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STABILITY LOBES PREDICTION FOR CORNER RADIUS END MILL
USING NONLINEAR CUTTING FORCE COEFFICIENTS

Oluwamayokun B. Adetoro1, Wei-Ming Sim2, and Pihua H. Wen1

1Department of Engineering, Queen Mary, University of London, London, United Kingdom
2Airbus, New Filton House, Filton, Bristol, United Kingdom

& There are a vast number of different types of end mill tools used in the manufacturing indus-
try, each type with a unique shape. These tool shapes have a direct influence on the cutting force it
generates during machining. This article presents a more accurate approach to predicting the stab-
ility margin in machining by considering the cutting force coefficients and axial immersion angle
as variables along the axial depth of cut. A numerical approach to obtaining a converged solution
to the stability model is presented. The results obtained are validated using experimental results and
a very good agreement is seen.

Keywords axial immersion angle, cutting force coefficients, cutting force, high speed
milling

INTRODUCTION

Studies into chatter in machining and prediction of stable cutting con-
ditions have been ongoing, since Tobias and Fishwick (1958) and Tlusty
and Polacek (1963) simultaneously made the remarkable discovery that
the main source of self-excited regenerative vibration=chatter was not
related to the presence of negative process damping as was previously
assumed. However, it is related to the structural dynamics of the machine
tool-workpiece system and the feedback response between subsequent cuts.
Although it was pioneering research, their model is only applicable to
orthogonal metal cutting where the directional dynamic milling coeffi-
cients are constant and not periodic. The cutting force was modelled in a
similar fashion as most cutting force models, by assuming it is proportional
to the cross-sectional area of the uncut chip (Koenigsberger and Sabberwal,
1961). This proportionality constant is called the ‘cutting force coefficient’
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or ‘specific cutting pressure’ and depends on the cutter geometry, cutting
conditions and the properties of the workpiece-tool material.

Sridhar et al. (1968) carried out an in-depth study in which, they intro-
duced time-varying directional coefficients in their chatter stability analysis.
They used the system’s state transition matrix in their stability model, which
helps to eliminate the periodic and time delay terms. Slavicek (1965) and
Vanherck (1967) made the assumption that all the cutter teeth have a
constant directional orientation in their study of the effect of irregular
pitch on the stability. Tlusty and Koenigsberger (1970) made an attempt
to apply orthogonal model to the milling process by assuming that the
teeth of the tool had equal pitch, were simultaneously in cut and that
the motion was rectilinear with constant depth of cut. Optiz (1968) and
Optiz and Bernardi (1970) used an average value of the periodic direc-
tional coefficients in the analysis.

The Nyquist criterion was used by Minis and Yanushevsky (1993), and
Minis et al. (1990) and Lee and Liu (1991) and Lee et al. (1991) to obtain
the stability limits. Lee et al. used the mean value method to replace the
time varying directional coefficients by a constant. Altintas and Budak
(1995) later proposed an analytic approach in which the zeroth order term
in the Fourier series expansion (single frequency solution or zeroth order
approximation) of the time varying coefficients was adopted. The analytical
model was later extended to include three directions by Altintas (2001),
where the axial immersion angle was assumed to be constant. Except for
flat end mills however, the axial immersion angle, is a function of the axial
depth of cut. Campa et al. (2007) later proposed an averaging approach to
calculating the axial immersion angle in order to solve the stability model
analytically. However, the axial immersion angle was still assumed to be a
constant.

Recently, the focus of researchers is more on the possible presence of
additional lobes around high spindle speed ranges as identified by Davies
et al. (2000, 2002). This can be pertinent when milling thin webs where
the dynamics are dominant in one direction and=or when the radial depth
of cut is very small, thereby causing a highly intermittent milling process
that exhibits significant number of tooth passing frequency harmonics.
These additional lobes are due to period doubling or flip bifurcation.
Although the mono-frequency solution predicts instability due to Hopf
bifurcation, the harmonics of the tooth passing frequencies would have
to be considered in order to predict flip bifurcations as presented by Budak
and Altintas (1998) and Merdol and Altintas (2004). Other studies on flip
bifurcation are reported in (Gradisek et al., 2005; Insperger et al., 2008;
Stepan et al., 2005). Zatarain et al. (2006) studied the influence the helix
angle has on chatter stability and the helix angle was shown to reduce
the importance of higher-order harmonics.
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In the previous studies, the cutting force coefficients used in modelling
the cutting force are assumed to be constant along with the axial immer-
sion angle for the prediction of stable conditions. However the cutting
force coefficients are well known to be a function of the axial depth of
cut as reported in the literature by (Altintas, 2000, 2001; Engin and
Altintas, 1999, 2001; Gadalla, 1997, Gradisek et al., 2004; Lim et al.,
1995), where the calibrated coefficients are generally fitted quite accurately
with a polynomial expression.

In this article, improvements to the zeroth order approximation when
predicting stable cutting conditions for corner radius end mill and a
numerical approach to obtaining more accurate results are proposed.
The numerical approach obtains more accurate results by modelling the
cutting force more accurately using nonlinear cutting force coefficients
and axial immersion angle dependent on the axial depth of cut. The results
are validated for tool chatter only using experimental results. The model
proposed in this study has been applied to thin wall or workpiece chatter
by Adetoro et al. (2010), where they showed similar improvements in the
accuracy of the predicted stability margin. In their study they considered
not just the dynamics of the workpiece but its nonlinearity along the tool
path.

CHATTER STABILITY MODEL

The stability model used in this article is similar to the model proposed
by Altintas (2001). The periodic milling forces excite the cutter and the
workpiece in the feed, normal and spindle axis directions, causing three
orthogonal dynamic displacements (x), (y) and (z), respectively in the
global axis. This generates undulations on the machined surface and each
tooth removes the undulations generated by the previous tooth (Figure 1),
therefore leading to a modulated chip thickness, which can be expressed
(Budak and Altintas, 1998) as

hj;f /j ; c
� �

¼ st sin/j þ t0jc � t0jw

� �
� tjc � tjw
� �

; ð1Þ

where st is the feed per tooth, t0jc ; tjc
� �

and t0jw; tjw
� �

are the dynamic

displacement of the cutter and workpiece at the previous and present
tooth periods respectively, /j¼ (j� 1)/pþXt is the angular immersion
of tooth j (see Figure 1) for a cutter (X is the angular speed), with con-
stant pitch angle /p¼ 2p=N (N is the number of teeth). It should be
noted that hj,f(/j, c) here includes both a static (st sin/j) and a dynamic
part.
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The dynamic displacements in the chip thickness direction due to tool
and workpiece vibrations are defined as

tjp ¼ xp sin/j þ yp cos/j

� �
sin c að Þð Þ � zp cos c að Þð Þ p ¼ c;wð Þ; ð2aÞ

and

t0jp ¼ x0p sin/j þ y0p cos/j

� �
sin c að Þð Þ � z0p cos c að Þð Þ p ¼ c;wð Þ; ð2bÞ

FIGURE 1 Dynamic milling model. (Figure available in color online.)
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where c and w indicate the cutter and workpiece respectively, c is the axial
immersion angle measured from the tool tip to the spindle axis (as shown
in Figure 1), a is axial depth of cut, xp, yp and x0p ; y

0
p are the dynamic displa-

cements in the global axis for the current and previous tooth periods
respectively. The axial immersion angle, c is a variable. An average method
for calculating the axial immersion angle, c was proposed by Campa et al.
(2007) in an attempt to solve the stability problem analytically.

Altintas suggests assuming the axial immersion angle, c to be acting at
the middle of the maximum axial depth of cut. Being able to define a
maximum axial depth of cut is however arbitrary, as there exists no
maximum axial depth of cut for the tool. Campa et al. (2007) did state that
the stability margin predicted is accurate only when the axial depth of cut
matches that used in calculating an average value of the axial immersion
angle. This is not entirely correct as the cutting force coefficients are also
a function of the axial depth of cut as shown later on. The axial immersion
angle can be defined in terms of the axial depth of cut for bull nose tools as

c að Þ ¼ p� j að Þ; ð3Þ

where,
For a�Rc

j að Þ ¼ j1 þ
j2 að Þ � j1

2

� �� �
; ð4Þ

j2 að Þ ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Rc � a

Rc

� �2s0
@

1
A; ð5Þ

For radial depth of cut >Rc

j1 ¼ 0;

For radial depth of cut �Rc

j1 ¼ arctan
Rc � rdocffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
c � Rc � rdoc½ �2

q
0
B@

1
CA: ð6Þ

Although the definition of the axial immersion angle above is an aver-
age value, it can however be shown to give good results within the corner
radius. The parameters j1, j2, jand Rc are illustrated in Figure 1 and j1
is the axial immersion angle at the lowest point of intersection of the tool
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and the workpiece, which takes into account depths at which the tool does
not contact the workpiece due to the corner radius in the stability model. It
should be noted that in previously used stability lobe models these depths
are not accounted for, thereby resulting in unrealistic results if at the stable
depths of cut, the tool does not come in contact with the workpiece. This is
more relevant, when considering the dynamics of a thin wall as shown by
Adetoro et al. (2010).

Therefore, by eliminating the static part in Eq. (1) and by using Eq. (2),
the dynamic chip thickness in milling is defined as

hj /j ; c
� �

¼ Dx sin/j þ Dy cos/j

� �
sin c að Þ � Dz cos c að Þ

h i
g /j

� �
; ð7Þ

where,

Dx ¼ xc � x0c
� �

� xw � x0w
� �

;

Dy ¼ yc � y0c
� �

� yw � y0w
� �

;

Dz ¼ zc � z0c
� �

� zw � z0w
� �

;

ð8Þ

and g(/j) determines whether the tooth is in or out the cut, i.e.,

g /j

� �
¼ 1 /st < /j < /ex

g /j

� �
¼ 0 /j < /stor/j > /ex :

9=
; ð9Þ

where, /st and /ex are the entry and exit angles, respectively.
Therefore, the dynamic forces on tooth j in the tangential, radial and

axial directions can be defined as

F
j
t /; c; að Þ ¼ Kt að Þahj /j ; c

� �
;

F j
r /; c; að Þ ¼ Kr að Þahj /j ; c

� �
;

F j
a /; c; að Þ ¼ Ka að Þahj /j ; c

� �
;

ð10Þ

where, Kt, Kr and Ka are the tangential, radial and axial cutting force coeffi-
cients respectively. This force definition is similar to the linear force model
proposed by Budak et al. (1996) with the exception of the edge=ploughing.
This linear force model introduces six coefficients, comprising of three cut-
ting force coefficients, Ktc, Krc, Kac and three edge=ploughing force coeffi-
cients, Kte, Kre, Kae.

AlthoughKt, Kr and Ka corresponds to the tangential, radial and axial
cutting force coefficient, Ktc, Krc, Kac, respectively, and much like the static
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part in Eq. (1), the edge=ploughing forces do not contribute to chatter
vibrations and are therefore ignored in this model.

The linear force models cutting force and edge force coefficients are a
function of the axial depth of cut, a (Engin and Altintas, 2001, Gradisek
et al., 2004), especially for tools with a corner radius. However for sim-
plicity, like the axial immersion angle, c the cutting force coefficients, Kt,
Kr and Ka are assumed to be constant and an average value is used (Altintas,
2001). The coefficients are usually fitted with a polynomial expression
using least squares method as reported by (Altintas, 2001; Gadalla, 1997).
Hence by substituting Eq. (7) into Eq. (10) and resolving in the global
directions, the following expression is obtained:

Fx
Fy
Fz

8<
:

9=
; ¼

� cos/j � sin c sin/j � cos c sin/j

sin/j � sin c cos/j � cos c cos/j

0 cos c � sin c

2
4

3
5 F

j
t

F j
r

F j
a

8<
:

9=
;: ð11Þ

Substituting Eq. (10) into Eq. (11), and summing the forces from all
the teeth and displacements gives the total dynamic milling forces on the
tool using

Fx ¼
XN�1
j¼0

F j
x ; Fy ¼

XN�1
j¼0

F j
y ; Fz ¼

XN�1
j¼0

F j
z ; ð12Þ

where,

/j ¼ /þ j/p and /p ¼
2p
N

:

Hence,

F tð Þf g ¼ a A tð Þ½ � D tð Þf g; ð13Þ

where fF(t)g is the force vector in time domain, D tð Þf g ¼ Dx;Dy;Dzf gT and
[A] contains the time varying directional dynamic milling force coefficients
that are also dependent on the axial depth of cut through the cutting force
coefficients. The elements in matrix [A] are defined as

axx ¼
XN�1
j¼0

gj � sin/ sin c cos/ð ÞKt � sin2 / sin2 c
� �

Kr � sin2/ sin c cos c
� �

Ka


 �
;

ð14aÞ
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axy ¼
XN�1
j¼0

gj � sin ccos2/
� �

Kt � sin/ sin2 c cos/
� �

Kr � sin/ sin ccos/cos cð ÞKa


 �
;

ð14bÞ

axz ¼
XN�1
j¼0

gj cos/ cos cð ÞKt þ sin c sin/ cos cð ÞKr þ sin/ cos2 c
� �

Ka


 �
; ð14cÞ

ayx ¼
XN�1
j¼0

gj sin2/ sinc
� �

Kt � sin/ sin2 ccos/
� �

Kr � sin/sinccos/coscð ÞKa


 �
;

ð14dÞ

ayy ¼
XN�1
j¼0

gj sin/ sin c cos/ð ÞKt � sin2 c cos2 /
� �

Kr � sin c cos2 / cos c
� �

Ka


 �
;

ð14eÞ

ayz ¼
XN�1
j¼0

gj � sin/ cos cð ÞKt þ sin c cos/ cos cð ÞKr þ cos/ cos2 c
� �

Ka


 �
;

ð14f Þ

azx ¼
XN�1
j¼0

gj sin/ sin c cos cð ÞKr � sin/ sin2 c
� �

Ka


 �
; ð14g Þ

azy ¼
XN�1
j¼0

gj sin c cos/ cos cð ÞKr � sin2 c cos/
� �

Ka


 �
; ð14hÞ

azy ¼
XN�1
j¼0

gj � cos2 c
� �

Kr þ sin c cos cð ÞKa


 �
: ð14iÞ

The directional coefficient matrix, [A] is periodic at the tooth passing
frequency x¼NX and also a function of the axial depth of cut through the
cutting force coefficients. Hence, to obtain an analytical solution a
mono-frequency solution is adopted. This makes the periodic matrix just
a function of axial depth of cut, by taking its average Fourier term [Ao]
of the Fourier series expansion (Altintas, 2001) as

Ao½ � ¼
1

T

Z T

0
A tð Þ½ �dt ¼ 1

/p

Z /ex

/st

A /ð Þ½ �d/ ¼ N

8p
a að Þ½ �; ð15Þ
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and the evaluated elements of the directional factor matrix, [a] are given as
follows:

axx ¼ Kt sin c cos2/þKr sin
2 c sin2/� 2/ð Þ þKa sin c cos c sin2/� 2/ð Þ


 �/ex

/st
;

ð16aÞ

axy ¼ �Kt sin c sin 2/þ 2/ð Þ þ Kr sin
2 c cos 2/þ Ka sin c cos c cos 2/


 �/ex

/st
;

ð16bÞ

axz ¼ 2 Kt2 cos c sin/� Kr sin 2c cos/� Ka cos/ cos 2cþ 1ð Þ½ �/ex

/st
; ð16cÞ

ayx ¼ �Kt sin c sin 2/� 2/ð Þ þ Kr sin
2 c cos 2/þ Ka sin c cos c cos 2/


 �/ex

/st
;

ð16dÞ

ayy ¼ �Kt sinccos2/�Kr sin
2 c sin2/þ 2/ð Þ�Ka sinccosc sin2/þ 2/ð Þ


 �/ex

/st
;

ð16eÞ

ayz ¼ 2 Kt2 cos c cos/þ Kr sin 2c sin/þ Ka sin/ cos 2cþ 1ð Þ½ �/ex

/st
; ð16f Þ

azx ¼ 2 �Kr sin 2c cos/� Ka cos/ cos 2c� 1ð Þ½ �/ex

/st
; ð16g Þ

azy ¼ 2 Kr sin 2c sin/þ Ka sin/ cos 2c� 1ð Þ½ �/ex

/st
; ð16hÞ

azz ¼ 2 �Kr/ cos 2cþ 1ð Þ þ Ka/ sin 2c½ �/ex

/st
: ð16iÞ

Alternative to the mono-frequency solution is the multi-frequency sol-
ution, which considers several terms (Gradisek et al., 2005; Merdol and
Altintas, 2004). Using the mono-frequency solution, Eq. (13) is reduced
to the following

F tð Þf g ¼ N

8p
a a að Þ½ � D tð Þf g: ð17Þ

The vibration vectors at the present time t and previous tooth periods
(t�T) are defined respectively as

rf g ¼ x tð Þ; y tð Þ; z tð Þf gTand r0f g ¼ x t � Tð Þ; y t � Tð Þ; z t � Tð Þf gT :
ð18Þ

Using identified transfer function (TF) at the cutter-workpiece contact
zone, G(ix) the displacement=regenerative vector is defined as

r ixð Þf g ¼ G ixð Þ½ � Ff geixt
r0 ixð Þf g ¼ e�ixT r ixð Þf g

�
ð19Þ
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Therefore, the displacement=regenerative vector, D tð Þf g ¼ x � x0ð Þ;f
y � y0ð Þ; z � z0ð ÞgT in frequency domain becomes

D ixð Þf g ¼ 1� e�ixT
� �

G ixð Þ½ � Ff geixt ; ð20Þ

where, the TF matrix [G(ix)] is the sum of the Frequency Response Func-
tion (FRF) or TF matrixes of the tool=cutter and of the workpiece as follows

G ixð Þ½ � ¼
Gcxx ixð Þ Gcxy ixð Þ Gcxz ixð Þ
Gcyx ixð Þ Gcyy ixð Þ Gcyz ixð Þ
Gczx ixð Þ Gczy ixð Þ Gczz ixð Þ

2
4

3
5þ Gwxx ixð Þ Gwxy ixð Þ Gwxz ixð Þ

Gwyx ixð Þ Gwyy ixð Þ Gwyz ixð Þ
Gwzx ixð Þ Gwzy ixð Þ Gwzz ixð Þ

2
4

3
5;
ð21Þ

where, c denotes the cutter and w denotes the workpiece. It should be
noted that due to the directions (x), (y) and (z) being orthogonal to each
other, the cross-transfer functions are assumed to be negligible and set to
zero.

Hence, Eq. (17) becomes an Eigenvalue problem defined as

Ff g ¼ N

8p
a 1� e�ixcT
� �

a að Þ½ � G ixð Þ½ � Ff g; ð22Þ

which has a non-trivial solution if its determinant is zero,

det I½ � þ K U ixc ; að Þ½ �½ � ¼ 0; ð23Þ

where, the oriented transfer function [U]¼ [a(a)][G(ixc)] and the com-
plex Eigenvalue, K is defined as

K ¼ KR þ iKi ¼ �
N

8p
a 1� e�ixcT
� �

; ð24Þ

The complex Eigenvalue, K can be solved if a value is given for the cut-
ting force coefficients, Kt, Kr and Ka. For given cutting coefficients, the
Eigenvalue becomes a cubic function (Altintas, 2001)

a3K
3 þ a2K

2 þ a1Kþ 1 ¼ 0 ð25Þ

where,

a3 ¼ �U11U22U33ð Þ þ U11U23U32ð Þ þ U21U12U23ð Þ � U21U13U32ð Þ
� U31U12U23ð Þ þ U31U13U22ð Þ

a2 ¼ U22U33ð Þ � U23U32ð Þ þ U11U33ð Þ þ U11U22ð Þ � U21U12ð Þ � U31U13ð Þ
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a1 ¼ � U33ð Þ � U22ð Þ � U11ð Þ

The Eigenvalue obtained has a real and an imaginary part, (K¼KRþ iKI)
and from Euler’s formula we have that e�ixcT ¼ cosxcT � i sinxcT . When
this is substituted into Eq. (24) the following is obtained

K ¼ KR þ iKI ¼ �
N

8p
a 1� cosxcT þ i sinxcTð Þ; ð26Þ

and after some manipulations, an expression for the axial depth of cut is
obtained as follows,

a ¼ � 4p
N

KR 1� cosxcTð Þ þ KI sinxcT

1� cosxcTð Þ þ i
KI 1� cosxcTð Þ � KR sinxcT

1� cosxcTð Þ

� �
:

ð27Þ

Because the axial depth of cut a is real number, the imaginary part has
to vanish, i.e.,

KI 1� cosxcTð Þ ¼ KR sinxcT Þ:

Therefore,

KI

KR
¼ sinxcT

1� cosxcT
¼ tanw; ð28Þ

where, w is the phase shift of the Eigenvalues. From this expression the
relationship between the frequency and the spindle speed is obtained
(Altintas, 2001)

xcT ¼ eþ 2kp;

e ¼ p� 2w;

w ¼ tan�1 j;

n ¼ 60

NT
;

ð29Þ

where, e is the phase difference between the inner and outer undulations, k
is an integer corresponding to the number of vibration waves within a tooth
period and n is the spindle speed (rpm). Substituting Eq. (28) into the real
part of Eq. (24), an expression for chatter free axial depth of cut is
obtained as
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alim ¼ �
4pKR

N
1þ KI

KR

� �2 !
: ð30Þ

For the case where the cutting coefficients and axial immersion angle
are assumed to be constant, the axial depth of cut can be obtained using
Eq. (30). However, for the case where the cutting coefficients are depen-
dent on the axial depth of cut, a new numerical approach to solving the
Eigenvalue problem is thus proposed.

Proposed Numerical Approach

The numerical approach simply involves solving Eq. (30) using the cor-
responding cutting coefficients and axial immersion angle for different
axial depth of cuts and monitoring the error between the axial depth of
cut value used to obtain the coefficients and axial immersion angle and
the obtained axial depth of cut in Eq. (30). When the cutting force coeffi-
cients are calibrated and fitted with a polynomial expression, there is a
range of axial depth of cut amin� a� amax within which the curve fitting
is accurate. This range is usually the same minimum and maximum axial
depths of cut at which the coefficients are calibrated. The same axial depth
of cut range applies to the calculated characteristic coefficients in Eq. (25).
This same range should be used when numerically seeking a converged sol-
ution. The steps of the proposed algorithm are as follows:

1. Select a chatter frequency from transfer functions around a dominant
mode

2. Start the numerical approach to calculating stable axial depth of cut:

A. Using predicted axial depth of cut am (where the initial value
a0¼ amin), calculate the cutting force coefficients, Kt, Kr, Ka and axial
immersion angle c

B. Solve the Eigenvalue characteristic Eq. (25)
C. Calculate the critical depth of cut using Eq. (30)
D. Subtract the calculated axial depth of cut alim from the predicted

axial depth of cut am to obtain the error as follows

gm ¼ am � alim

E. If m> 1, compare the sign of the previous and current axial depth of
cut error, gm and gm� 1, else go to (H)

F. If the signs have changed a converged axial depth of cut solution
can be obtained by means of simply interpolation as follows
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a�lim ¼
�gm�1

gm � gm�1
� am � am�1
� �

þ am�1 ð31Þ

then proceed to step (3)
G. If the signs are unchanged and am< amax then update the predicted

axial depth of cut using amþ 1¼ amþDa, else STOP and go to step 1
as the solution to the chosen chatter frequency is not within the
range of the axial depth of cut imposed by the calibrated cutting
force coefficients

H. Go to step (A) with m¼mþ 1, am� 1¼ am and gm� 1¼ gm

3. Using the converged axial depth of cut solution, a�lim calculate the corre-
sponding cutting force coefficients and axial immersion angle and then
solve the Eigenvalue characteristic equation, see Eq. (25)

4. Calculate the spindle speed using Eq. (29) for each stability lobe
k ¼ 0; 1; 2; 3; :::

5. Repeat the procedure for different chatter frequencies around domi-
nant modes.

The case where no solution is obtained (step (G)) would rarely occur;
however this could happen if the solution being sought is above the
maximum axial depth of cut amax. Hence the range for which the cutting
coefficient has been calibrated for must be extended, alternatively the axial
depth of cut am that gives the smallest error gm can be used.

EXPERIMENTAL VALIDATION

To obtain experimental results to validate the proposed numerical
approach, an aluminium milling application with 3-teeth milling cutter is
considered. The workpiece was kept sufficiently rigid in comparison to
the tool in order to minimize workpiece vibration. The modal properties
of the tool measured using impact tests are given in Table 1. The cutting

TABLE 1 Tool Dynamic Parameters

Direction Mode
Natural Frequency,

xn (rad=s)
Modal Stiffness,
k (107 Nm�1)

Modal Damping Ratio,
f (10�2 %)

X 1 8211.7217 1.0657 7.9626
2 11924.3403 5.6677 4.4413
3 13793.6011 6.6598 5.0610
4 16882.4339 3.1818 3.6897

Y 1 7933.5500 1.2149 3.4316
2 13032.9059 2.2493 7.7559
3 16864.0706 3.1113 2.9063
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coefficients were calibrated using the approach explained by Gradisek et al.
(2004) and fitted with 2nd-order polynomial expressions as shown in
Figures 2, 3, and 4.

Kt að Þ N=mm2
h i

¼ 6:0078a2 � 130:8499a þ 1120:7047;

Kr að Þ N=mm2
h i

¼ �59:2929a2 þ 618:5384a � 965:1056;

FIGURE 2 Calibrated tangential cutting force coefficient.

FIGURE 3 Calibrated radial cutting force coefficient.
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Ka að Þ N=mm2
h i

¼ þ18:0639a2 þ 58:9326a � 955:4979:

The cutting force coefficients were calibrated between 0.50mm and
5.00mm and it is within this axial depth of cut range the cutting force coef-
ficients can predict the cutting forces with reliable accuracy.

Using the proposed algorithm in section 2, an example of the error cal-
culated in step (2d) and the converged axial depth (approximately
2.0mm) calculated in step (2f) for chatter frequency 1303.5 Hertz are
plotted in Figure 5.

FIGURE 4 Calibrated axial cutting force coefficient.

FIGURE 5 Example of algorithm convergence.
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Using the proposed approach, the stability lobe diagram for a 19.0mm
radial depth of cut and 20.0mm tool diameter is shown in Figure 6, where
the unstable region is shown in grey. Changing the radial depth of cut
would change the directional dynamic milling coefficients as these vary

FIGURE 6 Stability margin validation. (Figure available in color online.)
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with the entry and exit angles in Eq. (16). Using the identified modal para-
meters, the transfer function is simply determined by modal superposition.

The results obtained are compared in Figure 6 with the currently
adopted approach proposed by Altintas (2001) (where the axial immersion
angle is assumed to be acting at c¼ p=2þ p=4) and also a commercial soft-
ware package. The stability lobes predicted are experimentally verified
using a radial depth of cut of 19.00mm and a feed of 0.20mm, where
the feedrate is simply calculated for each spindle speed. The presence of
chatter is monitored by the spectrum of cutting forces (Figure 6) measured
and tool vibration measured using an accelerometer built in at the back of
the spindle.

The different experimental results are analysed and grouped into three
categories: stable, transition and chatter cuts. The ‘transition’ cuts were
identified as such because slight chatter was either identified in the mea-
sured force or the predicted chatter frequency can be seen very slightly
in the FFTs. The region predicted to be unstable is in good agreement with
the experimental results. For example, the stability lobes predict chatter at
a depth of 2.00mm and spindle speed of 7000 rev=min. In the experiment,
the chatter is due to the first mode of the tool-spindle assembly and by
reducing the speed to 6000 rev=min the chatter disappeared as was pre-
dicted by the stability lobes. Also the predicted chatter frequency at 7000
rev=min was 1276.50Hz and the identified tool chatter frequency was
1266Hz.

An example of the drastic increase in the measured cutting force when
chatter develops, (which is one of the major problems with chatter due to
the potential damage it poses) is shown in Figure 6. The measured experi-
mental forces, Fx is shown for axial depths of 2.5mm and 3.0mm both with
spindle speed of 9000 rev=min. This is also a clear indicator that chatter is
present, which further validates the accuracy of the predicted unstable
region using the proposed numerical approach. The surface finish for

FIGURE 7 Surface Finish for 9000 rpm. (Figure available in color online.)
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the two axial depths 2.5mm and 3.00mm (spindle speed 9000 rev=min) are
shown in Figure 7.

Although the proposed model is validated here using only one tool and
workpiece setup, further experimental results in the study by Adetoro et al.
(2010) on thin wall chatter have shown similar improvements on the accu-
racy of the stability margin predicted. The same bull-nose end milling tool
used in the study by Adetoro et al. (2010) was used in this study; however, it
would be of interest if this approach was applied to ball end milling tool as
this should give the largest deviation from the results of a flat end tool.

CONCLUSION

Improvements to the zeroth order approximation method to stability
boundary prediction and a numerical approach to solving the stability
model are presented in this article. The cutting force coefficients used in
modelling the cutting force in the stability model are defined more accu-
rately as a function of the axial depth of cut and likewise the axial immer-
sion angle. A numerical approach to obtaining a converged solution to the
stability model is proposed. The results obtained are validated extensively
by comparing them with experimental results and a good agreement is
seen. The approach here only focuses on prediction of Hopf bifurcations.
As future work or for a complete model, this approach can be used along
with other approaches that predict stable margins due to flip bifurcations.
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