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Abstract In this paper, a new approach to modelling the
damping parameters and its application in thin wall
machining is presented. The approach to predicting the
damping parameters proposed in this paper eliminates the
need for experiments otherwise used to acquire these
parameters. The damping model proposed was compared
with available damping models and experimental results. A
finite element analysis and Fourier transform approach has
been used to obtain frequency response function (FRF)
needed for stability lobes prediction. Several predicted
stable regions using both experimental and numerical
FRF’s for various examples gave a good comparison.
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1 Introduction

Chatter, as stated by Taylor as early as 1907, is one of the
most obscure and delicate of all problems facing the
machinist [1]. It undermines and reduces productivity and
surface quality in manufacturing. There are various sophis-
ticated models to predicting stable regions in highly
nonlinear machining processes in the form of a chart.

However, new complications are introduced when attempts
are made to apply these models to thin wall machining. For
rigid workpiece, the dynamic vibrations are from the tool,
whose dynamic parameters can be assumed to be constant
with very good accuracy as reported by Weck et al. [2]. On
the other hand, in thin wall machining, the vibrations
mainly come from the workpiece as the tool stiffness is
much higher compare to that of the workpiece. Moreover,
the workpiece dynamics are constantly changing due to the
change in geometry; hence, the difficulty in the accurate
modelling of the dynamic parameters. The mass/inertia and
stiffness forces can be predicted numerically with very
good accuracy for any given geometry, material properties
and boundary conditions. Unlike the well-developed mass/
inertia and stiffness terms, the damping forces are, at
present, extracted through experiments known as modal
testing/analysis. This is because the physics behind the
damping forces are not fully understood especially for a
wide range of systems. Therefore, in order to consider this
change in the workpiece dynamics and, hence, accurately
predict stable regions for thin wall machining, a large
amount of experimental tests would be required, which is
highly impractical.

The prediction of stable conditions in the form of charts
started when Tobias [3] and Tlusty [4] simultaneously made
the remarkable discovery that the main source of self-
excited regenerative vibration/chatter is not related to the
presence of negative process damping as was previously
assumed. However, it is related to the structural dynamics
of the machine tool–workpiece system and the feedback
response between subsequent cuts. Though, a pioneering
research, their model is only applicable to orthogonal metal
cutting where the directional dynamic milling coefficients
are constant and not periodic like in milling. Other studies
on the stability of orthogonal metal cutting were reported
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by Merritt [5]. Sridhar et al. [6] later carried out an in-depth
study, in which they introduced time-varying directional
coefficients in their chatter stability analysis. They used the
system’s state transition matrix in their stability model,
which helps to eliminate the periodic and time delay terms.
Slavicek [7] and Vanherck [8] made the assumption that all
the cutter teeth have a constant directional orientation in
their study of the effect of irregular pitch on the stability.
Tlusty [9] made an attempt to apply the orthogonal model
to milling process by assuming the teeth of the tool had
equal pitch, was simultaneously in cut and that the motion
was rectilinear with constant depth of cut. Optiz et al. [10,
11] used an average value of the periodic directional
coefficients in the analysis. The Nyquist criterion was used
by Minis and Yanushevsky [12, 13] and Lee et al. [14, 15]
to obtain the stability limits. Lee et al. [14, 15] used the
mean value method to replace the time-varying directional
coefficients by a constant. Altintas and Budak [16] later
proposed an analytic approach in which the average value
in the Fourier series expansion (single frequency solution)
of the time-varying coefficient was adopted. This is the
main analytical approach generally used in predicting stable
cutting conditions in milling [17–20]. Budak and Altintas
[21, 22] later showed that the results obtained by including
the harmonic terms (multi-frequency solution) are very
close to the single frequency solution. Campa et al. [23]
also considered the mono-frequency solution when consid-
ering the milling of thin walls and thin floors. They
introduced the averaging of the cutting coefficients and
the axial immersion angle along the cutting edge. Adetoro
et al. [24, 25] recently proposed a numerical approach to
solve this nonlinear coefficients and axial immersion along
the cutting edge, although they only considered the single-
frequency solution. Of all these studies, the dynamic
parameters of the tool–workpiece system were required
and identified experimentally through modal analysis or
testing.

Attempts were made by Thevenot [26] to use the varying
dynamics in thin wall machining to initiate the variation of
the spindle speed along the workpiece in order to improve
surface finish. The tendency in this approach, however, is
for new marks to be left on the surface due to the change in
cutting conditions as seen from their experimental results.
Seguy et al. [27] just recently carried out a study to include
the varying dynamics along a thin wall and thin floor
section, although the results showed certain discrepancies
which could have arisen from the assumptions made. It is,
however, clear in thin wall machining that it is insufficient
to assume that the dynamics of the workpiece are constant,
which was the case in previous studies. FEM and Fourier
approach to predicting the stable margin presented by
Adetoro et al. [28] was recently used to incorporate the
changing dynamics in the stability margin prediction by

Adetoro et al. [25]. Their results were validated with good
agreement with experimental results. Quintana et al. [29,
30] proposed experimental approaches to predicting the
stable margin in milling that does not require the prior
extraction of dynamic parameters.

This paper reports a newly discovered relationship
between the damping parameters, and the geometry of the
structure and proposes an approach that uses identified
damping parameters for a known geometry to predict the
damping parameters for any geometry with a different
thickness. This approach is directly applied to the machin-
ing of thin wall sections, thereby eliminating the need for
more experimental modal analysis. The proposed approach
can be directly used to predict the damping parameters as
the workpiece thickness reduces, while mass and stiffness
parameters can be modelled numerically with satisfied
accuracy. More importantly, it is envisaged that by
understanding why this relationship exists for this simple
case and other more complex cases could lead to
understanding how the damping parameters changes with
change in structure’s geometry and possible prediction of
the damping parameters for any given geometry. Such
understanding could perhaps be the definition of the
damping parameters for any given geometry in terms of
its mass (inertia) terms, stiffness terms and other terms or
parameters. The existence of this relationship and the
approach is validated using experimentally identified damp-
ing parameters, time-domain finite element (FE) simula-
tions of dynamic vibrations and stability lobes predictions
for various examples.

2 Modal analysis

2.1 Experimental modal analysis

A significant contribution at the early development of
modal analysis was proportional damping model. It was
first proposed by Rayleigh [31] in 1878, where he indicated
that if the viscous damping matrix is proportional to mass
and stiffness matrices (the damping forces are proportional
to the kinetic and potential energies of the system), then it
can be expressed as

C½ � ¼ a0 M½ � þ a1 K½ �; ð1Þ
where α0 and α1 are real positive constants. The model is
termed ‘Rayleigh damping’ or ‘classical damping’. The
significance of this model is that the damped system would
have the same mode shapes compared to its undamped
counterpart; thus, the system is said to possess ‘classical
normal modes’. In proportional damping model, the viscous
damping matrix in the same manner as the mass and
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stiffness matrices can be generalised using the system’s
modal matrix or eigenvectors, {Ψ}. This considerably
simplifies the dynamic analysis by allowing a multi-
degree of freedom (MDoF) system to be represented by a
series of uncoupled single degree of freedom (SDoF)
systems.

The equation of motion for a MDoF system can be
expressed as

M½ � ��xðtÞf g þ C½ � �xðtÞf g þ K½ � xðtÞf g ¼ FðtÞf g; ð2Þ
where [M] is the mass matrix, [C] is the viscous damping
matrix, [K] is the stiffness matrix, ��xðtÞf g, �xðtÞgf , {x(t)}, {F
(t)} are the acceleration, velocity, displacement and excita-
tion force vectors, respectively.

In 1960, Caughey and O’Kelly [32] provided a gener-
alisation of Rayleigh’s condition for discrete systems in
form of the series

C½ � ¼ M½ �
XN�1

i¼0

ai M½ ��1 K½ �
� �i

: ð3Þ

where N is the number of identified modes used in the
curve fitting and ai are real positive constants obtained
through using experimentally identified damping parame-
ters. The Rayleigh damping model is the first two series of
the expansion.

There are different modal testing methods available;
however, one of the most common involves the excitation
of the structure using an instrumented hammer and
measurement of the response with the use of a transducer
(either laser based vibration transducers or accelerometers).
The impact excitation and the vibration response of the
structure are measured and transformed into ‘frequency
response functions’ (FRFs) using a Fourier Analyzer.
Subsequently, the structure’s dynamic parameters are
extracted from the measured FRF. Great contributions on
the identification of the dynamic parameters are reported by
[33–35], with a good review of the developments reported
by [36]. Other notable developments are methods proposed
to reduce or eliminate the systematic and noise errors which
adversely affect the measured FRFs [37]. One of these
systematic errors is the so called mass loading effect which
occurs when an accelerometer is used as the transducer. The
accelerometer directly changes the dynamics of the system
and causes the measured resonant frequencies to deviate
from their correct values. Methods of correcting of the mass
loading effects on the direct FRFs are reported by [33, 38].

Considering the undamped MDoF system in (Eq. 2) is
excited sinusoidally by a set of forces, {f(t)}, all at the same
frequency, ω but with different amplitudes and phases and
assuming a solution {x(t)} exists [33] of the form

xðtÞf g ¼ Xf geiwt; ð4Þ

where ω is the natural frequency of the system and {X} is a
constant, then the undamped MDoF system is expressed as

K½ � � w2 M½ �� �
Ψf g ¼ 0f g; ð5Þ

which represents an eigenvalue problem, where ωn is the
eigenvalue (undamped natural frequency squared) and {Ψ}
is the eigenvector. The characteristic equation of the system
is simply

K½ � � w2
n M½ ��� �� ¼ 0: ð6Þ

The equation of motion is also represented in Laplace
transform domain as follows

M½ �s2 þ C½ �sþ K½ �� �
X ðsÞf g ¼ FðsÞf g; ð7Þ

or

DðsÞ½ � X ðsÞf g ¼ FðsÞf g: ð8Þ
where {F(s)} is the force in Laplace domain. Hence, the
receptance FRF of the system is defined as

GðsÞ ¼ X ðsÞf g
FðsÞf g ¼ DðsÞ½ ��1; ð9Þ

which rearranges to

GðsÞ ¼ adj DðsÞ½ �
DðsÞ½ �j j ; ð10Þ

where G(s) is the transfer function (TF) matrix of the
system and |[D(s)]| is the ‘characteristic equation’ of the
system [39]. The ‘characteristic equation’ is shared by each
element in the transfer function matrix. Therefore, the
transfer function matrix can be expressed by its partial
fraction expansion as

GilðsÞ½ � ¼
XN
p¼1

rþil;p
s� sþp

þ r�il;p
s� s�p

 !
; ð11Þ

where

sþp ; s
�
p ¼ �zpwn;p �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2p

q
wn;pj: ð12Þ

where ζp is the damping ratio. The complex roots sþp and
s�p and the complex residues rþil;p and r�il;p are a conjugate
pair.

Hence,

GilðsÞ½ � ¼
XN
p¼1

ail;p þ bil;ps

s2 þ 2zpwn;p þ w2
n;p

 !
; ð13Þ

where, N is the number of modes identified experimentally,
ωn is the natural frequency of the system, αil,p and βil,p are
constants obtained experimentally reflecting the residue of
mode p at row i and column l. They can be collected into a
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residue matrix [R]p for each mode in order to calculate the
mode shapes as explained in [40].

To experimentally measure the direct transfer function
Gii, the system is excited at point i (using an instrumented
hammer), whilst the accelerometer is placed at point i.
Using a Fourier analyser, the accelerance FRF is extracted
for each impact test. This is simply the division of the
Fourier transform of the measured time-domain input force
f(t) and acceleration ��xðtÞ.

A wð Þ ¼
��
X wð Þ
F wð Þ : ð14Þ

The use of accelerometer as the transducer alters the
frequency response; hence, the error induced in the
measured direct FRF is corrected using the expression
given by [38]

Anew wð Þ ¼ A wð Þ
1� maccelA wð Þ ; ð15Þ

where, Anew(ω) is the accelerance without the effect of the
accelerometer mass, and maccel is the mass of the
accelerometer.

The FRF or TF is simply the imaginary axis, jω-axis in
the s-plane (i.e. s= jω). Hence, from Eq. 4, we have that

xðtÞ ¼ Xeiwt; ð16Þ

��xðtÞ ¼ iwð Þ2Xeiwt ¼ �w2xðtÞ; ð17Þ
Therefore, the receptance FRF, G(ω) in terms of

accelerance FRF is expressed as

G wð Þ ¼ X wð Þ
F wð Þ ¼ Anew wð Þ

�w2
: ð18Þ

This gives the transfer function element Gii in (Eq. 13),
where s= jω. To measure element Gij, location i is excited
whilst keeping the accelerometer measurement point fixed,
thereby giving one row or column of the transfer function
matrix. The transfer function matrix obtained is symmetric
for a linear system. The experimental measurements are
analysed using a modal analysis system, which scans the
measured transfer function and fits a curve to the data with
a denominator having a (2×N)-order polynomial, while a
transfer function curve is fitted according to Eq. 13.
Therefore, the numerical values of natural frequency,
damping and residue for each mode are estimated directly
[34]. Altintas [40] detailed a method for constructing the
full modal matrix of the structure. It should be noted
however that Eq. 18 can only be used to remove the mass
loading effects for a direct transfer function, Gii.

3 Damping prediction approach

3.1 Proposed approach

This paper proposes a quick, simple and yet accurate
approach to predicting the damping ratio in terms of the
frequency for a given wall using the known damping ratios
of a wall with same height (provided only the wall
thickness is changed). For this approach, a new set of
parameters, zp and wp, are defined as follows

zp ¼
zap
ta

ð19Þ

for the damping ratio and

wp ¼
wa
n;p

ta
ð20Þ

for the natural frequency, where ta is the reference current
wall thickness, zap is the experimentally identified modal
damping ratio and wa

p is the experimentally identified
natural frequency for the reference wall, respectively. These
parameters (zp and wp) are then used to predict the damping
ratio, zbp, in terms of frequency, wb

p, for any new geometry
(provided only the wall thickness is changed) by simply
multiplying zp and wp by the new wall thickness tb as
follows

zbp ¼ zp � tb; ð21Þ

wb
p ¼ wp � tb: ð22Þ

It should be noted that zbp and wb
p are not necessarily the

precise modal damping and natural frequencies of the new
wall. To further improve this approach, it is found that zp
and wp can be accurately represented by a series expansion
expressed as

z ¼
XN=2

i¼1

a2i�1 � w�i þ a2i � wiÞ;� ð23Þ

where constants α2i−1 and α2i are real constants obtained
using least squares method. This series expands out in the
form

z ¼ a1

w
þ a2wþ a3

w2 þ a4w
2 þ a5

w3 þ a6w
3 þ . . . ð24Þ

Therefore, to obtain the precise damping parameters for
each mode for the new wall thickness, the different
numerically extracted natural frequencies in (Eq. 6) for
the new wall thickness is divided by tb to obtain w in Eq. 24
and then multiplying the calculated z by tb, the
corresponding damping for that mode is obtained.
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3.2 Damping matrix

The damping ratio, zbp in terms of frequency can be readily
used directly by most commercial FE packages; however,
the damping matrix [C] in (Eq. 2) is sometimes required. To
obtain the damping matrix, the numerically extracted
natural frequency of the new structure for each mode is
divided by the wall’s thickness, tb, to obtain w and used in
Eq. 23 to calculate z, which is then multiplied back by the
wall’s thickness, tb to obtain the new modal damping ratio
for the corresponding mode.

The modal damping Cp is simply calculated in a similar
fashion to SDoF as

Cp ¼ 2zp
ffiffiffiffiffiffiffiffiffiffi
kpmp

p
; ð25Þ

where kp and mp are the modal stiffness and mass
respectively. The damping matrix [C] is finally obtained
by pre-multiplying by the modal matrix and then post-
multiplying by the transpose of the modal matrix.

4 The experimental and finite element model

4.1 The experimental setup

A commercial software package called CutPro was used for
the experimental tests. The software package was devel-
oped by Altintas, and it has within it a ‘Modal Analysis’
module which was used to extract all the damping ratios
from the tap test experimental results. A Dystran instru-
mented hammer (model 5800B4) with a plastic tip (model
6250P) was used during the experiments, along with a
Dystran accelerometer (model 3225F1). Only the direct
transfer function Gii was required for the extraction of the
damping ratios. Therefore, the accelerometer was placed
directly below the impact point, and the impact point was
located at a flexible region near one of the two free corners
of the wall.

4.2 The finite element model

To validate the propose approach, the transient modal
dynamic analysis on Abaqus was used, which is presented
in detail by Adetoro et al. [28] and summarised here. Being
a very well-developed model, the transient modal dynamic
analysis gives the linear response of a defined domain as a
function of time for a given time-dependent loading. This
can be very easily extracted once the modes of the system
are available. This is due to the modes being orthogonal,

260mm

H 

W

R=5mm

 260mm

30mm

Fig. 1 Workpiece dimensions. corresponding geometry

Table 1 Case A, H=30 mm, W=4.5 mm

Mode number,
P

Natural frequency,
ωn,p (Hz)

Modal damping
ratio, ζp (%)

1 4.19004E+03 2.9639E-02

2 4.35164E+03 1.98028E-02

3 4.87173E+03 1.05143E-02

4 5.44748E+03 8.81198E-03

5 6.28131E+03 7.11323E-03

6 7.33308E+03 4.30877E-03

7 8.64908E+03 4.94934E-03

Table 3 Case C, H=30 mm, W=1.5 mm

Mode number, P Natural frequency,
ωn,p (Hz)

Modal damping
ratio, ζp (%)

1 1.31810E+03 3.00098E-02

2 1.60375E+03 2.42216E-03

3 1.70662E+03 2.49369E-03

4 1.90709E+03 2.58821E-03

5 2.19484E+03 1.66906E-03

Table 2 Case B, H=30 mm, W=3.0 mm

Mode number,
P

Natural frequency,
ωn,p (Hz)

Modal damping ratio,
ζp (%)

1 2.82985E+03 2.50934E-02

2 3.19785E+03 4.23647E-03

3 3.40361E+03 3.41381E-03

4 3.79282E+03 5.63088E-03

5 4.36370E+03 5.64405E-03
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thereby rendering the system as a mere combination of
single degree of freedom systems. The modes are extracted
in a frequency extraction analysis, which utilises the
Lanczos algorithm. The algorithm is detailed by Grimes et
al. [41] and in the Abaqus user manual [42]. Therefore,
when the model is projected onto the eigenmodes used for
the system’s dynamic representation (i.e. uncoupling the
system’s stiffness, mass and damping matrices using the
orthogonality property explained earlier), its equation of
motion is uncoupled, and an expression at time t [42] is
obtained

��qp þ 2zpwn;pqp þ w2
n;pqp ¼ ft�Δt þ Δf

Δt
Δt; ð26Þ

where p is the mode number, qp is the amplitude of the
response of mode p (in the “generalised coordinate”), ωn,p

is the undamped natural frequency of mode p, Δf is the
change in f over the time increment, Δt assuming the
excitation varies linearly within each increment and ζp is
the damping ratio for mode p.

The solutions is obtained [42] in the form

qtþΔt�qtþΔt

� 	
¼ d11 d12

d21 d22


 �
qt�qt

� 	
þ e11 e12

e21 e22


 �
ft

ftþΔt

� 	
;

ð27Þ
where i,l=1,2, dil and eil are constants, which are dependent
on the three different cases of non-rigid body motion. These

cases are based on the oscillation modes—underdamped,
critical damping and overdamped. These constants are
detailed in Abaqus user manual [32] and in the paper by
Adetoro et al. [28], for the underdamped case.

Since the time integrations is done in generalised
coordinates, the response of the physical variables are
obtained through summation

u ¼
XN
p

Xpqp; ð28Þ

where Xp is the eigenvector corresponding to the mode p
and u is the actual nodal displacement. From this, the
velocity and, hence, the nodal acceleration can be derived.

The workpiece material used in the FEM model is
“Aluminium Alloy 7010T7651”. The material properties
required for generating the stiffness and mass matrices are:
density, ρ (Kg m−3) 2.823×103, Young’s Modulus, E (GPa)
69.809 and Poisson Ratio, υ 0.337. The workpiece was
modelled using second-order reduced integration isopara-
metric elements. Three different types of workpiece were
used in the finite element analysis (FEA). The dimensions
are shown in Fig. 1, and the corresponding wall heights, H
and thicknesses, W are given in Tables 1, 2, 3, 4 and 5 along
with their experimentally identified damping ratios. The
damping parameters for Case A (Table 1) and Case I
(Table 4) were used to predict the damping parameters, zbp
for the remaining structures using the proposed approach in
Eq. 25 for Cases B, C and II, respectively. The damping
parameters predicted, zbp and the force data, f(t) measured
by the instrumented hammer (in time domain) during
impact tests were used in each corresponding FE analysis.
The workpiece was bolted at the back surface to a milling
machine table during the impact tests; hence, in the FEM
simulations, it was assumed to be perfectly clamped and
that the resonant frequency of the machine is much higher
than the excited frequencies during impact tests.

Table 4 Case I, H=70 mm, W=7.5 mm

Mode number, P Natural frequency,
ωn,p (Hz)

Modal damping
ratio, ζp (%)

1 1,272.5000 1.6636E-02

2 1,465.1000 1.4675E-02

3 2,997.7000 8.3671E-03

4 2,013.9536 1.0525E-02

5 4,378.7000 5.8279E-03

Table 5 Case II, H=70 mm, W=3.5 mm

Mode number, P Natural frequency,
ωn,p (Hz)

Modal damping
ratio, ζp (%)

1 575.7263 9.2024E-03

2 654.2049 6.0351E-03

3 891.3218 5.1987E-03

4 1,278.8779 6.0564E-03

5 1,849.9236 3.2948E-03
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0.008

700 1000 1300 1600 1900
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Fig. 2 Comparison between curve fitting using proposed series and
zp
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Fig. 3 Comparison between
predicted damping ratios (using
the proposed approach), curve
fittings (using Caughey’s series
and Rayleigh’s damping model)
and experimental damping
ratios: (a) Case A; (c) Case B;
(c) Case C
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5 Validation

5.1 Damping ratio

5.1.1 Case 1

Using the experimental modal analysis explained in
Section 2, the different damping ratios were extracted for

Cases A, B and C as given in Tables 1, 2 and 3. The
proposed damping prediction approach uses the damping
ratio obtained from one geometry (Case A) to predict the
damping for any given geometry with only the thickness
changed (Cases B and C). Using the least squares
method, the damping ratios identified for Case A (see
Table 1) were used to extract the coefficients in Eq. 23 as
follows:

a1 ¼ �1:12722� 104; a4 ¼ �1:80546� 10�6; a7 ¼ 3:09968� 1012;

a2 ¼ 3:69315� 10�3; a5 ¼ 1:21876� 1010;

a3 ¼ 1:81938� 107; a6 ¼ 2:81899� 10�10:

The curve fitting is compared with the calculated zp and
wp in Fig. 2. From this curve fitting, the damping for a new
wall thickness can be predicted as shown in Fig. 3a–c for
Cases B and C, respectively, using Eqs. 21 and 22.

The experimental data for each geometry (Tables 1, 2
and 3) was used to extract the coefficients aj in Rayleigh’s
damping model and Caughey’s series in Eqs. 1 and 3.
Rayleigh’s damping model can be expressed in generalised
coordinate as:

zp ¼
1

2

a0

wn;p
þ a1wn;p

� 
; ð29Þ

while Caughey’s series can be expressed in generalised
coordinates as

zp ¼
1

2

a0

wn;p
þ a1wn;p þ a2w

3
n;p þ a3w

5
n;p þ . . .

� 
: ð30Þ

Hence, using least square method, the experimental
damping ratios for each geometry in Tables 1, 2 and 3
were used to extract the coefficients for each corresponding
geometry.

The damping ratio curve fittings using both Rayleigh
and Caughey’s series are compared with the damping ratios
from the proposed series in Fig. 3a–c. The comparison
between the proposed damping prediction approach,
Caughey’s series curve fitting and experimental data, is
seen to be satisfactory. Though it should be noted that to
obtain Caughey’s series curve, the experimental data is
required for each geometry in order to obtain the
coefficients. The coefficients identified for Rayleigh damp-
ing model and Caughey’s series are given for each
geometry in Tables 6, 7 and 8.

The proposed approach apart from predicting the
damping ratio can be used to give a rough estimate of
the frequency range of the most significant modes, when
performing a FEA or an impact test by using the
calculated wb

p. Taking w1 ¼ 882 Hz for example, it will
become wb

1 ¼ 6615 Hz for a 7.5-mm thick wall using
Eq. 22. Using FEM, the first natural frequency is
calculated to be 6588.4 Hz; hence, wb

1 can be used as a
rough estimate of the minimum frequency of interest and
knowledge of the minimum frequency can be used to
reduce the computational time in the Lanczos Algorithm.
Similarly, by using the maximum frequency of the

Table 6 Case A

α0 α1 α2 α3 α4 α5 α6

Rayleigh 114.4497 −1.4440E-06
Caughey’s Series 3.5333E+04 −2.0794E-02 1.1485E-05 −2.8317E-09 3.6923E-13 −2.4854E-17 6.8192E-22

α0 α1 α2 α3 α4

Rayleigh 76.5198 −3.8016E-06
Caughey’s Series 5,475.3499 −3.8644E-03 2.0391E-06 −4.0144E-10 2.7971E-14

Table 7 Case B
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dominant modes in Eq. 22, wb
p can be taken as a rough

estimate of the maximum frequency of the dominant
modes for the new structure.

5.1.2 Case 2

A wall section with a different height of 70 mm (Case 2)
was further used to validate the proposed approach. The
different damping ratios extracted for Cases I and II are given
in Tables 4 and 5. Using the least squares method, the
damping ratios identified for Case I were used to extract the
coefficients in Eq. 23 as follows: a1 ¼ 3:68005� 10�1;
a2 ¼ 3:04763� 10�7; while the curve fitting is compared
with the calculated zp and wp in Fig. 4. From this curve
fitting, the damping for a new wall thickness can be predicted
as shown in Fig. 5b for Case II using Eqs. 21 and 22.

Rayleigh and Caughey’s series coefficients extracted
using damping parameters in Tables 4 and 5 are given in
Tables 9 and 10. The damping ratio curve fittings using
both Rayleigh and Caughey’s series are also compared with
the damping ratio curve fitting from the proposed series in
Fig. 5a, b. The comparison between the proposed damping
prediction approach, Rayleigh model and experimental data
is satisfactory. The comparison between the proposed series
damping model (Eq. 24) and Rayleigh’s model in Fig. 5b
are exactly the same, because the first two terms in the
series in Eq. 24 is equivalent to Rayleigh’s model, when zp
and wp are converted back into the z

b
p and wb

p.

5.2 Time domain

5.2.1 Case 1

Cases B and C were simulated in a commercial FEM package
(Abaqus) using the simulation approach explained byAdetoro
et al. [28]. Two different simulations were performed for
each structure. In the first simulation (for each case), the
damping ratios extracted experimentally were used directly.
This simulation shows how accurate the actual FEM
predictions are compared to experimental results. While in
the second simulation (for each case), the predicted damping
ratios using the new approach proposed in this paper were
used. It should be noted that this second simulation requires
no experimental input/data as all the material properties are
known and the damping ratios are predicted using the
proposed approach. The input force in time-domain f(t) used
in both simulations was the impact force measured using the
instrumented hammer for each corresponding structure. FEM
results for Cases A and I are not included in these results as
they would only be comparing the FEM predictions using
experimentally extracted damping ratios and the experimen-
tal results. Although this will show the accuracy of the FEM
approach, the accuracy is already depicted as mentioned
earlier in all of the first simulations and also the results
presented by Adetoro et al. [28].

The damping ratio ζp, for the first simulation was the
experimental damping ratio for each natural frequency

α0 α1 α2

Rayleigh 925.4978 3.6906E-05

Caughey’s Series 1,858.9610 −5.5559E-03 +6.0342E-06 −2.4443E-09 +3.5011E-13

Table 8 Case C
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(Tables 2 and 3) and in the second simulation corresponds
to the predicted damping ratio, zbp (Fig. 3b and c), where wb

p

is the numerically identified natural frequency for the
structure. The damping ratios are defined in Abaqus in
terms of their corresponding frequencies. The acceleration
at the same accelerometer location (as it was during the
experimental impact testing) was monitored in the FE
analyses and is compared with acceleration measured
during the experiments.

Comparison between the FEM modal analysis and the
experimental results is satisfactory as shown in Fig. 5a, b.

The comparison between the FEM results when using
experimental damping ratios and when using predicted
damping ratios show a perfect match (Fig. 6a, b).

5.2.2 Case 2

Likewise for Case II, the experimentally identified damping
ratios and damping ratio predicted (using the proposed
approach) were used in FEM simulations and comparisons
to experimental results are shown in Fig. 7 to further show
the accuracy of the predicted damping ratios.
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Fig. 5 Comparison between
predicted damping ratios (using
the proposed approach), curve
fittings (using Caughey’s series
and Rayleigh’s damping model)
and experimental damping
ratios: (a) Case I; (b) Case II

α0 α1 α2 α3 α4

Rayleigh 41.4005 6.0953E-07

Caughey’s Series 35.2409 7.5600E-06 2.3704E-12 2.6609E-19 8.3855E-27

Table 9 Case I
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5.3 Workpiece transfer function

The predicted FRF (using the approach detailed by Adetoro
et al. [28]) and experimental FRF are compared in Figs. 8, 9
and 10, respectively. The agreement between the experi-
mental results and the predictions is satisfactory.

5.4 Chatter stability lobes

Using both the predicted and experimental FRFs, the
stability lobes was generated using CutPro for the different
types of workpiece using the parameters listed in Table 11.
CutPro is an analytical and time-domain machining process

simulation commercial package developed by Altintas. It
has a built-in modal analysis module and also a stability
lobes module. The stability lobes module can take the
transfer function in all three orthogonal directions for
the workpiece and transfer function in x and y directions
for the tool. The predicted and experimental results are
compared in Figs. 11b, c and 12 for three different
workpieces. The comparisons show a satisfactory agree-
ment. The slight discrepancy in the predicted natural
frequency (frequency at which FRF real is zero and
imaginary is maximum) can be seen as a slight shift in
the spindle speed calculated in the stability lobes. The
natural frequency predicted affects the stable tooth passing

α0 α1 α2 α3 α4

Rayleigh 8.8871 1.6646E-06

Caughey’s Series 38.1047 1.3808E-04 1.9756E-10 9.9746E-17 1.5534E-23

Table 10 Case II
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frequency calculated in the stability lobes, hence the slight
differences seen in the spindle speeds. The predicted stable
axial depths of cuts are slightly higher than the experimen-
tal stable ADOC in case B, and this is due to the FEM
model being too stiff. This can be caused by the boundary
condition assumption stated in Section 3, where the back
surface was assumed to be perfectly clamped. In the FEM
stiffness matrix formulation, the elements are, therefore, set
to 1E+36, and the degrees of freedom at this surface are not

included in the simulation. A more accurate approach
would require knowledge of the friction at the boundary
between the machine and the workpiece. There is a
difference in the axial depth of cut at a spindle speed of
27,500 rpm in both Cases B and C. The cause of this is
unclear, although it may again be due to the predicted
damping ratio for a particular mode being too low
compared to the experimental modal damping ratio. This
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could also explain why there is a general overestimation in
the predicted acceleration in Fig. 6.

The possibilities of predicting the damping ratio for any
given structure with a change in only its height was also
investigated. The results, although inconclusive, show a
possible new set of parameters of the kind.

zh ¼ zap � ha; ð31Þ

wh ¼ wa
n;p � ha: ð32Þ

Further experimental tests would, however, be required
to further investigate any possible relationship.

6 Conclusion

The damping term compared to the stiffness and the
mass terms in the equation of motion is far from being
understood, while its influence cannot be neglected in
nearly all dynamic analyses. This paper proposes a novel
approach to using the known damping parameters for a
structure to predict the damping parameters for any other
geometry provided only the thickness is changed. The
approach uses a newly defined set of parameters and also
proposes the use of a series to fit a curve to the defined
parameters. The model is validated by comparing the
predicted damping ratios with experimentally identified
damping ratios, which shows a satisfied agreement. Its
accuracy is further explored by using the predicted
damping ratios in FE time-domain vibration simulations
and comparing predicted acceleration with experimen-
tally measured acceleration. The comparison shows a
satisfactory match between the FEM predictions and the
experimental accelerations. In addition, the proposed
approach was applied to thin wall machining, where the
dynamic parameters of the workpiece are constantly
changing as the workpiece gets thinner. The approach
eliminates the need for experiments every time a layer of
material is machined. Though a starting point, this
approach can be further investigated to further under-
stand the damping ratio variations with the whole
structures geometry. This could lead to the prediction
of the damping terms for more complicated geometries,
with the ultimate aim to reduce the need for or the
reliance on experiments.

Table 11 Force coefficients and radical depths of cut

Case B Case C Case II

RCFC, Kr 0.3030 −0.7040 −0.7040
TCFC, Kt (MPa) 801.0970 981.6966 981.6966

Radial depth of Cut, (mm) 1.000 0.500 0.500

RCFC radial cutting force coefficient, TCFC tangential cutting force
coefficient
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