
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, APRIL 2018 1

A Comprehensive Investigation of the Role of
Imbalanced Learning for Software Defect

Prediction
Qinbao Song, Yuchen Guo and Martin Shepperd*

This article is dedicated to the memory of Prof. Qinbao Song (1966-2016)

Abstract—Context : Software defect prediction (SDP) is an important challenge in the field of software engineering, hence much
research work has been conducted, most notably through the use of machine learning algorithms. However, class-imbalance typified
by few defective components and many non-defective ones is a common occurrence causing difficulties for these methods. Imbalanced
learning aims to deal with this problem and has recently been deployed by some researchers, unfortunately with inconsistent results.
Objective: We conduct a comprehensive experiment to explore (a) the basic characteristics of this problem; (b) the effect of
imbalanced learning and its interactions with (i) data imbalance, (ii) type of classifier, (iii) input metrics and (iv) imbalanced learning
method.
Method : We systematically evaluate 27 data sets, 7 classifiers, 7 types of input metrics and 17 imbalanced learning methods
(including doing nothing) using an experimental design that enables exploration of interactions between these factors and individual
imbalanced learning algorithms. This yields 27x7x7x17 = 22491 results. The Matthews correlation coefficient (MCC) is used as an
unbiased performance measure (unlike the more widely used F1 and AUC measures).
Results: (a) we found a large majority (87%) of 106 public domain data sets exhibit moderate or low level of imbalance (imbalance
ratio <10; median = 3.94); (b) Anything other than low levels of imbalance clearly harm the performance of traditional learning for SDP;
(c) imbalanced learning is more effective on the data sets with moderate or higher imbalance, however negative results are always
possible; (d) type of classifier has most impact on the improvement in classification performance followed by the imbalanced learning
method itself. Type of input metrics is not influential. (e) only ∼ 52% of the combinations of Imbalanced Learner and Classifier have a
significant positive effect.
Conclusion: This paper offers two practical guidelines. First, imbalanced learning should only be considered for moderate or highly
imbalanced SDP data sets. Second, the appropriate combination of imbalanced method and classifier needs to be carefully chosen to
ameliorate the imbalanced learning problem for SDP. In contrast, the indiscriminate application of imbalanced learning can be harmful.

Index Terms—Software defect prediction, bug prediction, imbalanced learning, imbalance ratio, effect size.

F

1 INTRODUCTION

TO help ensure software quality, much effort has been
invested on software module testing, yet with lim-

ited resources this is increasingly being challenged by the
growth in the size and complexity of software systems.
Effective defect prediction could help test managers locate
bugs and allocate testing resources more efficiently, thus it
has become an extremely popular research topic [1], [2].

Obviously this is an attractive proposition, however
despite a significant amount of research, it is having lim-
ited impact upon professional practice. One reason is that
researchers are presenting mixed signals due to the incon-
sistency of results (something we will demonstrate in our
summary review of related defect prediction experiments

• Q. Song and Y. Guo are with the Dept. of Computer Science & Technology,
Xi’an Jiaotong University, China. E-mail: wispcat@stu.xjtu.edu.cn
Q. Song is also with the State Key Laboratory of Software Engineering at
Wuhan University, China.

• M. Shepperd is with the Dept. of Computer Science, Brunel University
London, UK. E-mail: martin.shepperd@brunel.ac.uk

• *corresponding author

Manuscript received June 13, 2017; revised January 20, 2018; revised April
27, 2018.

in Section 2.2). We aim to address this via attention to
the relationship between data set and predictor, secondly
by integrating all our analysis into a single consistent and
comprehensive experimental framework, and thirdly by
avoiding biased measures of prediction performance. So
our goal is to generate conclusions that are actionable by
software engineers.

Machine learning is the dominant approach to software
defect prediction [3]. It is based on historical software infor-
mation, such as source code edit logs [4], bug reports [5]
and interactions between developers [6]. Such data are
used to predict which components are more likely to be
defect-prone in the future. We focus on the classification
based methods since these are most commonly used. These
methods first learn a classifier as the predictor by applying
a specific algorithm to training data, then the predictor is
evaluated on new unseen software module as a way to
estimate its performance if it were to be used in the ‘wild’
using cross-validation.

A problem frequently encountered is that real world
software defect data consists of only a few defective com-
ponents (usually referred to as positive cases) and a large
number of non-defective ones (negative cases) [7]. Conse-
quently the distribution of software defect data is highly

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to
final publication. Citation information: DOI10.1109/TSE.2018.2836442,

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, APRIL 2018 2

skewed, known as class imbalanced data in the field of
machine learning. When learning from class imbalanced
data, traditional machine learning algorithms struggle [8]
and consequently perform poorly in finding rare classes.
The underlying reasons are that most algorithms:

• assume balanced class distributions or equal misclas-
sification costs [9], thus fail to properly represent the
distributive characteristics of the imbalanced data.

• are frequently designed, tested, and optimized ac-
cording to biased performance measures that work
against the minority class [10], [11]. For example, in
the case of accuracy, a trivial classifier can predict all
instances as the majority class, yielding a very high
accuracy rate yet with no classification capacity.

• utilize a bias that encourages generalization and
simple models to avoid the possibility of over-fitting
the underlying data [12]. However, this bias does
not work well when generalizing small disjunctive
concepts for the minority class [13]. The learning
algorithms tend to be overwhelmed by the majority
class and ignore the minority class [14], a little like
finding proverbial needles in a haystack.

As a result, imbalanced learning has become an active
research topic [9], [8], [15] and a number of imbalanced
learning methods have been proposed such as bagging [16],
boosting [17] and SMOTE [18]. Imbalanced learning has
also drawn the attention of researchers in software defect
prediction. Yet, although imbalanced learning can improve
prediction performance, overall the results seem to be quite
mixed and inconsistent.

We believe there are three main reasons for this un-
certainty concerning the use of imbalanced learning for
software defect prediction. First, commonly used perfor-
mance measures are biased. Second, the imbalance level of
software defect data and its the relationship with the pre-
dictive performance are unexplored. Third, the interaction
between the choice of imbalanced learning methods and
choice of classifiers is not well understood. Likewise with
the choice of data set and input metric types (e.g., static
code or process metrics, network metrics). Fourth, different
studies employ differing experimental procedures, choice of
hyper-parameters, etc which may render results not strictly
comparable. As [11] report, differences between research
group are a major source of variance in experimental results.

Consequently, there is a need to systematically explore
the research questions below:

1) How imbalanced are software defect data sets?
2) How does traditional learning perform under im-

balanced data?
3) How does imbalanced learning perform compared

with traditional learning?
4) What are the interactions between: (i) data sets (in-

cluding imbalance ratio1 and types of input metric)
(ii) type of classifier (iii) type of imbalanced learning
method?

1. The class imbalance ratio (IR) is defined as non-defective (majority)
relative to defective (minority). Generally, IR = Major

Minor
[19] but in

software defect prediction, we assume the defective (positive) is the
minor class.

This paper makes the following contributions:

1) Given the complexity and contradictory nature of
results emerging from other studies, we exhaus-
tively evaluate the impact of different learners and
data sets. We believe this to be the largest single ex-
perimental investigation of imbalanced learning for
software defect prediction as we evaluate the perfor-
mance of 16 imbalanced methods plus a benchmark
of a null imbalanced method making a total of 17
approaches which are combined with 7 examples of
the main types of classifiers and 7 classes of input
metric, yields 27x7x7x17 = 22491 results.

2) We quantify and categorize the degree of imbalance
in all publicly available software defect data (106
data sets).

3) We generate a number of practical or actionable
findings. We show that imbalanced data is a chal-
lenge for software defect prediction. Our findings
suggest that imbalanced learners should be de-
ployed if the imbalance level is not low. We show
that the blind application of imbalanced learners
are not automatically successful, but that particular
combinations of imbalance learner and classifier can
yield very practical improvements in prediction.

4) We demonstrate that typical classification perfor-
mance measures (e.g., F-measure and Area under
the Curve (AUC)) are unsound and demonstrate a
practical alternative in the form of the Matthews
correlation coefficient (MCC). We also focus on effect
size namely dominance rather than p-values.

5) Our R code and data are shared via zenodo at https:
//zenodo.org/badge/latestdoi/94171384

The remainder of this paper is organized as follows.
Section 2 provides a brief introduction to imbalanced learn-
ing methods and summarizes how these ideas have been
applied in software defect prediction research. It then shows
that many results are inconsistent. Section 3 sets out the
details of our experimental design and the data used. Next,
Section 4 presents and discusses our experimental results.
Section 5 considers potential threats to validity and our
mitigating actions; Section 6 draws our study conclusions.

2 RELATED WORK

2.1 Imbalanced Learning
A good deal of work has been carried out by the machine
learning community — although less so in empirical soft-
ware engineering — to solve the problem of learning from
imbalanced data. Imbalanced learning algorithms can be
grouped into five categories:

• Sub-Sampling
• Cost-Sensitive Learning
• Ensemble Learning
• Imbalanced Ensemble Learning
• Special-purpose Learning

We briefly review these. For more details see [9], [20], [21].
Sub-sampling is a data-level strategy in which the data

distribution is re-balanced prior to the model construction
so that the learned classifiers can perform in a similar way

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/TSE.2018.2836442,

https://zenodo.org/badge/latestdoi/94171384
https://zenodo.org/badge/latestdoi/94171384

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, APRIL 2018 3

to traditional classification [22], [18]. Within sub-sampling
there are four main approaches. 1) Under-sampling extracts
a subset of the original data by the random elimination of
majority class instances, but the major drawback is that this
can discard potentially useful data. 2) Over-sampling creates
a superset of the original data through the random repli-
cation of some minority class instances, however, this may
increase the likelihood of overfitting [20]. 3) SMOTE [18] is a
special over-sampling method that seeks to avoid overfitting
by synthetically creating new minority class instances by
means of interpolation between near neighbours . 4) Hy-
brid methods combine more than one sub-sampling tech-
nique [23].

Cost-sensitive learning can be naturally applied to ad-
dress imbalanced learning problems [24]. In the context of
defect prediction, false negatives are likely to be consid-
erably more costly than false positives. Instead of balanc-
ing data distributions through sub-sampling, cost-sensitive
learning optimizes training data with a cost matrix that
defines the different misclassification costs for each class.
A number of cost-sensitive learning methods have been
developed by using cost matrices, such as cost-sensitive
K-nearest neighbors [25], cost-sensitive decision trees [26],
cost-sensitive neural networks [27], and cost-sensitive sup-
port vector machines [28]. Unfortunately misclassification
costs are seldom available2.

Ensemble learning is the basis of generalizability en-
hancement; each classifier is known to make errors, but
different classifiers have been trained on different data, so
the corresponding misclassified instances are not necessarily
the same [30]. The most widely used methods are Bag-
ging [16] and Boosting [17] whose applications in various
classification problems have led to significant improve-
ments [31]. Bagging consists of building different classifiers
with bootstrapped replicas of the original training data.
Boosting serially trains each classifier with the data obtained
by weighted sampling from the original data, in order to
focus on difficult instances. AdaBoost [17] is the most widely
used boosting method, and was identified as one of the top
ten most influential data mining algorithms [32].

Imbalanced ensemble learning combines ensemble
learning with the aforementioned sub-sampling techniques
to address the problems of imbalanced data classification.
The idea is to embed a data preprocessing technique into
an ensemble learning method to create an imbalanced
ensemble learner. For instance, if under-sampling, over-
sampling, underover-sampling, and SMOTE rather than the
standard random sampling used by Bagging, were carried
out before training each classifier this leads to Under-
Bagging [14], OverBagging [33], UnderOverBagging [14],
and SMOTEBagging [14]. In the same way, by integrating
under-sampling and SMOTE with Boosting we obtain RUS-
Boost [34] and SMOTEBoost [35]. Unlike sampling-based
ensemble methods, EM1v1 [36] handles the imbalanced data
with splitting and coding techniques.

Special-purpose Learning is specialized to a particular
type of classifier or existing algorithm, e.g., kernel-based

2. Misclassification costs could be given by domain experts, or can be
learned via other approaches [29], but do not naturally exist. Typically,
the cost of misclassifying minority instances is higher than the opposite,
which biases classifiers toward the minority class.

methods for SVM [9]. Since this type of imbalanced learning
by definition cannot be applied to each type of classifier this
does not fit our experimental design and is excluded. For
more details see [21].

2.2 Software Defect Prediction

As discussed, researchers are actively seeking means of
predicting the defect-prone components within a software
system. The majority of approaches use historical data
to induce prediction systems, typically dichotomous clas-
sifiers where the classes are defect or not defect-prone.
Unfortunately software defect data are highly prone to
the class-imbalance problem [38], yet “many studies [still]
seem to lack awareness of the need to account for data
imbalance” [1]. Fortunately there have been a number of
recent experiments that explicitly address this problem for
software defect prediction.

Table 1 summarizes this existing research. Defect predic-
tion methods can be viewed as a combination of classifi-
cation algorithm, imbalanced learning method and class of
input metric. We highlight seven different classifier types
(C4.5, ..., NB) in conjunction with 16 different imbalanced
learners (Bag, ..., SBst) together with the option of no
imbalanced learning yielding 17 possibilities. Method la-
bels are constructed as <classifier> + <imbalanced
learner> for instance NB+SMOTE denotes Naı̈ve Bayes
coupled with SMOTE. Next there are four3 classes of metric
(code, ... code+network+process) yielding 7× 17× 4 = 476
combinations displayed and a further 357 implicit combina-
tions.

Each cell in Table 1 denotes published experiments that
have explored a particular interaction. Note that the matrix
is relatively sparse with only 54 cells covered (54/833 ≈ 6%)
indicating most combinations have yet to be explored. This
is important because it is quite possible that there are inter-
actions between the imbalanced learner, classifier and input
metrics such that it may be unwise to claim that a particular
imbalanced learner has superior performance, when it has
only been evaluated on a few classifiers. Indeed some types
of input metric e.g., code + network metrics have yet to be
explored in terms of unbalanced learning. By contrast, five
independent studies have explored the classifier C4.5 with
under-sampling.

Furthermore, some of these experiments report conflict-
ing results. The underlying reasons include differing data
sets, experimental design and performance measures along
with differing parameterization approaches for the classi-
fiers [11]. This makes it very hard to determine what to
conclude and what advice to give practitioners seeking to
predict defect-prone software components. We give three
examples of conflicting results.

First, Menzies et al. [39] conducted an experiment based
on 12 PROMISE data sets. Their results showed that sub-
sampling offers no improvement over unsampled Naı̈ve
Bayes which does outperform sub-sampling C4.5. This is
confirmed by Sun et al. [36]. However, Menzies et al. also

3. Strictly speaking there are seven combinations of metric class
however, Network, Process and Network+Process are all empty i.e.,
thus far unexplored, so for reasons of space they are excluded from
Table 1.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/TSE.2018.2836442,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, APRIL 2018 4
Metrics Metrics Metrics

Method Code
Code

+Network
Code

+Process

Code
+Network
+Process

Method Code
Code

+Network
Code

+Process

Code
+Network
+Process

Method Code
Code

+Network
Code

+Process

Code
+Network
+Process

C4.5 [37][36][38][39][40][41][42] [4][43][42] SVM+Bst IBk+OBag
RF [36][7][40] SVM+US [40] IBk+UOBag
SVM [40] SVM+OS [40] IBk+SBag
Ripper [36][40] SVM+UOS IBk+UBst
Ibk [40] SVM+SMOTE [40] IBk+OBst
LR [44][40] [4] SVM+COS IBk+UOBst
NB [36][7][39][40][42] [4][42] SVM+EM1v1 IBk+SBst
C4.5+Bag [36] SVM+UBag LR+Bag
C4.5+Bst [7][37][36] [43] SVM+OBag LR+Bst
C4.5+US [37][36][7][39][40] SVM+UOBag LR+US [44][40]
C4.5+OS [37][36][39][40] SVM+SBag LR+OS [44][40]
C4.5+UOS SVM+UBst LR+UOS
C4.5+SMOTE [36][40][41] SVM+OBst LR+SMOTE [44][40]
C4.5+COS [36][7] [4][43] SVM+UOBst LR+COS
C4.5+EM1v1 [36] SVM+SBst LR+EM1v1
C4.5+UBag [42] [42] Ripper+Bag [36] LR+UBag
C4.5+OBag Ripper+Bst [36] LR+OBag
C4.5+UOBag Ripper+US [36][40] LR+UOBag
C4.5+SBag Ripper+OS [36][40] LR+SBag
C4.5+UBst Ripper+UOS LR+UBst
C4.5+OBst Ripper+SMOTE [36][40] LR+OBst
C4.5+UOBst Ripper+COS [36] LR+UOBst
C4.5+SBst [7] Ripper+EM1v1 [36] LR+SBst
RF+Bag [36] Ripper+UBag NB+Bag [36]
RF+Bst [36] Ripper+OBag NB+Bst [36]
RF+US [36][40] Ripper+UOBag NB+US [36][39][40]
RF+OS [36][40] Ripper+SBag NB+OS [36][39][40]
RF+UOS Ripper+UBst NB+UOS
RF+SMOTE [36][40] Ripper+OBst NB+SMOTE [36][40]
RF+COS [36] Ripper+UOBst NB+COS [36]
RF+EM1v1 [36] Ripper+SBst NB+EM1v1 [36]
RF+UBag IBk+Bag NB+UBag [42] [42]
RF+OBag IBk+Bst NB+OBag
RF+UOBag IBk+US [40] NB+UOBag
RF+SBag IBk+OS [40] NB+SBag
RF+UBst IBk+UOS NB+UBst
RF+OBst IBk+SMOTE [40] NB+OBst
RF+UOBst IBk+COS NB+UOBst
RF+SBst IBk+EM1v1 NB+SBst
SVM+Bag IBk+UBag -

Note: Please see Section 4.2 for the interpretation of abbreviations for the defect prediction methods.

TABLE 1: Summary of Previous Experiments on Imbalanced Learners, Classification Methods and Input Metrics for
Software Defect Prediction

found that under-sampling beat over-sampling for both
Naı̈ve Bayes and C4.5, but Sun et al.’s work indicates this is
only true for C4.5.

Second, Seiffert et al. [40] conducted a further study on
class imbalance coupled with noise for different classifiers
and data sub-sampling techniques. They found that only
some classifiers benefitted from the application of sub-
sampling techniques in line with Menzies et al. [39] and Sun
et al. [36]. However, they also reported conflicts in terms of
the performance of random over-sampling methods outper-
form other sub-sampling methods at different levels of noise
and imbalance.

A third example, again from Seiffert et al. [37], is where
they compared sub-sampling methods with Boosting for
improving the performance of decision tree models built to
predict defective components. Their results show that Boost-
ing outperforms even the best sub-sampling methods. In
contrast, Khoshgoftaar et al. [43] learned classifiers through
using Boosting and cost-sensitive Boosting with C4.5 and
decision stumps used as the base classifiers, respectively.
They found that Boosting and cost-sensitive Boosting did
not enhance the performance of individual pruned C4.5
decision trees.

Therefore, our study focuses on an exhaustive compar-
ison of 16 different popular imbalanced learning methods
(plus the control of no Imbalanced Learning) with seven
representative and widely used traditional machine learning
methods on static code, process, and network metrics in
terms of five performance measures in the same experimen-
tal context for the purpose of software defect prediction.
These are all applied to 27 different data sets.
3 METHOD

Our goal is to conduct a large scale comprehensive exper-
iment to study the effect of imbalanced learning and its
complex interactions between the type of classifier, data
set characteristics and input metrics in order to improve
the practice of software defect prediction. We first discuss
our choice of MCC as the performance measure and then
describe the experimental design including algorithm eval-
uation, statistical methods and software defect data sets.

3.1 Classification Performance Measures
Since predictive performance is the response variable for
our experiments, the choice is important. Although the F-
measure and AUC are widely used, we see them as problem-
atic due to bias particularly in the presence of unbalanced

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/TSE.2018.2836442,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, APRIL 2018 5

data sets, which is of course precisely the scenario we are in-
terested in studying. Consequently, we use MCC (Matthews
correlation coefficient [45] (MCC) otherwise known as φ -
see [46]) as our measure of predictive performance.

Actually Positive Actually Negative
Predict Positive TP FP

Predict Negative FN TN

TABLE 2: Confusion Matrix

The starting point for most classification performance
measures is the confusion matrix. This represents counts
of the four possible outcomes when using a dichotomous
classifier to make a prediction (see Table 2)4. For example,
F1 is the most commonly used derivative of the F-measure
family and is defined by Eqn. 1.

F1 =
2 · TP

2 · TP + FP + FN
(1)

However, it excludes True Negatives (TN) in its calcula-
tion which is potentially problematic. The reason is that
it originated from the information retrieval domain where
typically the number of true negatives, e.g., irrelevant web
pages that are correctly not returned is neither knowable
nor interesting. However, unlike recommendation tasks5,
this is not so for defect prediction because test managers
are definitely interested to know if components are truly
non-defective.

Let us compare F1 with MCC. MCC is the geometric
mean of the regression coefficients of the problem and its
dual [10] and is defined as:

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2)

As a correlation coefficient it measures the relationship be-
tween the predicted class and actual class, MCC is on a scale
[-1,1] where 1 is a perfect positive correlation (also perfect
prediction), zero no association and -1 a perfect negative
correlation. In contrast, we illustrate the problematic nature
of F1 with a simple example and compare it with MCC.

Suppose our hypothetical defect classifier predicts as
Case 1 in Table 3.

Case 1 Case 2 Case 3 Case 4
TP 5 5 4 9
FP 45 45 9 54
FN 5 5 6 1
TN 45 0 81 36
F1 0.17 0.17 0.35 0.25

MCC 0.00 -0.67 0.27 0.19
G-mean 0.50 0.00 0.60 0.60

TABLE 3: Example Classification Cases

We can see the proportion of cases correctly classified is
0.5 i.e., TP+TN/n = 5+45/100. This yields an F1 of 0.17 on

4. Note: in the context of software defect prediction, the positive class
and negative class denote defective and non-defective respectively.

5. Examples of recommendation tasks include bug triage [47] or
recommending code snippets [48].

a scale [0,1] which is somewhat difficult to interpret. Let
us compare F1 with MCC. In this case, MCC=0 which is
intuitively reasonable since there is no association between
predicted and actual6. Now suppose the True Negatives
are removed so n=55 as in Case 2 in Table 3. F1 remains
unchanged at 0.17 whilst MCC=-0.67 signifying substan-
tially worse than random performance. The proportion of
correctly classified cases is now 5/55 = 0.09, clearly a
great deal worse than guessing and so we have a perverse
classifier. However, F1 cannot differentiate between the two
situations. This means experimental analysis based upon F1

would be indifferent to the two outcomes.
This example illustrates not only a drawback with F1,

but also the weakness of all derivative measures from Recall
and Precision as they ignore TNs. Measures such as Accuracy
are also well-known to be biased as they are sensitive to data
distributions and the prevalence of the positive class [49].

One alternative measure that covers the whole confusion
matrix is the G-mean, defined as the geometric mean of the
accuracies of the two classes (see Eqn. 3) and was developed
specifically for assessing the performance under imbalanced
domains [21]. It assumes equal weight of the precision for
both classes.

G-mean =

√
TP

TP + FN
×

TN
TN + FP

(3)

However, there are disadvantages with G-mean. As ob-
served by López et al.[19], “due to this symmetric nature of
the geometric mean ... it is hard to contrast different models
according to their precision on each class”. For example, in
Table 3 we observe that Case 3 (TPrate = 0.4, TNrate = 0.9)
and Case 4 (TPrate = 0.9, TNrate = 0.4) the G-mean is
the same 0.60. However, Case 3 is clearly preferred by MCC
and F1. An alternative version called the G-measure replaces
TNrate with precision, however, it ignores TN and suffers the
same drawback as the F-measure.

Thus, we seek a single measure that:

1) Covers the entire confusion matrix;
2) Evaluates a specific classifier7;
3) Properly takes into account the underlying frequen-

cies of true and negative cases;
4) can be easily interpreted

The third requirement needs further discussion in that
AUC — another commonly used measure for evaluating
classifiers — is also problematic. AUC calculates the area un-
der an ROC curve which depicts relative trade-offs between
TPR (true positive rate which is TP/(TP+FN)) and FPR (false
positive rate which is FP(FP+TN)) of classification for every
possible threshold. One classifier can only be preferred to
another if it strictly dominates i.e., every point on the ROC
curve of this classifier is above the other curve. Otherwise,
we cannot definitively determine which classifier is to be
preferred since it will depend upon the relative costs of FPs
and FNs.

Consider the example in Fig. 1 that shows ROC curves
for two classifiers (Classifier Family A and Classifier Family

6. This is a typical random guess where the accuracy for both classes
is 50%.

7. As opposed to a family of classifiers such as is the case for the Area
Under the Curve (AUC) measure [50]

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/TSE.2018.2836442,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, APRIL 2018 6

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

FPR

T
P

R

Fig. 1: ROC curves of Classifier
A (the solid curve) and Classifier
B (the dotdash curve)

FPR TPR(A) TPR(B)
0.05 0.1 0.15
0.1 0.22 0.35
0.2 0.41 0.58
0.3 0.58 0.66
0.4 0.72 0.72
0.5 0.89 0.76
0.6 0.97 0.8
0.8 0.99 0.89

AUC A B
0.725 0.704

TABLE 4: Points on the A and B
ROC curves

B) derived from the values of some points on these curves
(Table 4). We can observe that B is better than A when FPR
is less than 0.4, but this reverses when FPR is greater than
0.4. Without knowing the relative costs of FP and FN we
cannot determine which classifier is to be preferred. As a
compromise, the area under the curve can be calculated to
quantify the overall performance of classifier families, i.e.
the AUC of A is 0.725 which is greater than the AUC of B
(0.704). The AUC values indicate A is better than B, but this
still doesn’t help us determine which specific classifier we
should actually choose.

Moreover, AUC is incoherent in that it is calculated
on different misclassification cost distributions for different
classifiers [51], since various thresholds relate to varying
misclassification costs. Hence we conclude AUC is unsuit-
able for our purposes. Consequently, we select MCC as our
performance measure. For a fuller discussion of the merits
and demerits of various classification performance metrics
see [10], [52], [21].

3.2 Algorithm Evaluation

In order to be as comprehensive as possible, we apply a
total of 17 different imbalanced learning methods (16 plus
a null method - see Table 5) to seven traditional classifiers
chosen to be representative of commonly used approaches
[1] (see Table 6). We then use seven classes of input metric
(see Table 7). Since the design is factorial this yields 833
combinations which are evaluated across 27 different data
sets as a repeated measure design as this enables us to
compare performance between approaches within a given
data set.

Then for each combination we use M × N -way cross-
validation to estimate the performance of each classifier, that
is, each data set is first divided into N bins, and after that
a predictor is learned on (N − 1) bins, and then tested on
the remaining bin. This is repeated for the N folds so that
each bin is used for training and testing while minimizing
the sampling bias. Moreover, each holdout experiment is
also repeated M times and in each repetition the folds are
randomized. In our case M = 10 and N = 10 so overall,
100 models are built and 100 results obtained for each data
set.

Method Type Abbr Method Name Ref
US Under-Sampling [18]

Sub-sampling OS Over-Sampling [18]
methods UOS Underover-Sampling [18]

SMOTE SMOTE [18]
Cost-sensitive COS Cost-sensitive

methods learning [53]
Ensemble Bag Bagging [16]
methods Bst Boosting [17]

EM1v1 EM1v1 [36]
UBag UnderBagging [14]
OBag OverBagging [33]

Imbalanced UOBag UnderoverBagging [14]
ensemble SBag SMOTEBagging [14]
methods UBst UnderBoosting [34]

OBst OverBoosting
UOBst UnderoverBoosting

SBst SMOTEBoosting [35]

TABLE 5: Summary of imbalanced learning methods

Abbr Classification Algorithm Ref
LR Logistic Regression [6], [54]
NB Naı̈ve Bayes [55]

C4.5 Decision tree [4]
IBk Instance based kNN [56]

Ripper Rule based Ripper [57]
SVM Support vector machine (SMO) [58]
RF Random Forest [7]

TABLE 6: Summary of classifiers

The experimental process is shown by the following
pseudo-code. Notice that (i) attribute selection is applied
to the training data of each base learner, see Lines 14 and 22.
(ii) the test data is always ‘raw’ and imbalanced.

Lastly, our experimental program is based on
WEKA [61]. The parameter k=5 for IBk and SMOTE. SVM is
the default SMO in WEKA. The number of iterations for all
the ensemble methods is 10 except EM1v1 which determines
the number itself. COS is the MetaCOS in WEKA with the
cost-matrix defined as the same ratio as IR. The remaining
parameters are all the default values from WEKA8.

8. https://www.cs.waikato.ac.nz/ml/weka/index.html

Input Metrics Metrics Type Ref
CK Source Code metrics [59]

NET Network metrics [60]
PROC Process metrics [4]

CK+NET Combined metrics -
CK+PROC Combined metrics -

NET+PROC Combined metrics -
CK+NET+PROC Combined metrics -

TABLE 7: Input metric classes used in our experiment

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/TSE.2018.2836442,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, APRIL 2018 7

Procedure Experimental Process
1 M← 10; /*the number of repetitions*/
2 N← 10; /*the number of folds*/
3 DATA← {D1, D2, ..., Dn}; /*software data sets*/
4 Learners← {C4.5, RF, SVM, Ripper, IBk, LR, NB};
5 ImbalancedMethods← {Bag, Bst, US, OS, UOS, SMOTE, COS, EM1v1,

UBag, UOBag, OBag, SBag, UBst, OBst, UOBst, SBst};
6 for each data ∈ DATA do
7 for each times ∈ [1, M] do /*M times N-fold

cross-validation*/
8 data′ ← randomize instance-order for data;
9 binData← generate N bins from data′;

10 for each fold ∈ [1, N] do
11 testData← binData[fold];
12 trainingData← data′ - testData;
13 for each learner ∈ Learners do

/*evaluate traditional learning */
14 trainingData’← attributeSelect(trainingData);
15 classifier← learner(trainingData’);
16 learnerPerformance← evaluate classifier on testData;

17 for each imbMethod ∈ ImbalancedMethods do
18 T← iteration number of imbMethod;

/*build classifiers from each
traditional learner */

19 for each learner ∈ Learners do
20 for each t ∈ [1, T] do
21 Dt ← generateData(t, trainingData,

imbMethod);
22 D′

t ← attributeSelect(Dt);
23 Ct ← learner(D′

t);

24 imbClassifier← ensembleClassifier({Ct,
t = 1..T}, imbMethod);
/*evaluate imbalanced learning */

25 imbPerformance← evaluate imbClassifier on
testData;

3.3 Statistical Methods

Given the performance estimates of each classifier on every
dataset, how to determine which classifier is better?

First we need to examine whether or not the perfor-
mance difference between two predictors could be caused
by chance. We use a Wilcoxon signed-rank test (a non-
parametric statistical hypothesis test used when comparing
paired data) to compare pairs of classifiers. Like the sign
test, it is based on difference scores, but in addition to
analyzing the signs of the differences, it also takes into
account the magnitude of the observed differences. The
procedure is non-parametric so no assumptions are made
about the probability distributions, which is important since
a normal distribution is not always guaranteed. We correct
for multiple tests by using the Benjamini-Yekutieli step-up
procedure to control the false discovery rate [62]. Then the
Win/Draw/Loss record is used to summarise each compar-
ison by presenting three values, i.e., the numbers of data
sets for which Classifier C1 obtains better, equal, and worse
performance than Classifier C2.

Next, effect size is computed since it emphasises the
practical size of the difference, rather than confounding this
with sample size as is the case with p-values [63]. We use
the effect statistics of difference (average improvement) and
dominance (Cliff’s δ). Cliff’s δ is a non-parametric robust
indicator which measures the magnitude of dominance as
the difference between two groups [64]. It estimates the
likelihood of how often Predictor C1 is better than Predictor
C2. We use the paired version since our data are correlated
so the performance of two methods is comparable for the

same data set [65], [66]. By convention, the magnitude of
the difference is considered trivial (|δ| < 0.147), small
(0.147 ≤ |δ| < 0.33), moderate (0.33 ≤ |δ| < 0.474), or
large (|δ| ≥ 0.474) as suggested by Romano et al. [67].

3.4 Software Metrics
As indicated, we are interested in three classes of metric
based upon static code analysis, network analysis and pro-
cess. These choices are made because static code metrics
are most frequently used in software defect prediction [68],
network metrics may have a stronger association with de-
fects [60] and process metrics reflect the changes to software
systems over time. We also consider combinations of these
metrics yielding a total of seven possibilities (see Table 7).

(1) Source code metrics measure the ‘complexity’ of
source code and assume that the more complex the source
code is, the more likely defects are to appear. The most pop-
ular source code metrics suite is the Chidamber-Kemerer
(CK) metrics [59] which is detailed in Appendix A.1. All six
CK metrics and LOC (lines of code) were chosen as code
metrics in this paper and marked as CK.

(2) Network metrics are actually social network anal-
ysis (SNA) metrics calculated on the dependency graph
of a software system. These metrics quantify the topolog-
ical structure of each node of the dependency graph in
a certain sense, and have been found as effective indica-
tors for software defect prediction [60]. In this study, the
networks are call graphs of software systems, where the
nodes are the components (classes) of a software and the
edges are the call dependencies among these components.
The DependencyFinder9 tool was used to extract the call
relations. Once networks are built, the UCINET10 tool was
employed to calculate three kinds of network (NET) metrics
of dependency networks: Ego network metrics, structural
metrics and centrality metrics. The details of 25 types of
SNA metrics are given in the Appendix A.2.

(3) Process metrics represent development changes on
software projects. We extracted 11 process (PROC) metrics,
which were proposed by Moser et al. [4] from the CVS/SVN
repository of each specific open source project (see Ap-
pendix A.3).

3.5 Data Sets
Public software defect data repositories include
PROMISE [69], AEEEM [70], NASA11 [71], Softlab [72],
Relink [73], NetGene [74] and the JiT data repository [75].
In total, we located 106 software defect prediction data sets
in these seven repositories. From these data sets we extract
imbalance ratios which are described in Section 4.1.

However, we also need to collect data with consistent
granularity and input metrics. This requires not only the
availability of defect data but also the availability of soft-
ware metrics, i.e. it is not possible to explore the source code
of the NASA MDP data sets and the contextual data are
not comprehensive (e.g., no data on maturity are available).

9. http://depfind.sourceforge.net/
10. http://www.analytictech.com/ucinet/
11. Note that although the NASA MDP data sets have been widely

used in developing defect prediction models, the data may “suffer from
important anomalies.” [1].

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/TSE.2018.2836442,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, APRIL 2018 8

Note that we exclude data sets which are too small 12 and too
defective13. As a result, we are limited to 27 data sets (for our
main analysis) from the PROMISE and AEEEM repositories
where we are able to collect necessary class-level metrics
(CK, NET and PROC). These 27 data sets are derived from
13 distinct software projects, since there are multiple releases
for many of these projects (e.g., ant has releases 1.3 to 1.6,
see Table 8).

4 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we consider the effect of imbalanced learning
meaning a non-zero difference between imbalanced learning
and traditional learning, and of course we are most inter-
ested in positive effects. We start with the basic character-
istics of imbalanced learning problem on software defect
prediction by investigating:

RQ1 How imbalanced are software defect data sets?
RQ2 How does the traditional learning perform under

imbalance?
RQ3 How does the imbalanced learning compare with

traditional learning?

Then we explore more details about the effect and its com-
plex interactions with our three experimental factors by
answering the following questions expansed from RQ4:

RQ4.1 How does imbalance level impact performance?
RQ4.2 How does the type of classifier interact with imbal-

ance level?
RQ4.3 How does type of input metric interact with imbal-

ance level?
RQ4.4 How does type of imbalanced learning method in-

teract with imbalance level, type of classifier and
type of input metrics?

4.1 RQ1: Imbalance Levels in Defect Data Sets
As previously mentioned in Section 3.5, we identified a total
of 106 public software defect prediction data sets that at
least provide sufficient information for us to compute the
Imbalance Ratios (see Fig 2). Since the distribution of IR is
highly skewed (Skewness =7.16, Kurtosis = 54.84) we plot
the histogram of log2(IR). The blue bars indicate the 27 data
sets selected for the remainder of the analysis. The dotted
line shows the median of all data sets (21.98 = 3.94).

As we can observe from Fig 2, most data sets gather
around the median in the log2(IR) range from -1 to 4. It
is customary to categorize imbalance in terms of IR orders
of magnitude [88], [29]. We find there are only 13 out of
106 data sets whose IR is larger than 10. In other words,
the imbalance level of 87.7% software defect data is not as
extreme as in some other domains such as fraud detection or
network intrusion [29]. This is also a pointer for our study in
that low and medium levels of imbalance are more typical.
Thus, the 27 data sets are divided into two groups: (i) Low
IR (ii) Moderate+ (moderate and high) IR by splitting on the
median (IR = 3.94). The labels are chosen to align with the
wider context of data imbalance [29].

12. 25 data sets whose size is less than 120 components are filtered
out.

13. We assume the defective class is in the minority (i.e., IR > 1).

0

5

10

15

−4 0 4 8

log(IR, 2)

c
o
u
n
t Chosen

No

Yes

Fig. 2: Histogram of Data set Imbalance Ratios (log2(IR))

Low IR <−−−−−−−|−−−−−−−> Medium+ IR

0.0

0.2

0.4

0.6

1 2 3 4 5

log(IR, 2)

M
C

C

Fig. 3: Performance without imbalanced learning under
differing levels of data imbalance

Another observation is that fortunately the distribution
of blue bars is similar to the whole distribution, indicating
our subset is reasonably representative of the whole dis-
tribution. Recall that our choice of data sets is to include
all data sets where are able to compute each class of input
metric, there are at least 120 components and the defective
class is the minority, i.e., IR > 1 since we take the view that if
defective components form the majority, then it implies the
system is quite problematic perhaps being an initial version
of a software project.

In summary, a typical level of imbalance is a ratio of
approximately 4 and 87.7% of software defect data sets
are not highly imbalanced, i.e., low and moderate levels of
imbalance are more prevalent.

4.2 RQ2 How does traditional learning perform under
imbalance?
To answer this question, we plot the predictive performance
(MCC) without imbalanced learning under different levels
of imbalance in Fig. 3. The blue line is drawn by a non-
parameter smoother (loess smoothing) with its confidence
interval shown as a gray area. As per Fig 2, we plot log2(IR)
instead of IR. Again the dotted line shows the median (
21.98 = 3.94).

From this enhanced scatter plot, we see a great deal of
variability in predictive performance for any given level
of imbalance but also observe that log2(IR) tends to have
a negative impact upon classification performance. The

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/TSE.2018.2836442,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, APRIL 2018 9

Dataset Modules Defect Imbalance LOC LOC Revision Reference
Ratio Ratio Avg Max Avg

ant-1.3 125 16.00% 5.25 301.59 2193.00 2.90 [76], [77]
ant-1.4 178 22.47% 3.45 304.47 2040.00 2.57 [76], [77]
ant-1.5 293 10.92% 8.16 297.09 4244.00 7.71 [76], [77], [78]
ant-1.6 351 26.21% 2.82 322.64 4238.00 8.32 [76], [77], [78]
camel-1.0 339 3.83% 25.08 99.47 1000.00 4.69 [76], [77]
camel-1.2 608 35.53% 1.81 109.05 1056.00 1.04 [76], [77], [78]
camel-1.4 872 16.63% 5.01 112.48 1747.00 1.55 [76], [79], [77], [78]
camel-1.6 965 19.48% 4.13 117.16 2077.00 0.44 [76], [79], [77], [80], [81], [78]
ivy-2.0 352 11.36% 7.80 249.34 2894.00 8.00 [76], [82], [77], [78]
jedit-3.2 272 33.09% 2.02 473.83 23350.00 1.09 [76], [77], [83] , [84], [78]
jedit-4.0 306 24.51% 3.08 473.21 23683.00 4.63 [85], [76], [77], [83] , [84], [80], [78]
jedit-4.1 312 25.32% 2.95 490.66 23590.00 4.16 [85], [83], [84], [78]
jedit-4.2 367 13.08% 6.65 465.08 12200.00 6.13 [85], [83], [84]
jedit-4.3 492 2.24% 43.73 411.31 12535.00 7.30 [85], [82], [83], [84]
log4j-1.0 135 25.19% 2.97 159.62 1176.00 2.38 [80], [81], [78]
poi-2.0 314 11.78% 7.49 296.72 9849.00 3.86 [76], [77]
synapse-1.0 157 10.19% 8.81 183.48 867.00 5.20 [76], [77], [78]
synapse-1.1 222 27.03% 2.70 190.55 1164.00 3.22 [76], [77], [78]
synapse-1.2 256 33.59% 1.98 208.98 1449.00 3.27 [76], [82], [77], [78]
velocity-1.6 229 34.06% 1.94 248.96 13175.00 2.40 [76], [82], [77]
xerces-1.2 440 16.14% 5.20 361.94 8696.00 1.21 [76], [77], [86], [78]
xerces-1.3 453 15.23% 5.57 368.86 10701.00 1.00 [76], [77], [86], [80], [81],[78]
Eclipse JDT Core 997 20.66% 3.84 224.73 7341.00 45.62 [70], [87], [86]
Eclipse PDE UI 1497 13.96% 6.16 98.16 1326.00 13.51 [70], [87],[81]
Equinox Framework 324 39.81% 1.51 122.02 1805.00 11.39 [70], [87],[81]
Lucene 691 9.26% 9.80 105.91 2864.00 6.26 [70], [76], [87] , [79] , [77], [82] , [86], [80], [81]
Mylyn 1862 13.16% 6.60 83.84 7509.00 10.98 [70], [81]

TABLE 8: Description of the 27 Data Sets

smoothed line starts at nearly MCC=0.4, decreases to 0.3
at the median (the dashed line) then further falls to below
0.1 MCC where log2(IR) exceed 8 i.e, approximately 64. In
other words at this level of imbalance the performance of
classifiers is scarcely better than random. More generally,
the negative impact is clear upon the right side of dotted line
for the Medium+ IR data sets (defined in Section 4.1) where
this imbalance can potentially cause a substantial reduction
in predictive performance.

In addition, the robust correlation coefficient14 is -0.529
(p < 0.0001). This indicates a negative correlation between
the performance and log2(IR) which would generally be
regarded as a large effect [90].

In summary, the answer for RQ2 is that the performance
of traditional learning is highly threatened by moderate or
high levels of imbalance in software defect data. Therefore
any means of addressing imbalance in the data is potentially
useful for software defect prediction.

4.3 RQ3: How does imbalanced learning compare with
traditional learning?

To answer our next research question RQ3, we compare tra-
ditional learning methods and imbalanced learning meth-
ods pairwise (for the same base classifier, metrics and
data set) and then analyze the overall differences. This
follows from the repeated measure design of the experiment

14. We use the percentage bend correlation coefficient [89] from pbcor
in the WRS2 R package.

described in Section 3.2. From this we can compute the
difference between predicting defects with and without an
imbalanced learner for each data set.

Fig. 4 shows the distribution of the effect (differences)
as a histogram. The shaded bars in the histogram indicate
negative effects, i.e., where the imbalanced learning makes
the predictive performance worse. Overall, this happens in
about 28% of the cases. There are several factors which may
cause such negative effect:

1) low level imbalance;
2) the base classifier is not sensitive to imbalance;
3) a weak imbalanced learning method;
4) challenging datasets e.g., problems with class sepa-

rability and within-class sub-concepts [29]

For first three factors, we offer evidence and analysis in
Section 4.4, Section 4.5 and Section 4.7 respectively.

Yet careful examination of these negative cases suggests
that imbalanced learning can be also counter-productive,
due to the lack of structure to learn from for challeng-
ing datasets (rare for strong learners). Interestingly the
fourth factor is not limited to software defects. Lopez et
al. [19] identify a number of intrinsic data set characteristics
that have a strong influence on imbalanced classification,
namely, small disjuncts, lack of density, lack of class sep-
arability, noisy data and data set shift. They also pointed
out that poor performance can occur across the range of
imbalance ratios.

This means imbalanced learning is not a simple panacea
for all situations. It must be carefully chosen and applied

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/TSE.2018.2836442,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, APRIL 2018 10

Histogram of Difference

Difference on MCC

F
re

q
u
e
n
c
y

−0.2 0.0 0.2 0.4

0
5
0
0

1
5
0
0

2
5
0
0

Fig. 4: Histogram of differences in predictive performance
(MCC) with and without imbalanced learning

on software defect prediction. In the following sections we
report Cliff’s δ and drill deeper to better understand factors
that are conducive to successful use of imbalanced learning.

Statistic Value Statistic Value
Min -0.258 Max 0.504

Mean 0.051 Trimmed mean 0.035
sd 0.093 Trimmed (0.2) sd 0.071

Skewness 1.207 Kurtosis 1.926

TABLE 9: Summary statistics for differences in performance
(MCC) with and without imbalanced learning

Table 9 provides summary statistics of the differences.
We see that the standard deviation (sd) and trimmed sd
are both larger than mean or trimmed mean. This indicates
that there is a good deal of variability in impact and that
the possibility of negative effects from imbalanced learning
cannot be ignored. The kurtosis equals to 1.926 which im-
plies a considerably fat-tailed distribution. This all indicates
that our analysis needs robust statistics. Therefore using the
percentile bootstrap method [89] we can estimate the 95%
confidence limits around the trimmed mean 0.035 as being
(0.034, 0.036). We can be confident the typical difference
between using an imbalanced learner or not is a small
positive effect on the ability to predict defect prone software.
So the answer for RQ3 is that overall the effect is small but
positive, however, this is in the context that there are about
28% negative results.

4.4 RQ4.1: How does imbalance level impact perfor-
mance?
It is possible that imbalanced learning methods perform less
well on the data sets with low level of imbalance. Thus we
investigate RQ4.1 in two groups of imbalance described in
Section 4.1: (i) Low IR (ii) Medium+ IR as shown in Fig. 5.
The notches show the 95% confidence intervals around the
median (shown as a thick bar) as same as the other boxplots.

We observe the effect (dMCC as difference in MCC)
on Medium+ IR group is greater than the effect on the
Low IR group. This is to be expected since traditional
learning is harmed by moderate or higher imbalance. But

−0.25

0.00

0.25

0.50

Low IR Medium+ IR

ImbGroup

d
M

C
C

ImbGroup

Low IR

Medium+ IR

Fig. 5: Boxplot of differences in performance (MCC) with
and without imbalanced learning by IR groups

−0.25

0.00

0.25

0.50

SVM C4.5 LR Ripper IBk RF NB

Classifier
d
M

C
C

ImbGroup

Low IR

Medium+ IR

Fig. 6: Boxplot of differences in performance (MCC) with
and without imbalanced learning by classifier type

again it also offers a warning that positive effects are not
guaranteed since the boxplot whiskers go below zero for
both two groups. Thus we present the effect size as both
average improvement (difference in MCC) and dominance
statistics (Cliff’s δ) which show the stochastic likelihood that
imbalanced learning is better than nothing.

Level Average Improvement Cliff’s δ
Low IR 0.019 (0.018, 0.02) 0.316 (0.297, 0.335)

Medium+ IR 0.055 (0.054, 0.057) 0.501 (0.485, 0.517)

TABLE 10: Effect Size with CI by Imbalance Levels

As shown in Table 11, for Low IR group both the average
improvement (0.019) and Cliff’s δ is small (δ < 0.33). In the
contrast, the average improvement for Medium+ IR group
is 0.055 and Cliff’s δ is large (δ > 0.474), which indicates a
strong likelihood of obtaining a positive effect. This is to be
expected since traditional learning is harmed by moderate
or higher imbalance as shown in Section 4.2. Therefore the
answer for RQ4.1 is that the effect for Low IR group is small
but for Medium+ group is large.

4.5 RQ4.2: How does the type of classifier interact with
imbalance level?

In our experiment RQ4.2 we investigate seven different
types of classifier (listed in Table 6). Fig. 6 shows the
difference i.e., the effect achieved by introducing an imbal-
anced learning algorithm as boxplots organised by classifier
types. The red boxes and blue boxes indicate Low IR group
and Medium+ IR group, respectively. In this way, we can

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/TSE.2018.2836442,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, APRIL 2018 11

visualize not only the effect of classifier type, but also its
interaction with IR groups. We also observe Medium+ IR
impacts the predictive difference of performance such that
the benefits of using an imbalanced learner are greater when
the classifier is sensitive to IR. Also there is more variance
with Medium+ imbalance as indicated by the larger boxes.

However the impact of imbalance is relatively limited
other than for SVM. Support vector machines (SVM) consis-
tently benefit from imbalanced learning. This is in line with
Batuwita and Palade [91] who report that the “separating
hyperplane of an SVM model developed with an imbal-
anced dataset can be skewed towards the minority class, and
this skewness can degrade the performance of that model
with respect to the minority class”. In all cases, there are
long whiskers suggesting high variability of performance
and in all cases the whiskers extend below zero suggesting
the possibility (though falling outside the 95% confidence
limits given in Table 11) of a deleterious or negative effect.
Therefore we provide both the average improvement and
the probability of obtaining an improvement through an
imbalanced learner.

Classifier Average Improvement Cliff’s δ
Medium+ IR group

SVM 0.204 (0.198, 0.210) 0.893 (0.872, 0.912)
C4.5 0.072 (0.067, 0.077) 0.593 (0.553, 0.630)
LR 0.058 (0.054, 0.062) 0.624 (0.585, 0.660)

Ripper 0.056 (0.052, 0.061) 0.475 (0.432, 0.516)
IBk 0.043 (0.039, 0.046) 0.457 (0.414, 0.499)
RF 0.024 (0.022, 0.027) 0.365 (0.320, 0.409)
NB 0.005 (0.003, 0.008) 0.101 (0.053, 0.148)

TABLE 11: Effect Size with CI by Type of Classifier

Table 11 presents the effect size of both statistics for each
type of classifier on Medium+ IR group (in the decreasing
order of the average improvement), since the impact of Low
IR is limited. We observe considerable spread from a max-
imum average improvement of 0.204 to a negligible 0.005,
likewise with Cliff’s δ varying from a very large (0.893)
to a trivial (0.101). As we can see the large positive effect
for SVM confirms that there are opportunities to improve
SVM by imbalanced learning. The effect size also reflects
the sensitivity of each type of the classifiers to the IR. Naı̈ve
Bayes is insensitive to an imbalanced distribution with an
average improvement of less than 0.01.

So the answer for RQ4.2 is classifier sensitivity to imbal-
ance is most noticeable for the Medium+ imbalance group.

4.6 RQ4.3: How does type of input metric interact with
imbalance level?

Next in RQ4.3 we consider the role of input metric type.
The seven different classes are summarized in Table 7 and
the distributions of the difference on predictive performance
through imbalanced learning shown as boxplots grouped by
Metric in Fig. 7. Again the red boxes and blue boxes indicate
Low IR group and Medium+ IR group, respectively. Overall
we see much similarity between the boxplots suggesting
relatively little difference between Metric type. Also we see

−0.25

0.00

0.25

0.50

CK NET PROC
CK+NET

CK+PROC
NET+PROC

CK+NET+PROC

Input Metrics

d
M

C
C

ImbGroup

Low IR

Medium+ IR

Fig. 7: Boxplot of differences in performance (MCC) with
and without imbalanced learning by metric type

that for Low IR very little impact, i.e., the effect sizes are
close to zero contrasting with Medium+ IR. Thus we focus
on the effect size on Medium+ IR group as shown in Table 12.

Input Metrics Average Improvement Cliff’s δ
Medium+ IR group

CK 0.075 (0.069, 0.081) 0.636 (0.598, 0.671)
NET 0.053 (0.049, 0.057) 0.512 (0.470, 0.552)

PROC 0.064 (0.058, 0.069) 0.521 (0.479, 0.560)
CK+NET 0.056 (0.052, 0.061) 0.547 (0.506, 0.586)

CK+PROC 0.048 (0.043, 0.053) 0.411 (0.367, 0.454)
NET+PROC 0.048 (0.043, 0.053) 0.443 (0.399, 0.485)
CK+NET+PROC 0.046 (0.041, 0.051) 0.438 (0.394, 0.479)

TABLE 12: Effect Size with CI by Input Metrics

From Table 12 it can be observed that the effect size
of each type of input metric is not significantly different.
The range of both average improvement ([0.046, 0.075])
and Cliff’s δ ([0.438, 0.636]) is narrower compared with
the factor of classifier type. This indicates limited difference
in responsiveness to imbalanced learning by type of input
metric 15.

4.7 RQ4.4: How does type of imbalanced learning
method interact with imbalance level, type of classifier
and type of input metrics?
The final research question RQ4.4, investigates the impact
by specific imbalanced learner. Fig. 8 shows red and blue
boxplots for the difference each algorithm makes over no
algorithm. Once again we find the same pattern that blue
boxes (i.e., Medium+ imbalance) show greater prediction
improvement except for Bag. This is unsurprising, because
Bag does not balance training data in sampling; instead it
aims to approximate a real target from different directions
and is not inherently designed to deal with imbalanced
data. SMOTE performed better probably because it brings
novel information by interpolating between existing ones
data points.

In addition, it can be seen that all types of imbalanced
methods are capable of producing negative impacts upon

15. Here there is evidence of much more of an effect between the
different input metrics with the best performance from the widest range
of input metrics (CK+NET+PROC). However it still has limited impact
on the difference (effect)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/TSE.2018.2836442,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, APRIL 2018 12

−0.25

0.00

0.25

0.50

UBag UOBag EM1v1 SBst SBag UBst OBag SMOTE COS OS UOS UOBst US OBst Bst Bag

Imbalanced Learning Method

d
M

C
C

Fig. 8: Boxplot of differences in performance (MCC) with
and without imbalanced learning by imbalanced learner

the predictive capability of a classifier. In such case, domi-
nance statistics are useful to quantify the likelihood that one
is better than another (see Table 13).

Table 13 shows the average improvement on Cliff’s δ
for Medium+ IR group, since the impact of Low IR is
limited. The values in parentheses give the lower and upper
bounds of 95% confidence limits. Note that the algorithms
are organised in decreasing order of improvement ranging
from 0.096 to 0.005. This spread of improvement (and also
for Cliff’s δ from 0.732 to 0.144) indicates that the choice of
imbalanced methods is very important. Strong imbalanced
methods include UBag, UOBag, EM1v1, SBst and SBag.

ImbMethod Improvement Cliff’s δ
Medium+ IR group

UBag 0.096 (0.089, 0.105) 0.732 (0.679, 0.777)
UOBag 0.095 (0.088, 0.102) 0.782 (0.733, 0.823)
EM1v1 0.089 (0.081, 0.097) 0.693 (0.637, 0.741)

SBst 0.084 (0.076, 0.093) 0.646 (0.588, 0.698)
SBag 0.079 (0.072, 0.086) 0.721 (0.667, 0.767)
UBst 0.068 (0.061, 0.076) 0.537 (0.474, 0.596)
OBag 0.066 (0.059, 0.074) 0.597 (0.536, 0.652)

SMOTE 0.060 (0.052, 0.068) 0.512 (0.447, 0.571)
COS 0.052 (0.047, 0.058) 0.596 (0.536, 0.65)
OS 0.045 (0.038, 0.053) 0.399 (0.33, 0.463)

UOS 0.045 (0.038, 0.054) 0.347 (0.277, 0.413)
UOBst 0.043 (0.036, 0.050) 0.407 (0.339, 0.471)

US 0.043 (0.035, 0.051) 0.336 (0.266, 0.402)
OBst 0.038 (0.031, 0.045) 0.385 (0.316, 0.45)
Bst 0.015 (0.011, 0.020) 0.185 (0.113, 0.255)
Bag 0.005 (0.003, 0.007) 0.144 (0.074, 0.213)

TABLE 13: Effect Size with CI by Imbalanced Method

To inspect the interactions between type of imbalanced
methods, type of classifiers and type of input metrics, Ta-
ble 14 summarises the results broken down by these three
factors as win/draw/loss counts from the 27 data sets in our
experiment. We then use the Benjamini-Yekutieli step-up

procedure [62] to determine significance16. This is indicated
by the graying out the non-significant cells. The Table is
organized to show the Win/Draw/Loss (W/D/L) records of
comparisons between imbalanced learners in the first row
and traditional learners in the first column over the seven
different types of metric data shown in the second column.
Imbalanced methods and types of classifier are sorted in
the same order as 11 and Tables 13. This means the ‘better’
choices for these two factors are located to the upper left of
this table.

So in Table 14 we focus on the white areas as these rep-
resent statistically significant results of prediction improve-
ment and show the intersection of Imbalanced Learning
algorithm, base classifier and type of metric. From this we
derive three major findings.

1) There is greater variability in the performance of
the imbalanced learning algorithms compared with
traditional learners. Yet again this reveals that not
all imbalanced learning algorithms can improve the
performance of every classifier and indeed no algo-
rithm is always statistically significantly better.

2) The majority of the unshaded cells are located on
the upper left quadrant of this table. This is confirms
the importance of using strong imbalanced methods
and sensitive classifiers. It also indicates that if the
imbalanced learning algorithm, classifier and input
metrics can be carefully chosen, there are good
opportunities to improve predictive performance.

3) The cells, that show the opposite tendency “white
to upper left, shaded to lower right”, can still show
unexpected interactions between the three factors.
For example, all 16 learner types, excluding COS,
can improve SVM for all input metrics. So there is
an interaction between SVM and COS which causes
a special case for SVM. This means on the one
hand the effect of unexpected interactions is less
important than each factor, on the other hand the
border choices should be always cautious.

As Table 14 illustrates, we can answer RQ4.4 by noting the
choice of imbalanced methods is important: strong imbal-
anced methods and sensitive classifiers are preferred.

5 THREATS TO VALIDITY

In this section, we identify factors that may threaten the
validity of our results and present the actions we have taken
to mitigate the risk.

The first possible source of bias is the data used. To
alleviate this potential threat, 27 defect data sets from 13
public domain software projects were selected from our
exhaustive set of 106 publicly available data sets. The re-
maining 79 were excluded because they provide insufficient
metrics for analysis or were very small (< 120 cases)
or had exceptionally high fault rates. These data sets are
characterized by (i) they are drawn from different types of

16. We need a correction procedure such as Benjamini-Yekutieli since
we are carrying out a large (784 to be exact) number of significance
tests. We prefer this more modern approach based on a false discovery
rate than other conservative corrections such as Bonferroni.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/TSE.2018.2836442,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, APRIL 2018 13
Metrics UBag UOBag EM1v1 SBst SBag UBst OBag SMOTE COS OS UOS UOBst US OBst Bst Bag

CK 25/0/2 25/0/2 21/3/3 25/0/2 25/0/2 24/0/3 25/0/2 25/0/2 9/7/11 25/0/2 25/0/2 25/0/2 25/0/2 25/0/2 20/2/5 14/11/2
NET 25/1/1 25/1/1 23/1/3 24/1/2 25/1/1 24/1/2 25/1/1 24/1/2 16/2/9 25/1/1 23/0/4 24/0/3 23/1/3 25/0/2 22/0/5 17/4/6

PROC 27/0/0 26/0/1 26/0/1 25/0/2 25/0/2 26/0/1 25/0/2 25/0/2 7/7/13 25/0/2 27/0/0 26/0/1 27/0/0 27/0/0 20/4/3 11/9/7
SVM CK+NET 27/0/0 26/0/1 25/1/1 26/0/1 26/0/1 26/0/1 26/0/1 26/0/1 15/0/12 26/0/1 23/0/4 25/0/2 25/0/2 24/0/3 23/0/4 20/1/6

CK+PROC 26/0/1 26/0/1 22/1/4 26/0/1 26/0/1 25/0/2 24/0/3 26/0/1 10/2/15 24/0/3 26/0/1 26/0/1 25/0/2 25/0/2 24/0/3 17/5/5
NET+PROC 25/1/1 25/1/1 23/1/3 23/1/3 25/1/1 24/1/2 25/1/1 25/0/2 14/1/12 25/1/1 24/0/3 25/0/2 24/0/3 25/0/2 24/0/3 21/2/4

CK+NET+PROC 24/1/2 25/1/1 24/1/2 23/1/3 25/0/2 23/1/3 25/1/1 25/0/2 17/1/9 25/0/2 24/0/3 25/0/2 23/0/4 25/0/2 23/0/4 22/2/3

CK 24/0/3 24/0/3 18/4/5 21/0/6 25/0/2 18/0/9 21/0/6 18/0/9 22/0/5 18/0/9 17/0/10 17/0/10 17/0/10 16/0/11 16/0/11 17/1/9
NET 26/0/1 27/0/0 20/4/3 24/0/3 26/0/1 21/0/6 25/0/2 24/0/3 26/0/1 17/0/10 16/0/11 18/0/9 18/0/9 21/0/6 19/0/8 21/0/6

PROC 23/0/4 21/0/6 18/4/5 21/0/6 22/1/4 19/0/8 21/0/6 19/0/8 24/0/3 15/0/12 16/0/11 16/0/11 19/0/8 16/0/11 15/0/12 17/0/10
C4.5 CK+NET 27/0/0 27/0/0 21/2/4 27/0/0 27/0/0 19/0/8 27/0/0 21/0/6 27/0/0 19/0/8 15/0/12 22/0/5 16/0/11 22/0/5 22/0/5 23/0/4

CK+PROC 21/0/6 22/0/5 19/4/4 21/0/6 21/0/6 16/0/11 20/0/7 17/0/10 22/0/5 11/0/16 11/0/16 15/0/12 15/0/12 17/0/10 16/0/11 19/0/8
NET+PROC 25/0/2 26/0/1 18/4/5 26/0/1 24/0/3 19/0/8 22/0/5 16/0/11 21/0/6 11/0/16 8/0/19 19/0/8 14/0/13 19/0/8 20/0/7 23/0/4

CK+NET+PROC 27/0/0 27/0/0 22/3/2 25/0/2 25/0/2 16/0/11 23/0/4 14/0/13 25/0/2 12/0/15 9/0/18 19/0/8 12/0/15 19/0/8 19/0/8 23/0/4

CK 26/0/1 24/0/3 20/4/3 20/0/7 24/0/3 25/0/2 25/0/2 22/0/5 23/0/4 23/0/4 23/0/4 23/0/4 23/0/4 22/0/5 13/0/14 17/1/9
NET 22/0/5 23/0/4 21/4/2 20/0/7 23/1/3 22/0/5 24/0/3 18/0/9 21/0/6 18/0/9 16/0/11 17/0/10 16/0/11 17/0/10 13/0/14 18/1/8

PROC 23/0/4 24/0/3 19/4/4 19/0/8 24/0/3 23/0/4 21/1/5 20/0/7 21/0/6 22/0/5 20/0/7 21/0/6 21/0/6 22/0/5 15/0/12 13/0/14
LR CK+NET 26/0/1 27/0/0 22/4/1 20/0/7 25/0/2 23/0/4 27/0/0 20/0/7 23/0/4 24/0/3 16/0/11 16/0/11 17/0/10 18/0/9 14/0/13 19/0/8

CK+PROC 23/0/4 23/0/4 20/4/3 18/0/9 24/0/3 21/0/6 24/0/3 20/0/7 22/0/5 21/0/6 20/0/7 19/0/8 17/0/10 21/0/6 13/0/14 18/0/9
NET+PROC 24/0/3 23/0/4 19/4/4 21/0/6 23/0/4 20/0/7 21/0/6 18/0/9 23/0/4 19/0/8 14/0/13 16/0/11 15/0/12 16/0/11 15/0/12 22/0/5

CK+NET+PROC 24/0/3 23/0/4 18/4/5 20/0/7 23/0/4 22/0/5 23/0/4 20/0/7 24/0/3 20/0/7 13/0/14 14/0/13 12/0/15 18/0/9 15/0/12 20/0/7

CK 20/0/7 22/0/5 17/0/10 20/0/7 24/1/2 19/0/8 21/0/6 17/0/10 23/0/4 17/0/10 15/0/12 16/0/11 16/0/11 13/0/14 10/0/17 13/0/14
NET 24/0/3 27/0/0 22/0/5 21/0/6 26/0/1 17/0/10 26/0/1 20/0/7 22/0/5 15/0/12 14/0/13 17/0/10 15/0/12 13/0/14 11/0/16 16/1/10

PROC 21/0/6 24/0/3 20/0/7 23/0/4 22/0/5 20/0/7 20/0/7 18/0/9 23/0/4 14/0/13 14/0/13 17/0/10 16/0/11 11/0/16 10/0/17 12/0/15
Ripper CK+NET 23/0/4 26/0/1 20/0/7 22/0/5 25/0/2 15/0/12 26/0/1 14/0/13 23/0/4 14/0/13 11/0/16 15/0/12 13/0/14 20/0/7 14/0/13 17/0/10

CK+PROC 22/0/5 23/0/4 20/0/7 20/0/7 22/0/5 16/0/11 22/0/5 16/0/11 13/0/14 12/0/15 11/0/16 15/0/12 11/0/16 10/0/17 17/0/10
NET+PROC 23/0/4 25/0/2 23/0/4 24/0/3 24/0/3 15/0/12 24/0/3 19/0/8 22/0/5 11/0/16 10/0/17 15/0/12 14/0/13 18/0/9 14/0/13 17/0/10

CK+NET+PROC 25/0/2 27/0/0 22/0/5 24/0/3 26/0/1 15/0/12 25/0/2 16/0/11 21/0/6 13/0/14 8/0/19 16/0/11 12/0/15 17/0/10 16/0/11 21/0/6

CK 22/0/5 22/0/5 19/4/4 20/0/7 22/1/4 22/0/5 18/0/9 19/0/8 17/1/9 15/0/12 9/0/18 14/0/13 13/0/14 12/0/15 8/0/19 15/0/12
NET 22/0/5 24/0/3 21/4/2 21/0/6 25/0/2 22/0/5 23/0/4 19/0/8 21/0/6 18/0/9 7/0/20 19/0/8 13/0/14 19/0/8 17/0/10 21/0/6

PROC 25/0/2 24/0/3 20/4/3 24/0/3 21/0/6 23/0/4 20/0/7 21/0/6 23/0/4 18/0/9 15/0/12 16/0/11 18/0/9 15/0/12 9/0/18 12/0/15
IBk CK+NET 21/0/6 23/0/4 17/4/6 22/0/5 25/0/2 19/0/8 21/0/6 17/0/10 20/0/7 13/0/14 8/0/19 14/0/13 10/0/17 14/0/13 14/0/13 20/0/7

CK+PROC 23/0/4 22/0/5 20/4/3 17/0/10 23/0/4 20/0/7 16/0/11 15/0/12 18/0/9 11/0/16 7/0/20 13/0/14 10/0/17 8/0/19 5/0/22 17/0/10
NET+PROC 22/0/5 24/0/3 21/4/2 21/0/6 27/0/0 21/0/6 22/0/5 19/0/8 22/0/5 14/0/13 6/0/21 15/0/12 12/0/15 14/0/13 16/0/11 18/0/9

CK+NET+PROC 22/0/5 25/0/2 19/4/4 19/0/8 27/0/0 19/0/8 20/0/7 15/0/12 20/0/7 11/0/16 6/0/21 15/0/12 10/0/17 13/0/14 15/0/12 18/0/9

CK 25/0/2 25/0/2 21/0/6 24/0/3 23/0/4 19/0/8 20/0/7 18/0/9 22/0/5 16/0/11 13/0/14 15/0/12 12/0/15 16/0/11 13/0/14 19/0/8
NET 24/1/2 26/0/1 21/0/6 17/0/10 22/0/5 14/0/13 21/0/6 21/0/6 24/0/3 17/0/10 15/0/12 12/0/15 9/0/18 16/0/11 17/0/10 17/0/10

PROC 24/0/3 24/0/3 21/1/5 19/0/8 20/0/7 18/0/9 19/0/8 20/0/7 20/0/7 17/0/10 16/0/11 14/1/12 17/0/10 14/0/13 12/0/15 13/0/14
RF CK+NET 25/0/2 26/0/1 22/0/5 20/0/7 21/0/6 13/0/14 22/0/5 19/0/8 22/0/5 18/0/9 14/0/13 13/0/14 5/0/22 18/0/9 17/0/10 16/0/11

CK+PROC 26/0/1 26/0/1 20/0/7 23/0/4 24/0/3 16/0/11 25/0/2 19/0/8 23/0/4 12/0/15 11/0/16 12/0/15 7/0/20 19/0/8 17/0/10 21/0/6
NET+PROC 24/0/3 25/0/2 18/0/9 20/0/7 22/0/5 11/0/16 19/0/8 19/0/8 22/0/5 13/0/14 11/0/16 13/0/14 8/0/19 17/0/10 16/0/11 20/0/7

CK+NET+PROC 24/0/3 26/0/1 19/0/8 20/0/7 21/0/6 9/0/18 19/0/8 16/1/10 21/0/6 15/0/12 10/0/17 15/0/12 5/0/22 22/0/5 21/0/6 18/0/9

CK 24/0/3 23/0/4 20/4/3 22/0/5 22/0/5 23/0/4 23/0/4 19/1/7 21/0/6 24/0/3 23/0/4 22/0/5 22/0/5 21/0/6 16/0/11 22/0/5
NET 20/0/7 18/0/9 15/4/8 16/0/11 19/0/8 18/0/9 17/0/10 13/0/14 17/0/10 16/0/11 14/0/13 10/0/17 11/0/16 10/0/17 7/0/20 17/0/10

PROC 15/0/12 16/0/11 14/4/9 12/0/15 13/0/14 15/0/12 12/0/15 12/0/15 16/0/11 13/0/14 10/0/17 9/0/18 11/0/16 7/0/20 8/0/19 14/0/13
NB CK+NET 21/0/6 20/0/7 15/4/8 14/0/13 19/0/8 19/0/8 18/0/9 13/0/14 15/0/12 18/0/9 17/0/10 15/0/12 14/0/13 13/0/14 11/0/16 20/0/7

CK+PROC 19/0/8 19/0/8 16/4/7 17/0/10 18/0/9 18/0/9 15/0/12 15/0/12 15/0/12 15/0/12 14/0/13 12/0/15 10/0/17 12/0/15 10/0/17 17/0/10
NET+PROC 18/0/9 18/0/9 15/4/8 14/0/13 16/0/11 15/0/12 18/0/9 14/0/13 13/0/14 15/0/12 11/0/16 8/0/19 9/0/18 9/0/18 8/0/19 18/1/8

CK+NET+PROC 16/0/11 17/0/10 14/4/9 15/0/12 19/0/8 13/0/14 18/0/9 14/0/13 11/0/16 13/0/14 12/0/15 11/0/16 10/0/17 11/0/16 7/0/20 18/0/9

Note:
(1) Each cell contains the W/D/L counts of each dataset so W +D + L = 27, where W/D/L means the number of data sets for which the

classifier in first row of Table 14 obtain better, equal, and worse performance than the classifier in first column of Table 14.
(2) Shaded table cells imply a p-value greater than the threshold suggested by FDR-control procedure, i.e., the predictive performance with

imbalanced learning is not significantly better than the performance without imbalanced learning.

TABLE 14: W/D/L records of the comparison between predictive performance with and without imbalanced learning

publicly available software projects, (ii) the data sets range
considerably in size from 125 to 2196 modules and (iii) there
are wide variations in the imbalance ratio between 1.51 and
43.73. These data sets are also widely used by many other
researchers. This enables comparison with findings from
other experiments. Moreover, we have made our raw results
and scripts available (a link is provided at the end of this
paper). Nevertheless, to extend our findings it would be
valuable to investigate software defect data not drawn from
the open software community.

Stochastic data processing techniques, such as sampling
or dividing data into training sets and testing sets, also can
threaten validity. For this reason we have used 10 × 10-fold
cross-validation in order to mitigate the effects of variability
due to the random allocation. This is a well-established
approach for comparing classification methods in the fields
of machine learning and data mining.

Another possible source of bias are the choices of clas-
sifiers explored by this study. There are many such meth-
ods and any single study can only use a subset of them.
We have chosen representative methods from each major
type of traditional machine learning methods. The selected
methods cover six out of seven of the categories identified
by the recent review from Malhotra [2]. Further work might

explore neural networks and evolutionary algorithms which
we excluded due to the complexities of parameterization
and execution time. Hence, we would encourage other
researchers to repeat our study with other classifier learning
methods.

6 CONCLUSIONS

In this paper, we have reported a comprehensive exper-
iment to explore the effect of using imbalanced learning
algorithms when seeking to predict defect-prone software
components. This has explored the complex interactions
between type of imbalanced learner, type of classifier and
input metrics over 27 software defect data sets from the
public domain.

Specifically, we have compared 16 different types of
imbalanced learning algorithm — along with the control
case of no imbalanced learning — with seven representative
classifier learning methods (C4.5, RF, SVM, Ripper, kNN,
LR and NB) using seven different types of input metric data
over 27 data sets. Our factorial experimental design yields
22491 combinations. Each combination was evaluated by
10× 10-fold cross validation.

We believe our results are valuable for the software
engineering practitioners for at least three reasons.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/TSE.2018.2836442,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, APRIL 2018 14

First, our experimental results show a clear, negative
relationship between the imbalance ratio and the perfor-
mance of traditional learning. Though the level of imbalance
in most software defect data is not as high as expected,
moderate level of imbalance is enough to impact the per-
formance of traditional learning. This means that if your
training data shows moderate or worse imbalance do not
necessarily expect good defect prediction performance.

Second, imbalanced learning algorithms can ameliorate
this impact, particularly if the imbalance level is moderate
or higher. However, the unthinking application of any im-
balanced learner in any setting is likely to only yield a very
small, if any, positive effect.

Third, negative results can be considerably improved
through the right choice of classifier and imbalanced learn-
ing methods in the context. In contrast, different choices of
input metric have little impact upon the improvement that
accrue from imbalanced learning algorithms. Our study has
highlighted some strong combinations which are given in
the summary Table 14 in particular bagging-based imbal-
anced ensemble methods and EM1v1.

We also believe there are also additional lessons for
researchers. First, a number of experimental studies have
reported encouraging results in terms of using machine
learning techniques to predict defect-prone software units.
However, this is tempered by the fact that there is also a
great deal of variability in results and often a lack of consis-
tency. Our experiment shows that a significant contributing
factor to this variability comes from the data sets themselves
in the form of the imbalance ratio.

Second, the choice of a predictive performance measure
that enables comparisons between different classifiers is a
surprisingly subtle problem. This is particularly acute when
dealing with imbalanced data sets which are the norm
for software defects. Therefore we have avoided some of
the widely used classification performance measures (such
as F1) because they are prone to bias. We have chosen
the unbiased performance measure Matthews Correlation
Coefficient. Although not the main theme of this study we
would encourage fellow researchers to consider unbiased
alternatives to the F family of measures [10] or Area Under
the Curve [51].

Third, comprehensive experiments tend to be both large
and complex which necessitate particular forms of statistical
analysis. We advocate use of False Discovery Rate proce-
dures [62] to militate against problems of large numbers
of significance tests. We also advocate use of effect size
measures [90], with associated confidence limits rather than
relying on significance values alone since these may be in-
flated when the experimental design creates large numbers
of observations. In other words highly significant but van-
ishingly small real world effects may not be that important
to the software engineering community.

Finally we make our data and program available to
other researchers and would encourage them to confirm
(or challenge) the strength of our findings so that we are
able to increase the confidence with which we make recom-
mendations to software engineering practitioners. The data
and scripts are available from: https://zenodo.org/badge/
latestdoi/94171384.

ACKNOWLEDGMENT

We thank the reviewers and associate editor for their many
constructive suggestions. This work is supported by the
National Natural Science Foundation of China under grants
61373046 and 61210004 and by Brunel University London.

REFERENCES

[1] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A
systematic literature review on fault prediction performance in
software engineering,” IEEE Transactions on Software Engineering,
vol. 38, no. 6, pp. 1276–1304, 2012.

[2] R. Malhotra, “A systematic review of machine learning techniques
for software fault prediction,” Applied Soft Computing, vol. 27, pp.
504–518, 2015.

[3] C. Catal and B. Diri, “Investigating the effect of dataset size,
metrics sets, and feature selection techniques on software fault
prediction problem,” Information Sciences, vol. 179, no. 8, pp. 1040–
1058, 2009.

[4] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of the
efficiency of change metrics and static code attributes for defect
prediction,” in 30th ACM/IEEE International Conference on Software
Engineering. IEEE, 2008, pp. 181–190.

[5] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos,
“Graph-based analysis and prediction for software evolution,” in
Proceedings of the 34th International Conference on Software Engineer-
ing. IEEE Press, 2012, pp. 419–429.

[6] Y. Shin, A. Meneely, L. Williams, and J. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indi-
cators of software vulnerabilities,” IEEE Transactions on Software
Engineering, vol. 37, no. 6, pp. 772–787, 2011.

[7] S. Wang and X. Yao, “Using class imbalance learning for software
defect prediction,” IEEE Transactions on Reliability, vol. 62, no. 2,
pp. 434–443, 2013.

[8] Q. Cai, H. He, and H. Man, “Imbalanced evolving self-organizing
learning,” Neurocomputing, vol. 133, pp. 258–270, 2014.

[9] H. He and E. Garcia, “Learning from imbalanced data,” Knowledge
and Data Engineering, IEEE Transactions on, vol. 21, no. 9, pp. 1263–
1284, 2009.

[10] D. Powers, “Evaluation: from precision, recall and F-measure
to ROC, informedness, markedness and correlation,” Journal of
Machine Learning Technologies, vol. 2, no. 1, pp. 37–63, 2011.

[11] M. Shepperd, D. Bowes, and T. Hall, “Researcher bias: The use of
machine learning in software defect prediction,” IEEE Transactions
on Software Engineering, vol. 40, no. 6, pp. 603–616, 2014.

[12] G. Weiss, “Foundations of imbalanced learning,” Imbalanced Learn-
ing: Foundations, Algorithms, and Applications, pp. 13–41, 2013.

[13] R. Holte, L. Acker, B. Porter et al., “Concept learning and the
problem of small disjuncts.” in IJCAI, vol. 89. Citeseer, 1989,
pp. 813–818.

[14] S. Wang and X. Yao, “Diversity analysis on imbalanced data sets
by using ensemble models,” in Computational Intelligence and Data
Mining, 2009. CIDM’09. IEEE Symposium on. IEEE, 2009, pp. 324–
331.

[15] L. Kuncheva and J. Rodrı́guez, “A weighted voting framework for
classifiers ensembles,” Knowledge and Information Systems, vol. 38,
no. 2, pp. 259–275, 2014.

[16] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2,
pp. 123–140, 1996.

[17] Y. Freund and R. E. Schapire, “A decision-theoretic generalization
of on-line learning and an application to boosting,” Journal of
Computer and System Sciences, vol. 55, no. 1, pp. 119–139, 1997.

[18] N. Chawla, K. Bowyer, L. Hall, and P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of Artificial
Intelligence Research, vol. 16, pp. 321–357, 2002.

[19] V. López, A. Fernández, S. Garcı́a, V. Palade, and F. Herrera,
“An insight into classification with imbalanced data: Empirical
results and current trends on using data intrinsic characteristics,”
Information Sciences, vol. 250, pp. 113–141, 2013.

[20] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Her-
rera, “A review on ensembles for the class imbalance problem:
bagging-, boosting-, and hybrid-based approaches,” IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), vol. 42, no. 4, pp. 463–484, 2012.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/TSE.2018.2836442,

https://zenodo.org/badge/latestdoi/94171384
https://zenodo.org/badge/latestdoi/94171384

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, APRIL 2018 15

[21] P. Branco, L. Torgo, and R. P. Ribeiro, “A survey of predictive mod-
eling on imbalanced domains,” ACM Computing Surveys (CSUR),
vol. 49, no. 2:31, 2016.

[22] G. Batista, R. Prati, and M. Monard, “A study of the behavior of
several methods for balancing machine learning training data,”
ACM SigKDD Explorations Newsletter, vol. 6, no. 1, pp. 20–29, 2004.

[23] E. Ramentol, Y. Caballero, R. Bello, and F. Herrera, “Smote-rsb*:
a hybrid preprocessing approach based on oversampling and
undersampling for high imbalanced data-sets using smote and
rough sets theory,” Knowledge and information systems, vol. 33, no. 2,
pp. 245–265, 2012.

[24] K. Ting, “An instance-weighting method to induce cost-sensitive
trees,” IEEE Transactions on Knowledge and Data Engineering, vol. 14,
no. 3, pp. 659–665, 2002.

[25] Z. Qin, A. T. Wang, C. Zhang, and S. Zhang, “Cost-sensitive
classification with k-nearest neighbors,” in International Conference
on Knowledge Science, Engineering and Management. Springer, 2013,
pp. 112–131.

[26] Y. Sahin, S. Bulkan, and E. Duman, “A cost-sensitive decision tree
approach for fraud detection,” Expert Systems with Applications,
vol. 40, no. 15, pp. 5916–5923, 2013.

[27] M. Kukar and I. Kononenko, “Cost-sensitive learning with neural
networks,” in Proceedings of the 13th European Conference on Artificial
Intelligence (ECAI-98). John Wiley & Sons, 1998, pp. 445–449.

[28] J. Xu, Y. Cao, H. Li, and Y. Huang, “Cost-sensitive learning of svm
for ranking,” in European Conference on Machine Learning. Springer,
2006, pp. 833–840.

[29] Y. Sun, A. K. Wong, and M. S. Kamel, “Classification of imbalanced
data: a review,” International Journal of Pattern Recognition and
Artificial Intelligence, vol. 23, no. 04, pp. 687–719, 2009.

[30] J. Kittler, M. Hatef, R. Duin, and J. Matas, “On combining classi-
fiers,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 20, no. 3, pp. 226–239, 1998.

[31] N. Oza and K. Tumer, “Classifier ensembles: Select real-world
applications,” Information Fusion, vol. 9, no. 1, pp. 4–20, 2008.

[32] X. Wu, V. Kumar, R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. Ng, B. Liu, S. Y. Philip et al., “Top 10 algorithms in
data mining,” Knowledge and information systems, vol. 14, no. 1, pp.
1–37, 2008.

[33] R. Barandela, R. M. Valdovinos, and J. S. Sánchez, “New applica-
tions of ensembles of classifiers,” Pattern Analysis & Applications,
vol. 6, no. 3, pp. 245–256, 2003.

[34] C. Seiffert, T. Khoshgoftaar, J. Van Hulse, and A. Napolitano,
“Rusboost: A hybrid approach to alleviating class imbalance,”
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems
and Humans, vol. 40, no. 1, pp. 185–197, 2010.

[35] N. Chawla, A. Lazarevic, L. Hall, and K. Bowyer, “Smoteboost: Im-
proving prediction of the minority class in boosting,” in European
Conference on Principles of Data Mining and Knowledge Discovery.
Springer, 2003, pp. 107–119.

[36] Z. Sun, Q. Song, and X. Zhu, “Using coding-based ensemble
learning to improve software defect prediction,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C: Applications and Reviews,
vol. 42, no. 6, pp. 1806–1817, 2012.

[37] C. Seiffert, T. Khoshgoftaar, and J. Van Hulse, “Improving
software-quality predictions with data sampling and boosting,”
Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on, vol. 39, no. 6, pp. 1283–1294, 2009.

[38] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald, “Problems
with precision: A response to” comments on’data mining static
code attributes to learn defect predictors’”,” IEEE Transactions on
Software Engineering, vol. 33, no. 9, 2007.

[39] T. Menzies, B. Turhan, A. Bener, G. Gay, B. Cukic, and Y. Jiang,
“Implications of ceiling effects in defect predictors,” in Proceedings
of the 4th international workshop on Predictor models in software
engineering. ACM, 2008, pp. 47–54.

[40] C. Seiffert, T. Khoshgoftaar, J. Van Hulse, and A. Folleco, “An
empirical study of the classification performance of learners on
imbalanced and noisy software quality data,” Information Sciences,
vol. 259, pp. 571–595, 2014.

[41] L. Pelayo and S. Dick, “Applying novel resampling strategies to
software defect prediction,” in Fuzzy Information Processing Society,
2007. NAFIPS’07. Annual Meeting of the North American. IEEE,
2007, pp. 69–72.

[42] N. Seliya, T. Khoshgoftaar, and J. Van Hulse, “Predicting faults in
high assurance software,” in High-Assurance Systems Engineering

(HASE), 2010 IEEE 12th International Symposium on. IEEE, 2010,
pp. 26–34.

[43] T. Khoshgoftaar, E. Geleyn, L. Nguyen, and L. Bullard, “Cost-
sensitive boosting in software quality modeling,” in High Assur-
ance Systems Engineering, 2002. Proceedings. 7th IEEE International
Symposium on. IEEE, 2002, pp. 51–60.

[44] Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto, and K.-i. Mat-
sumoto, “The effects of over and under sampling on fault-prone
module detection,” in First International Symposium on Empirical
Software Engineering and Measurement (ESEM 2007). IEEE, 2007,
pp. 196–204.

[45] P. Baldi, S. Brunak, Y. Chauvin, C. Andersen, and H. Nielsen,
“Assessing the accuracy of prediction algorithms for classification:
an overview,” Bioinformatics, vol. 16, no. 5, pp. 412–424, 2000.

[46] M. Warrens, “On association coefficients for 2 × 2 tables and
properties that do not depend on the marginal distributions,”
Psychometrika, vol. 73, no. 4, pp. 777–789, 2008.

[47] J. Xuan, H. Jiang, Y. Hu, Z. Ren, W. Zou, Z. Luo, and X. Wu,
“Towards effective bug triage with software data reduction tech-
niques,” IEEE transactions on knowledge and data engineering, vol. 27,
no. 1, pp. 264–280, 2015.

[48] H. Jiang, L. Nie, Z. Sun, Z. Ren, W. Kong, T. Zhang, and X. Luo,
“Rosf: Leveraging information retrieval and supervised learning
for recommending code snippets,” IEEE Transactions on Services
Computing, 2016.

[49] F. Provost, T. Fawcett, and R. Kohavi, “The case against accuracy
estimation for comparing induction algorithms.” in ICML, vol. 98,
1998, pp. 445–453.

[50] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition
Letters, vol. 27, no. 8, pp. 861–874, 2006.

[51] D. Hand, “Measuring classifier performance: a coherent alterna-
tive to the area under the ROC curve,” Machine Learning, vol. 77,
no. 1, pp. 103–123, 2009.

[52] P. Flach and M. Kull, “Precision-recall-gain curves: PR analysis
done right,” in Advances in Neural Information Processing Systems,
2015, pp. 838–846.

[53] P. Domingos, “Metacost: A general method for making classifiers
cost-sensitive,” in Proceedings of the 5th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 1999,
pp. 155–164.

[54] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects
for eclipse,” in Predictor Models in Software Engineering, 2007.
PROMISE’07: ICSE Workshops 2007. International Workshop on.
IEEE, 2007, pp. 9–9.

[55] A. Tosun, B. Turhan, and A. Bener, “Validation of network mea-
sures as indicators of defective modules in software systems,” in
Proceedings of the 5th international conference on predictor models in
software engineering. ACM, 2009, p. 5.

[56] D. Aha, D. Kibler, and M. Albert, “Instance-based learning algo-
rithms,” Machine Learning, vol. 6, no. 1, pp. 37–66, 1991.

[57] W. Cohen, “Fast effective rule induction,” in Proceedings of the
twelfth international conference on machine Learning, 1995, pp. 115–
123.

[58] R. Premraj and K. Herzig, “Network versus code metrics to predict
defects: A replication study,” in Empirical Software Engineering and
Measurement (ESEM), 2011 International Symposium on. IEEE, 2011,
pp. 215–224.

[59] S. Chidamber and C. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on Software Engineering, vol. 20, no. 6,
pp. 476–493, 1994.

[60] T. Zimmermann and N. Nagappan, “Predicting defects using
network analysis on dependency graphs,” in Proceedings of the 30th
International Conference on Software Engineering. ACM, 2008, pp.
531–540.

[61] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The WEKA data mining software: an update,” ACM
SIGKDD explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[62] Y. Benjamini and D. Yekutieli, “The control of the false discovery
rate in multiple testing under dependency,” Annals of Statistics, pp.
1165–1188, 2001.

[63] R. Coe, “It’s the effect size, stupid: What effect size is and why it
is important,” 2002.

[64] N. Cliff, “Dominance statistics: Ordinal analyses to answer ordinal
questions.” Psychological Bulletin, vol. 114, no. 3, pp. 494–509, 1993.

[65] J. D. Long, D. Feng, and N. Cliff, “Ordinal analysis of behavioral
data,” Handbook of Psychology, 2003.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/TSE.2018.2836442,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, APRIL 2018 16

[66] D. Feng, “Robustness and power of ordinal d for paired data,”
Real data analysis, pp. 163–183, 2007.

[67] J. Romano, J. Kromrey, J. Coraggio, J. Skowronek, and L. Devine,
“Exploring methods for evaluating group differences on the nsse
and other surveys: Are the t-test and cohensd indices the most
appropriate choices,” in annual meeting of the Southern Association
for Institutional Research, 2006.

[68] D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič, “Software
fault prediction metrics: A systematic literature review,” Informa-
tion and Software Technology, vol. 55, no. 8, pp. 1397–1418, 2013.

[69] T. Menzies, B. Caglayan, E. Kocaguneli, J. Krall, F. Peters, and
B. Turhan, “The promise repository of empirical software engi-
neering data,” West Virginia University, Department of Computer
Science, 2012.

[70] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect pre-
diction approaches: a benchmark and an extensive comparison,”
Empirical Software Engineering, vol. 17, no. 4–5, pp. 531–577, 2012.

[71] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality: Some
comments on the nasa software defect datasets,” IEEE Transactions
on Software Engineering, vol. 39, no. 9, pp. 1208–1215, 2013.

[72] Softlab, “ar 1-6,” Feb. 2009. [Online]. Available: https://doi.org/
10.5281/zenodo.322460

[73] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “Relink: recovering
links between bugs and changes,” in Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations
of software engineering. ACM, 2011, pp. 15–25.

[74] K. Herzig, S. Just, A. Rau, and A. Zeller, “Predicting defects using
change genealogies,” in Software Reliability Engineering (ISSRE),
2013 IEEE 24th International Symposium on. IEEE, 2013, pp. 118–
127.

[75] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time
quality assurance,” IEEE Transactions on Software Engineering,
vol. 39, no. 6, pp. 757–773, 2013.

[76] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An investigation
on the feasibility of cross-project defect prediction,” Automated
Software Engineering, vol. 19, no. 2, pp. 167–199, 2012.

[77] P. He, B. Li, X. Liu, J. Chen, and Y. Ma, “An empirical study on
software defect prediction with a simplified metric set,” Informa-
tion and Software Technology, vol. 59, pp. 170–190, 2015.

[78] S. Wang, T. Liu, and L. Tan, “Automatically learning semantic fea-
tures for defect prediction,” in Proceedings of the 38th International
Conference on Software Engineering. ACM, 2016, pp. 297–308.

[79] F. Rahman and P. Devanbu, “How, and why, process metrics are
better,” in Proceedings of the 2013 International Conference on Software
Engineering. IEEE Press, 2013, pp. 432–441.

[80] B. Ghotra, S. McIntosh, and A. Hassan, “Revisiting the impact of
classification techniques on the performance of defect prediction
models,” in Proceedings of the 37th International Conference on Soft-
ware Engineering-Volume 1. IEEE Press, 2015, pp. 789–800.

[81] F. Zhang, Q. Zheng, Y. Zou, and A. Hassan, “Cross-project defect
prediction using a connectivity-based unsupervised classifier,” in
Proceedings of the 38th International Conference on Software Engineer-
ing. ACM, 2016, pp. 309–320.

[82] A. Okutan and O. T. Yıldız, “Software defect prediction using
bayesian networks,” Empirical Software Engineering, vol. 19, no. 1,
pp. 154–181, 2014.

[83] A. Kaur and R. Malhotra, “Application of random forest in
predicting fault-prone classes,” in Advanced Computer Theory and
Engineering, 2008. ICACTE’08. International Conference on. IEEE,
2008, pp. 37–43.

[84] S. Shivaji, J. Whitehead, R. Akella, and S. Kim, “Reducing features
to improve code change-based bug prediction,” IEEE Transactions
on Software Engineering, vol. 39, no. 4, pp. 552–569, 2013.

[85] S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro, “A genetic
algorithm to configure support vector machines for predicting
fault-prone components,” in Product-Focused Software Process Im-
provement. Springer, 2011, pp. 247–261.

[86] E. Giger, M. D’Ambros, M. Pinzger, and H. Gall, “Method-level
bug prediction,” in Proceedings of the ACM-IEEE International Sym-
posium on Empirical Software Engineering and Measurement. ACM,
2012, pp. 171–180.

[87] C. Couto, C. Silva, M. Valente, R. Bigonha, and N. Anquetil,
“Uncovering causal relationships between software metrics and
bugs,” in Software Maintenance and Reengineering (CSMR), 2012 16th
European Conference on. IEEE, 2012, pp. 223–232.

[88] N. Chawla, N. Japkowicz, and A. Kotcz, “special issue on learning
from imbalanced data sets.” SIGKDD Explorations, vol. 6, no. 1, pp.
1–6, 2004.

[89] R. Wilcox, Introduction to robust estimation and hypothesis testing (3rd
Edn), 3rd ed. Academic Press, 2012.

[90] P. Ellis, The essential guide to effect sizes: Statistical power, meta-
analysis, and the interpretation of research results. Cambridge
University Press, 2010.

[91] R. Batuwita and V. Palade, Class imbalance learning methods for
support vector machines. Wiley, 2013.

[92] R. Burt, Structural Holes: The Social Structure of Competition. Har-
vard University Press, 1995.

Qinbao Song (1966-2016) received the PhD
degree in computer science from Xi’an Jiaotong
University, Xi’an, China, in 2001. He is a profes-
sor of software technology in the Department of
Computer Science and Technology, Xi’an Jiao-
tong University. He is also an adjunct professor
in the State Key Laboratory of Software Engi-
neering, Wuhan University, Wuhan, China. He
has authored or coauthored more than 100 ref-
ereed papers in the areas of machine learning
and software engineering. He is a board mem-

ber of the Open Software Engineering Journal. His research interests
include data mining/machine learning, empirical software engineering,
and trustworthy software.

Yuchen Guo received BE degree in information
and computational science, from Xi’an Jiaotong
University, Xi’an, China. He is currently a Ph.D
student in Department of Computer Science and
Technology, Xi’an Jiaotong University. He is also
a member of BSEL (Brunel Software engineer-
ing laboratory) as a visiting student. His research
project is refining the experimental design and
evaluation for practical prediction systems to de-
fect fault-prone software components.

Martin Shepperd received the PhD degree in
computer science from the Open University in
1991 for his work in measurement theory and
its application to empirical software engineer-
ing. He is a professor of software technology at
Brunel University, London, United Kingdom. He
has published more than 150 refereed papers
and three books in the areas of software engi-
neering and machine learning. He was editor-
in-chief of the journal Information & Software
Technology (1992-2007) and was an associate

editor of the IEEE Transactions on Software Engineering (2000-2004).
He is currently an associate editor of the journal Empirical Software
Engineering. He was elected fellow of the British Computer Society in
2007.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/TSE.2018.2836442,

https://doi.org/10.5281/zenodo.322460
https://doi.org/10.5281/zenodo.322460

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. ?, NO. ?, APRIL 2018 17

Fig. 9: Ego Network

APPENDIX A
METRIC DEFINITIONS

A.1 CK Metrics

Chidamber-Kemerer (CK) metrics suite [59]:

� WMC: Weighted Methods Pr Class
� DIT: Depth of Inheritance Tree
� NOC: Number of Children
� CBO: Coupling between object classes
� RFC: Response For a Class
� LCOM: Lack of Cohesion in Methods

A.2 Network Metrics

A.2.1 Ego network metrics

An ego network is a subgraph that consists of a node
(referred to as an “ego”) and its neighbours that have a
relationship represented by an edge with the “ego” node).
This describes how a node is connected to its neighbours,
for example, in Fig. 9, node A is the “ego”, and the nodes in
the box consist A’s ego network.

Ego network metrics include:

� The size of the ego network (Size) is the number of nodes
connected to the ego network.

� Ties of ego network (Tie) are directed ties corresponding
to the number of edges.

� The number of ordered pairs (Pairs) is the maximal number
of directed ties, i.e., Size×(Size - 1).

� Density of ego network (Density) is the percentage of
possible ties that are actually present, i.e., Ties / Pairs.

� WeakComp is the number of weak components (= sets of
connected nodes) in neighborhood.

� nWeakComp is the number of weak components normal-
ized by size, i.e., WeakComp / Size.

� TwoStepReach is the percentage of nodes that are two
steps away.

� The reach efficiency (ReachEfficency) normalizes
TwoStepReach by size, i.e., TwoStepReach / Size.
High reach efficiency indicates that egos’ primary
contacts are influential in the network.

� Brokerage is the number of pairs not directly connected.
The higher this number, the more paths go through ego,
i.e., ego acts as a brokers in its network.

� nBrokerage is the Brokerage normalized by the number
of pairs, i.e., Brokerage / Pairs.

� EgoBetween is the percentage of shortestpaths between
neighbors that pass through ego.

� nEgoBetween is the Betweenness normalized by the size
of the ego network.

A.2.2 Structural metrics
Structural metrics describe the structure of the whole de-
pendency graph by extracting the feature of structural holes,
which are suggested by Ronald Burt [92].

� Effective size of network (EffSize) is the number of entities
that are connected to a module minus the average
number of ties between these entities.

� Efficiency normalizes the effective size of a network to
the total size of the network.

� Constraint measures how strongly a module is con-
strained by its neighbors.

� Hierarchy measures how the constraint measure is dis-
tributed across neighbors.

A.2.3 Centrality Metrics
Centrality metrics measure position importance of a node in
the network.

� Degree is the number of edges that connect to a node,
which measure dependencies for a module.

� nDegree is Degree normalized by number of nodes.
� Closeness is sum of the lengths of the shortest paths from

a node from all other nodes.
� Reachability is the number nodes that can be reached

from a node.
� Eigenvector assigns relative scores to all nodes in the

dependency graphs.
� nEigenvector is Eigenvector normalized by number of

nodes.
� Information is Harmonic mean of the length of paths

ending at a node.
� Betweenness measures for a node on how many shortest

paths between other nodes it occurs.
� nBetweenness is Betweenness normalized by the number

of nodes.

A.3 Process Metrics
The extracted PROC metrics as suggested by Moser et al. [4]
are as follows:

� REVISIONS is the number of revisions of a file.
� AUTHORS is the number of distinct authors that

checked a file into the repository.
� LOC ADDED is the sum over all revisions of the lines

of code added to a file.
� MAX LOC ADDED is the maximum number of lines

of code added for all revisions.
� AVE LOC ADDED is the average lines of code added

per revision.
� LOC DELETED is the sum over all revisions of the lines

of code deleted from a file.
� MAX LOC DELETED is the maximum number of lines

of code deleted for all revisions.
� AVE LOC DELETED is the average lines of code

deleted per revision.
� CODECHURN is te sum of (added lines of code -

deleted lines of code) over all revisions.
� MAX CODECHURN is the maximum CODECHURN

for all revisions.
� AVE CODECHURN is the average CODECHURN per

revision.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
Citation information: DOI10.1109/TSE.2018.2836442,

	Introduction
	Related Work
	Imbalanced Learning
	Software Defect Prediction

	Method
	Classification Performance Measures
	Algorithm Evaluation
	Statistical Methods
	Software Metrics
	Data Sets

	Experimental Results and Analysis
	RQ1: Imbalance Levels in Defect Data Sets
	RQ2 How does traditional learning perform under imbalance?
	RQ3: How does imbalanced learning compare with traditional learning?
	RQ4.1: How does imbalance level impact performance?
	RQ4.2: How does the type of classifier interact with imbalance level?
	RQ4.3: How does type of input metric interact with imbalance level?
	RQ4.4: How does type of imbalanced learning method interact with imbalance level, type of classifier and type of input metrics?

	Threats to Validity
	Conclusions
	References
	Biographies
	Qinbao Song (1966-2016)
	Yuchen Guo
	Martin Shepperd

	Appendix A: Metric Definitions
	CK Metrics
	Network Metrics
	Ego network metrics
	Structural metrics
	Centrality Metrics

	Process Metrics

