ηk, (1)

Measurement equation: zk = γ(xk)+ vk, (2)

where xk ∈ℜn is the n-dimensional states of the system, φ(xk)
and γ(xk) are the nonlinear functions of xk and k, zk ∈ ℜd is
the measurement, ηk and vk are zero mean white Gaussian
noise with covariance Qk and Rk respectively.

In the Bayesian filtering approach, at each time instant the
posterior density p(xk|zk) gives the complete description of the
states xk. This posterior density can be determined recursively
by the following two steps

Prediction: It is given by Chapman-Kolmogorov equation

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1, (3)

Update: It is given by Bayes’ rule

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
, (4)
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where p(zk|z1:k−1) =
∫

p(zk|xk)p(xk|z1:k−1)dxk.
As the equations (3) and (4) are intractable for nonlinear

systems, it is impossible to determine the posterior density
p(xk|zk) in closed form. The simplest way to deal with this
type of nonlinear estimation problem is to assume that the
posterior density is Gaussian. Initially, extended Kalman Filter
(EKF) [1], [2] was introduced, which linearize the nonlinear
function via Taylor series expansion. However, it fails to track
or converge when the process and measurement models are
highly nonlinear.

Other popular filters which give better estimation accuracy
than the EKF are the unscented Kalman filter (UKF) [3],
[4], particle filter (PF) [5], central difference filter (CDF)
[6], cubature Kalman filter (CKF) [7], cubature quadrature
Kalman filter (CQKF) [8], Gauss-Hermite filter (GHF) [6]
and sparse-grid quadrature filter (SGQF) [9]. But, due to
low computational cost and ease of implementation, UKF
is still the most popular among practitioners and have been
implemented in many real-life applications such as target
tracking [10], [11].

There are many variants of the unscented transformation
which are available in literature. To improve accuracy, various
modifications to the conventional UKF has been done. Julier,
who proposed the UKF came up with variants such as the
simplex sigma set and spherical simplex sigma set [12], [13].
Recently, [14] proposed a new variant of the sigma point set.
In that work, it was mentioned that [12], [13] fail to match the
mean and covariance of the prior random variable exactly. Few
variants with more number of sigma points than UKF exist
such as the higher order unscented filter (HOUF) [15] and
higher order sigma point filter (HoSPF) [16]. For increasing
the robustness of UKF along with accuracy, marginalised
iterated UKF (MIUKF) [17] and risk-sensitive UKF (RSUKF)
[18] were also proposed. A detailed description of UKF
variants is available in [19]. Even though many variants of
the unscented transformation is proposed, there is still scope
of improvement.

In this work, we propose a new method for generating
the sigma points and weights for estimating the states of a
nonlinear system. The conventional unscented transformation
results in a small set of points which assigns exactly the
same probability weights (except for the mean itself). In the
proposed new sigma point transformation, a set of new sigma
points and weights are generated such that the sigma points
nearer to the mean in inner product sense have a higher
probability of occurrence, and the mean and covariance are
still matched exactly.



II. UNSCENTED KALMAN FILTER

In UKF [4], unscented transformation (UT) is used where
a set of deterministic sample points and their corresponding
weights are generated to approximate the probability densities.
The sample points, also called as sigma points, are propagated
through the known nonlinear functions to capture the posterior
mean and the covariance.

Let us consider a mean vector µ and covariance matrix P,
a discrete distribution (Zi,wi) for a random variable Z can be
defined such that P(Z= Zi) = wi,

E [Z] = ∑
i

wiZi = µ and

E
[
(Z−µ)(Z−µ)T ]= ∑

i
wi(Zi−µ)(Zi−µ)T = P.

The discrete distribution with 2n + 1 support points for a
random variable Z is given by

P(Z= µ) =
κ

(n+κ)
,

P
(
Z= µ±

√
(n+κ)Pi

)
=

1
2(n+κ)

, i = 1, · · · ,n

where µ ±
√
(n+κ)Pi are the sigma points and the proba-

bilities associated with it are the weights. Here κ is a user
defined scaling parameter which takes value according to the
relation n+κ = 3 [3]. Apart from this transformation, several
modifications to the basic algorithm have been suggested, see
[12], [13], [14] for example.

III. NEW SIGMA POINT KALMAN FILTER

In this section, we shall first address the reason as to what
prompted us to explore for a new sigma point generation
algorithm.

A. Motivation

To motivate our discussion on the new sigma point genera-
tion algorithm, note that matching only the first two moments
of a continuous distribution can generate misleading discrete
distributions. As a simple example, consider the two point
distribution for the random variable Z, P(Z = −1) = P(Z =
1) = 0.5. This has the same first three moments as the standard
normal distribution, although it is a very poor approximation
for the same. To overcome this at least partially, we propose
an algorithm which achieves the following, in addition to
matching the first two moments:
• It’s unimodal with its mode coinciding with its mean. This

is obviously the case with Gaussian distribution, which
we are trying to approximate.

• Consider a covariance matrix P, whose positive semidef-
inite square root is given by

[
U1 U2 · · · Un

]
, where

column vectors U1 · · ·Un−1 are successively ‘closer’ to
µ in the sense that < Ui,µ > < < Ui+1,µ >, i =
1,2, · · · ,n−1, where < ·, ·> is the inner product. Suppose
that we are approximating the multivariate distribution
by a discrete distribution whose support points include
(possibly scaled versions of) U1,U2, · · · ,Un, as is the case

in any filtering algorithm based on sigma points. Suppose
further that we are assuming that the vector realizations
closer to the mean are more likely than those away from
the mean. This should clearly be the case if we are
approximating a unimodal continuous distribution with
the mode at its mean, such as the normal distribution.
If Z represents the underlying random variable, it clearly
makes intuitive sense to allocate probability weights such
that P(Z = Ui) < P(Z = Ui+1). In the traditional UKF,
all these vectors will be allocated the same probability
weights. Our algorithm orders the weights of Ui in
proportion with their inner product with the mean vector,
while still matching the covariance matrix exactly. It also
suggests a simple, optimization-free way of potentially
matching other properties of the distribution being ap-
proximated.

B. Generation of sigma points and weights
The following steps represent the proposed new unscented

transformation:
– Find any real U such that UUT = P, and Ui and Pi denote

the ith column of U and P, respectively.

– Calculate αi =
|<µ,Pi>|
‖µ‖2‖Pi‖2

.

– Choose a real constant m ∈ (0.5,1).

– Choose a real constant β such that β > { 1
4 max(mαi)−

1
2 ∑

n
i=1 αi}.

Now define a discrete distribution for the random variable Z
as

P(Z= µ) = 1− ∑
n
i=1 αi

2(∑n
i=1 αi +β )

,

P

Z= Zi = µ±

√
∑

n
i=1 αi +β

mαi
Ui

=
mαi

4(∑n
i=1 αi +β )

,

P

(
Z= Zi+n = µ±

√
∑

n
i=1 αi +β

(1−m)αi
Ui

)
=

(1−m)αi

4(∑n
i=1 αi +β )

,

for i = 1, · · · ,n. Hence we have a total of 4n + 1 sigma
points. This discrete distribution satisfies E(Z) = µ and
E
[
(Z−µ)(Z−µ)T

]
= P, with the sum of probabilities as

unity.
Lemma 1: The mean and covariance of the discrete random

vector Z with weight probabilities wi are E [Z] = ∑i wiZi = µ

and E
[
(Z−µ)(Z−µ)T

]
= P.

Proof: For 4n+1 sigma points and taking Ψ = ∑
n
i=1 αi+β ,

the expected value of Z can be calculated as

E [Z] =
4n+1

∑
i=1

wiZi = µ

(
1− ∑

n
i=1 αi

2Ψ

)
+

n

∑
i=1

(mαi

4Ψ

)
×

(
µ +

√
Ψ

mαi
Ui

)
+

n

∑
i=1

(mαi

4Ψ

)(
µ−

√
Ψ

mαi
Ui

)

+
n

∑
i=1

(
(1−m)αi

4Ψ

)
×

(
µ +

√
Ψ

(1−m)αi
Ui

)

+
n

∑
i=1

(
(1−m)αi

4Ψ

)
×

(
µ−

√
Ψ

(1−m)αi
Ui

)



=

(
1− ∑

n
i=1 αi

2Ψ

)
µ +2

n

∑
i=1

(mαi

4Ψ

)
µ +2

n

∑
i=1

(
αiµ

4Ψ

)
−2

n

∑
i=1

(mαi

4Ψ

)
µ = µ.

Similarly, for the covariance matrix, we have

E
[
(Z−µ)(Z−µ)T ]= 4n+1

∑
i=1

wi(Zi−µ)(Zi−µ)T

=
n

∑
i=1

(mαi

4Ψ

)
ΘΘ

T +
n

∑
i=1

(mαi

4Ψ

)
Θ̃Θ̃

T +
n

∑
i=1

(
(1−m)αi

4Ψ

)
×ΛΛ

T +
n

∑
i=1

(
(1−m)αi

4Ψ

)
Λ̃Λ̃

T

=
n

∑
i=1

(mαi

4Ψ

)(
Ψ

mαi

)
UiUT

i +
n

∑
i=1

(mαi

4Ψ

)(
Ψ

mαi

)
UiUT

i

+
n

∑
i=1

(
(1−m)αi

4Ψ

)(
Ψ

(1−m)αi

)
UiUT

i +
n

∑
i=1

(1−m)αi

4Ψ

×
(

Ψ

(1−m)αi

)
UiUT

i =
n

∑
i=1

UiUT
i = P. �

where Θ=
√

Ψ

mαi
Ui, Θ̃=−

√
Ψ

mαi
Ui, Λ=

√
Ψ

(1−m)αi
Ui and Λ̃=

−
√

Ψ

(1−m)αi
Ui .

The next lemma establishes the condition on parameter β

under which the maximum probability weight corresponds to
the mean.

Lemma 2: P(Z= µ)> P(Z= Z j), for j = 1, · · · ,4n, if the
following condition holds: β ≥ 1

4 max(mαi)− 1
2 ∑

n
i=1 αi.

Proof: From definition, P(Z = µ) > P(Z = Z j), j =
1, · · · ,4n if

1− ∑
n
i=1 αi

2Ψ
> max

(
mαi

4Ψ
,
(1−m)αi

4Ψ

)
, i.e.

∑
n
i=1 αi +2β

2Ψ
>

1
4Ψ

max(mαi) , i.e.
n

∑
i=1

αi +2β >
1
2

max(mαi) ,

which leads to the required result. �
The choice of β helps in establishing the main idea of the

new sigma point transformation that the points nearer to the
mean shall have more probability of occurrence, i.e. weights
(wi). From Lemma 2, we can write β > βmin where βmin =
1
4 max(mαi)− 1

2 ∑
n
i=1 αi. If β = βmin, out of 4n+ 1 weights,

w1 = wi, where i = 2, · · · ,2n+1, which is clearly not what we
propose. Hence β should be greater than βmin.

Let us consider β = βmin + b. Allocating a large value for
b tends to concentrate maximum probability mass around the
mean and increases the spread of 4n points around the mean.
This directly implies that other points are assigned weights
which are negligible, as shown in Fig. 1. This condition
is also not recommended as it may affect the accuracy in
approximating the probability densities. Hence we recommend
a moderate value for b such that all points are assigned
significant weight values. To illustrate this, we provide the
plot of points and weights for µ = [1 1]T , P = diag([1,1]) and
m = 0.7, for various values of b.
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Fig. 1. Points and weights of NSKF for b = 5
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Fig. 2. Points and weights of NSKF for b = 0

Fig. 2 shows that when b = 0, 2n points which are far from
the mean have the same probability weights as the mean. This
is against the principle on which our work is based. Fig. 1
shows that taking b = 5 makes the probability of occurence
of mean highly likely, assigning negligible weights for other
points. This as mentioned above is not recommended.

Fig. 3 shows points and weights for b = 1 in comparison
with the sigma points and weights of UKF. We recommend
to represent the density function in such a way that mean has
the highest probability weight, with points which are further
away assigned with less probability weights, keeping in mind
that they are not negligible. Choosing a larger value of b (and
hence β ) tends to concentrate more probability mass around
the mean, i.e. it makes the distribution more ‘peaky’. As the
sigma points are symmetrically distributed across the mean,
the third order moment, i.e. skewness will be zero.

The parameter m distributes the probability mass corre-
sponding to Ui to four different support vectors, such that the
number of sigma points around the mean is doubled. m being
close to 1 makes one set of weights (2n) negligible while
m = 0.5 makes the two sets (4n points) to coincide. Then
we will be left with only 2n+1 points. For m values greater
than 1, one set of points will become imaginary and their
probability weights negative, which is not acceptable. Hence
in practice, we suggest to take m in the range of 0.5<m< 1. It
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Fig. 3. Points and weights of a) UKF (blue) b) NSKF (red) for b = 1



is further worth noting that the definition of αi does not affect
the matching of the first two moments. Thus the algorithm can
easily be modified to match a property other than adjusting the
probabilities of Ui according to their inner product with the
mean.

The proposed NSKF can be easily extended for formulating
its square-root algorithm. Square-root algorithms are essential
when the filter fails to keep or preserve the positive-definite na-
ture of the prior and posterior covariance matrices, which can
occur due to lack of arithmetic precision. In UKF, possibility
of a negative weight may lead towards numerical instability as
n > 3, which makes the square root version of the algorithm
infeasible for higher order systems. But in case of NSKF, all
the weights are positive (as defined in Lemma 2) irrespective
of n. The square-root filtering algorithm for NSKF is the same
as that given in [20].

IV. STABILITY OF THE UNSCENTED FILTERS

For the system described by Eq. (1) and (2), the prior
and posterior estimation error can be defined as x̃k+1|k =
xk+1 − x̂k+1|k and x̃k+1|k+1 = xk+1 − x̂k+1|k+1. Then x̃k+1|k =

φ(xk)+ηk−∑
4n+1
i=1 wiφ(Zi,k|k). Using Taylor series expansion

around the posterior mean x̂k|k, nonlinear function φ(·) can be
linearized and x̃k+1|k is written as x̃k+1|k = Akx̃k|k+ηk+R(x̃k|k),
where Ak =

∂φ(x)
∂x

∣∣
x=x̂k|k

and R(x̃k|k) is the accumulated residue
which arises due to ignoring the higher order terms of the
Taylor series expansion and the error induced during calcu-
lation of prior mean with new sigma points and weights. It
can be represented as R(x̃k|k) = Bk∆x,kLx,kx̃k|k +Mk [21] such
that Bk is a problem dependent scaling matrix, ∆x,k is an
unknown time varying matrix with the property ∆x,k∆T

x,k ≤ I,
Mk represents the error induced due to new unscented trans-
formation and matrix Lx,k is used to provide an extra degree
of freedom. Then the prior estimation error and covariance
can be expressed as x̃k+1|k = (Ak + Bk∆x,kLx,k)x̃k|k + Mk +
ηk and Pk+1|k = E[x̃k+1|kx̃T

k+1|k] = (Ak + Bk∆x,kLx,k)Pk|k(Ak +

Bk∆x,kLx,k)
T +MkM

T
k +Qk.

Similarly, γ(xk+1) is linearized around x̂k+1|k using Taylor
series expansion. Then the innovation is represented as
z̃k+1|k = zk+1 − ẑk+1|k = (Ck+1 + Ek+1∆z,k+1Lz,k+1)x̃k+1|k +

Nk+1 + vk+1, where Ck+1 = ∂γ(x)
∂x

∣∣
x=x̂k+1|k

, Ek+1, ∆z,k+1,
Nk+1 and Lz,k+1 are similar to that defined earlier
with ∆z,k+1∆T

z,k+1 ≤ I. Now Pzz,k+1 = E[z̃k+1|k z̃T
k+1|k] =

(Ck+1 + Ek+1∆z,k+1Lz,k+1)Pk+1|k(Ck+1 + Ek+1∆z,k+1Lz,k+1)
T +

Nk+1N
T
k+1 + Rk+1 and Pxz,k+1 = E[x̃k+1|k z̃T

k+1|k] =

Pk+1(Ck+1 + Ek+1∆z,k+1Lz,k+1)
T . Hence the Kalman gain is

obtained as Kk+1 = Pk+1(Ck+1 + Ek+1∆z,k+1Lz,k+1)
T [(Ck+1 +

Ek+1∆z,k+1Lz,k+1)Pk+1|k(Ck+1 + Ek+1∆z,k+1Lz,k+1)
T +

Nk+1N
T
k+1 + Rk+1]

−1. The posterior estimation error
is expressed as x̃k+1|k+1 = x̃k+1|k − Kk+1z̃k+1|k =
[I−Kk+1(Ck+1 +Ek+1∆z,k+1Lz,k+1)]x̃k+1|k−Kk+1[Nk+1 +vk+1].

Lemma 3: Assuming that the linearized form of φ(x) and
γ(x) satisfy uniform observability condition, and there exist
real constants

¯
c,

¯
l, n̄, r̄ > 0 such that ∀ k ≥ 0;

¯
c2I ≤ CkC

T
k ,

¯
l2I ≤ (Ek∆z,kLz,k)(Ek∆z,kLz,k)

T , NkN
T
k ≤ n̄I, Rk ≤ r̄I, then

Pk+1|k+1 ≤
n̄+ r̄

(
¯
c+

¯
l)2 I. (5)

Proof: From Pk+1|k+1 = Pk+1|k−Kk+1Pzz,k+1KT
k+1, and sub-

stituting the relations stated above,

Pk+1|k+1 = (Ak +Bk∆x,kLx,k)Pk|k(Ak +Bk∆x,kLx,k)
T +MkM

T
k +

Qk−
{
{(Ak +Bk∆x,kLx,k)Pk|k(Ak +Bk∆x,kLx,k)

T +MkM
T
k +Qk}

{Ck+1 +Ek+1∆z,k+1Lz,k+1}T{{Ck+1 +Ek+1∆z,k+1Lz,k+1}{(Ak

+Bk∆x,kLx,k)Pk|k(Ak +Bk∆x,kLx,k)
T +MkM

T
k +Qk}{Ck+1+

Ek+1∆z,k+1Lz,k+1}T +Nk+1N
T
k+1 +Rk+1

}−1{Ck+1 +Ek+1

∆z,k+1Lz,k+1}{(Ak +Bk∆x,kLx,k)Pk|k(Ak +Bk∆x,kLx,k)
T +MkM

T
k

+Qk}
}
.

Using the matrix inequality (A+B+C)−1 >A−1−A−1BA−1−
A−1CA−1 [22] for symmetric positive definite matrices A, B
and C, expression for Pk+1|k+1 reduces to

Pk+1|k+1 ≤ [Ck+1 +Ek+1∆z,k+1Lz,k+1]
−1[Nk+1N

T
k+1 +Rk+1]

[Ck+1 +Ek+1∆z,k+1Lz,k+1]
−T ,

from which using the above mentioned bounds, the result in
Eq. (5) is obtained. �

This result proves the boundedness of estimation error
covariance. Note that this result is generic and holds for
unscented Kalman filters other than NSKF as well.

V. SIMULATION RESULTS

In this section, NSKF has been implemented on two well
known nonlinear filtering problems and its performance is
studied. For a fair comparison, popular nonlinear filters like
the UKF, CKF and CQKF are also implemented. Here the
accuracy level of CQKF is taken as 2 [8], such that it almost
matches the number of points generated by the proposed
NSKF. Further, to compare with an unscented filter with the
same number of sigma points as that of NSKF, higher order
unscented filter (HOUF) [15] is implemented.

Problem 1: Here we consider a single dimensional system
with process model [8], [6] xk+1 = φ(xk)+ηk and measure-
ment model zk = γ(xk)+vk, where φ(xk) = xk +T 5xk(1−x2

k),
γ(xk) = T xk(1−0.5xk), η ∼ ℵ(0, b̄2T ), vk ∼ ℵ(0,d2T ) and ℵ

represents a normal distribution.
The sampling time T = 0.01sec and the simulation is done

for a total of 4 seconds. The value of simulation parameters
b̄, d and m are 0.5, 0.11 and 0.8 respectively. All the filters
were fed with an initial estimate x̂0|0 =−0.8 and initial error
covariance P0|0 = 2, with the truth being initialized as x0|0 =
−0.2. Filtering performance has been compared in terms of
RMSE and the number of track-loss.

Fig. 4 shows the RMSE out of 1000 Monte Carlo runs.
From this figure, we can see that the proposed filter performs
with better accuracy in comparison to UKF, CKF, CQKF
and HOUF. Filtering performance has also been studied in
terms of diverged tracks. Track-loss is the number of cases
when the estimation error goes beyond a pre-defined value,
and here we took it as |xkmax − x̂kmax| < 1, where kmax is
the final time step. Track-loss in percentage and number of
points for different filters are summarized in Table I where
we can observe the superior filtering accuracy of NSKF, with
less number of diverged tracks.



Fig. 4. RMSE for Problem 1

TABLE I
TRACK-LOSS AND NUMBER OF POINTS FOR DIFFERENT FILTERS

Filter Track-loss (%) Number of points
CKF 5.5 2
UKF 2 3

CQKF 2 4
HOUF 1.8 5
NSKF 1.2 5

Problem 2: A real-life passive underwater bearings-only
tracking (BOT) scenario is solved using the proposed new
sigma point Kalman filter, where a constant velocity target is
tracked using a manoeuvring observer. If the observer is fol-
lowing a non manoeuvring path, the dynamic model becomes
unobservable and it is impossible to obtain target position
accurately [5]. The target observer dynamics considered in
this problem is shown in Fig 5. The state vector for the
two vessels: namely target and observer containing states as
position and velocity are defined as xt

k = [xt
k yt

k ẋt
k ẏt

k]
T and

xo
k = [xo

k yo
k ẋo

k ẏo
k ]

T . Now, a relative state vector can be defined
as xk , xt

k− xo
k . Hence the process model involving relative

states is described as xk+1 = Fxk +ηk−fk,k+1, where

F =

[
I2×2 T I2×2
O2×2 I2×2

]
,

and fk,k+1 is a vector of observer inputs given by fk,k+1 =
[xo

k+1−xo
k−T ẋo

k , yo
k+1−yo

k−T ẏo
k , ẋo

k+1− ẋo
k , ẏo

k+1− ẏo
k ]

T . Here
I2×2 is an identity matrix of order 2 and O2×2 is a zero matrix
of order 2. The process noise vector ηk is assumed to follow a
normal distribution with zero mean and covariance Q, where
Q is the same as mentioned in [23].

Now the nonlinear bearing measurement can be expressed
as zk = θk +vk, where vk is modeled as a Gaussian noise with
zero mean and standard deviation σθ . The true bearing mea-
surement is expressed as θk = tan−1

(
xk
yk

)
. These are obtained

in a direction from the observer to the target with a reference
clockwise positive to the y-axis. The parameters considered
for simulating the tracking scenario is given in Table II,
where the simulation period lasts for 30 min. The filters are
all initialized based on the initial bearing measurement zo
as given in [23]. The initial state vector x̂0|0 is assumed as

TABLE II
TRACKING SCENARIO PARAMETERS

Parameters Values
Initial range (r) 5 km
Target speed (s) 4 knots

Target course −140o

Observer speed 5 knots
Observer initial course 140o

Observer final course 20o

Observer manoeuvre From 13th to 17th min
σθ 2o

σc π/
√

12
q̃ 2.944×10−6km2/min3

X(km)
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)
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Initial
point
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Fig. 5. Tracking scenario with estimated target path given by NSKF

x̂0|0 = [r sin(z0) r cos(z0) ssin(c̄)− ẋo
0 scos(c̄)− ẏo

0]
T and P0|0

is taken according to [23].
Fig. 5 shows the estimated target path generated by the

proposed NSKF. From this figure, it can be observed that
only after observer manoeuvre the estimated target path starts
to follow its truth path. To illustrate this, observer and esti-
mated target position at 18thmin (after observer manoeuvre)
is marked in Fig. 5. Performance comparison was done by
calculating the RMSE in position and velocity, and the per-
centage of track-loss over 1000 Monte Carlo runs. Track-loss
is calculated by counting the estimated track which move away
from the truth track without converging by a predefined value.
In this simulation, a track-loss is said to have occurred when
the position error at the final time step is greater than or equal
to 1 km. Percentage of track-loss incurred by all the filters is
listed in Table III and it can be inferred that NSKF incurred far
fewer instances of track-loss, at least 5 times fewer than the
other filters being compared. Table III also shows the number
of points and relative computational time for all the filters.

RMSE in position and velocity after observer manoeuvre
for all the filters are plotted in Fig. 6 and 7. The plots were
obtained by excluding the diverged tracks defined according
to our predefined track-loss condition. From these figures, it is
observed that while the position RMSEs are comparable for
all filters, the RMSE in velocity is clearly and consistently
lower for NSKF as compared to other filters. This shows the
accurate tracking performance of NSKF.



TABLE III
TRACK-LOSS, NUMBER OF POINTS & RELATIVE COMPUTATIONAL TIME

Filter Track-loss (%) No. of points Relative compu. time
CKF 1 8 1
UKF 1.2 9 1.15

CQKF 1.5 16 1.55
HOUF 1 17 1.58
NSKF 0.2 17 1.58
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Fig. 6. RMSE in position for Problem 2

We have also calculated the variance of squared error (VSE)
in position and velocity for NSKF over 1000 ensemble. VSE
at each step k represents the spread of squared errors over
ensemble. It is found that VSEs obtained from different filters
are comparable and decrease with time step.

As a further comparative study, we have also studied
the performance of NSKF in comparison to all other filters
mentioned here, for an another tracking problem (problem 2
in [24]). We have seen that velocity estimation with NSKF
for that problem is more accurate compared to other filters
reported here. Results of these studies are omitted for brevity
and are available from the authors on request.

VI. CONCLUSIONS

In this work, a new sigma point Kalman filter is proposed
which uses a new set of deterministic points and weights. The

Fig. 7. RMSE in velocity for Problem 2

proposed transformation gives a unimodal distribution with a
mode at its mean, and with sigma points which are nearer to
the mean in inner product sense having higher probability of
occurrence. Simulation results show the improved performance
of the proposed filter in comparison to the existing UKF, CKF,
CQKF and HOUF.
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