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Abstract—Automatic continuous affect recognition from
multiple modality in the wild is arguably one of the most chal-
lenging research areas in affective computing. In addressing
this regression problem, the advantages of the each modality,
such as audio, video and text, have been frequently explored
but in an isolated way. Little attention has been paid so far
to quantify the relationship within these modalities. Motivated
to leverage the individual advantages of each modality, this
study investigates behavioral modeling of continuous affect
estimation, in multimodal fusion approaches, using Linear Re-
gression, Exponent Weighted Decision Fusion and Multi-Gene
Genetic Programming. The capabilities of each fusion approach
are illustrated by applying it to the formulation of affect
estimation generated from multiple modality using classical
Support Vector Regression. The proposed fusion methods were
applied in the public Sentiment Analysis in the Wild (SEWA)
multimodal dataset and the experimental results indicate that
employing proper fusion can deliver a significant performance
improvement for all affect estimation. The results further show
that the proposed systems is competitive or outperform the
other state-of-the-art approaches.

Keywords-linear; affect; non-linear; fusion; GP; linear re-
gression

I. INTRODUCTION

Automatic continuous emotion estimation aims to enable

intelligent systems to recognize, feel, infer and interpret hu-

man emotions. Recent developments of sensors like camera

and microphone have led to a renewed interest in emo-

tion recognition, from recognizing discrete basic emotion

to recognizing continuous emotion, or continuous affect

estimation, in terms of Arousal and Valence [1] [2].

Numerous studies have been performed to compare the

advantages offered by a wide range of modeling techniques

for continuous affect recognition [3] [4]. AVEC challenge

aim to create a benchmarks to evaluate modeling systems

that are capable of recognizing affect recognition beyond

laboratory conditions.

Therefore, this paper describes a multimodal approach on

SEWA dataset, by leveraging the individual advantages of

each modality, then quantifying the relationship between

each modality. Here, we apply decision fusion on initial

prediction by employing linear and non linear fusion ap-

proach. Some researchers advocate that combined multiple

modalities will contribute to the recognition accuracy, and

it can be achieved in numerous way. Method from simple

mapping such as averaging [5] to complex method such

as linear regression [6], SVR [7] or Kalman filters based

[8] [9] has been used to combine prediction from multiple

modalities. However, a systematic understanding of the

relationship between modalities contribute to the higher

recognition accuracy is not fully explored. Few methods

assumed that the continuous affect label are linear in time.

Looking closely at the gold standard affect label in [5],

potential nonlinearities behavior may occur in continuous

affect label. In summary, the contributions of this paper are

two-folds:

• We investigate linear and non-linear multimodal fusion

approach to predict each affect dimension.

• We examine the possibility of constructing affect esti-

mation prediction equation from initial prediction re-

sult. These modeling equation can provide convenient

way to express the relationship between each modality

and affect estimation in multimodal fusion manner.

The rest of this paper is organized as follows. In the

next section, we discuss related work on affect estimation

in-the-wild settings from audio, video and text. Section 3

describes the proposed approach on affect estimation system.

In Section 4, we elaborate more on experimental results as

well as the discussion. Finally, Section 5 concludes the paper

and summarizes our findings.

II. RELATED WORKS

The evolution of continuous affect estimation usually

comprises of two system: 1) classical features extraction

methods which are grounded on statistical/mathematical

notions, and 2) modern machine learning which is based on

algorithms from artificial intelligence field. In the literature

of continuous affect recognition, typically there are two

modality present to estimate affect, audio and visual modal-

ity [10]. Audio modality, usually represent by audio features

such as acoustic low-level descriptors (LLD), include a wide

range of features that cover spectral, cepstral, prosodic and

voice quality information. As for video modality, it typically

referred as video features which consists of appearance

feature and geometric feature. Noted that, the video modality

492

2018 13th IEEE International Conference on Automatic Face & Gesture Recognition

978-1-5386-2335-0/18/$31.00 ©2018 IEEE
DOI 10.1109/FG.2018.00079



capture the change and intensity of facial expressions over

time. For appearance feature, the most popular example

would be local binary patterns (LBP) and histogram of

gradients (HOG) modeled using bag of words (BOW). A

robust variant of LBP, called Local Gabor Binary Patterns

from Three Orthogonal Planes (LGBPTOP) is incorporated

in spatio-temporal volumes of the video after convolving

with 2D Gabor filter-bank. LGBPTOP has been used as

baseline feature in automatic affect recognition challenge [3]

[11]. Video geometric features include identifying landmarks

on the face [11] or shoulder [12] or the whole body [13].

Experimenting with text modality is quite new approach

in continuous affect recognition. The semantic of the words

used can be an important aspect in emotion detection. It

is because, the words chosen can say a lot on the current

state of emotion of the person. In previous AVEC challenge,

only Povolny et al. [14] addressing text feature by exploring

automatic speech recognition, lexicon-based approach and

word embedding technique, in order to create a dictionary

for each utterance. In this paper, we will go deeper on

text modality by incorporating a bag-of-text-words (BOTW)

feature representation generated based on the transcription

of the speech.

Affect estimation is usually performed with human-

annotated emotional dimension such as Arousal for emotion

activation, Valence for emotion positiveness and for the first

time; Likability which presents the users preference to the

commercial product, for gold standard ratings.

Modeling approaches here are generally supervised and

regression based method is the approach of estimating affect.

Support Vector Machine (SVR) is perhaps the most widely

used regression method for affect estimation and has been

regarded as baseline approach for affect estimation [3] [15]

[11]. Recent literature takes into account short term temporal

correlation such as Continuous Conditional Random Fields

(CCRF) on top of SVRs [16] and various type of neural

network including Time Delay Neural Networks [17], Re-

current Neural Networks (RNN) [18] and Long-Short Term

Memory RNN (LSTM-RNN) in [19] [20]. Another study

[12], employed a bidirectional LSTM model with an output-

associative framework to achieve improved performance in

affect prediction. Following this trend, a deep bidirectional

LSTM was proposed [21] in which was gives the highest

results in [3].

When dealing with several modality and modeling tech-

nique the question of how to fuse them arises. Feature level

fusion and decision level fusion is the most well known

approach for assessing continuous affect estimation. Feature

level fusion is undertaken simply by concatenating each

features from multiple modality then a single classifier is

trained on the concatenated features [18] [22]. However,

feature-level fusion is plagued by several challenges. Gen-

erally, this approach tends to create very high dimensional

feature vectors and lead to overfit. Secondly, features from

multiple modalities are collected at different time scales.

For example, HRV features from physiological modality

typically extracted in minutes [23] while LLD features from

audio modality can be in the order of milliseconds [11].

The second fusion approach, decision fusion is the process

of first generating separate estimations fusing them into one

final estimation. Each estimation from multiple modalities

can be independently generated using separate models and

the results are joined using a multitude of possible methods.

In this case, the fusion of prediction obtained from various

modalities becomes easy compared to feature-level fusion,

since the prediction resulting from multiple modalities usu-

ally have the same form of data. Another advantage is

that, each of every modality can utilize its best suitable

model to learn its corresponding features. Among the notable

decision-level fusion methods in continuous affect recogni-

tion is linear regression [11] [6] has been implemented in

several AVEC challenge to fuse the estimation from each

modality. Other than linear regression, method such as SVR

[7], random forests [24] or Kalman filters based [8] [9] has

been used to combine prediction in decision fusion process.

However, although such feature and/or modelling ap-

proach successfully predicting affect in a continuous way, a

systematic understanding on what is the relationship between

each modality in multimodal fusion is still less frequently

explored. Each of the modeling approach reviewed usually

does not give a definite function for the fusion rule. On

top of that, it is not always possible to design a model that

suits each modality because of the complexity. Therefore,

the need to develop a model that can approximate the

relationship between the predictions based on a measured

set of data without a need of prior knowledge about the

modality that produced the experimental data is desired.

III. AFFECT ESTIMATION SYSTEM

Figure 1 show the overview of the proposed system.

We first perform SVR modelling for the continuous af-

fect recognition in unimodal setting (audio, video and text

modality) using different features. Once the unimodal es-

timation of each affect are optimized, we then incorporate

it with linear regression, multi gene GP fusion as well as

exponent weighted decision fusion strategies to investigate

its robustness in the multimodal setting settings. In order

to evaluate the proposed approach, three fusion rule is

evaluated by comparing it to the widely-used decision fusion

rules in affect regression methods.

A. Unimodal affect estimation

For the transparency of this experiments, we utilized

SEWA dataset [6], the first and only audio-visual behaviour

in-the-wild [25]. SEWA, stands for Sentiment Analysis in the
Wild consists of audio-visual recordings of subjects show-

ing spontaneous and natural behaviors. Audiovisual were

recorded during dyadic interactions, 32 pairs in total, using
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Figure 1. Overview of the proposed system. Fusion of the predictions of the three modalities: audio, video and text. Subscript indicate computation of
features over second. For example, Audio 4s means audio feature were computed over segments of 4 seconds.

standard webcams and microphones from the computers

in the subjects offices or homes, without any intervention

of specific speakers, headphone, or sensors. The data is

provided in three partitions (Training, Development, and

Test), where both partners of one video chat appear in

the same partition. The data is labeled in three affective

label, namely Arousal, Valence and Likability, manually

annotated by 6 annotators (3 female, 3 male), all were

German native speakers, using a joystick. The dataset is

provided together with a set of pre-calculated features which

will be incorporated into the model. To avoid repetition, we

refer to for details [6] on the feature extraction procedures

for all features in the next subsection.

1) Audio: For the audio modality, the database provide

two sets of audio features, namely Geneva Minimalistic

Acoustic Parameter Set (eGeMAPS) LLDs: functionals ex-

tracted using openSMILE toolkit [26] and bag-of-audio-
words (BOAW): extracted using openXBOW toolkit [27].

The latter features, BOAW is inspired by text mining re-

search area and commonly used in document classification

(bag-of-words). Using bag-of-words principle, LLD on cer-

tain segment is quantised using a codebook of ′audio words′,
then histogram of audio words is produced on a correspond-

ing segment. The important parameter that need to be taken

into consideration are the codebook size, i. e., the number

of audio words set into the framework. In the baseline

features, the codebook size is set to 1000, then standardised

to zero mean and unit variance prior to vector quantisation.

Both segment-level eGeMAPS LLDs and BOAW types were

computed over segments of 6 seconds. In total, the audio

baseline feature sets with functionals contain 88 features,

while the BoAW features contain 1 000 features.

2) Video: As for video modality, the database provide two

sets of video features: facial features and bag-of-video-words
(BOVW) features. The facial features include face orienta-

tion (pitch, yaw, and roll - 3 features), pixel coordinates for

10 eye point (20 features) and pixel coordinates for 49 facial

landmarks (98 features). In total, facial has feature value of

121. Then, each of the features is standardised to zero mean

and unit variance on frame level. The latter features, BOVW

features were computed on top of standardised facial features

with a codebook size of 1 000. The facial features have been

extracted for each video frame using the Chehra face tracker

[28] while BOVW features is extracted using openXBOW

toolkit [27].

3) Text: Experimenting with text based features is quite

new approach in continuous emotion recognition. In this

paper, a bag-of-text-words (BOTW) feature representation is

generated based on the transcription of the speech. By taking

into account only the terms with at least two occurence,

the results in a dictionary contained 521 words. Therefore,

openXBOW toolbox with a codebook size of 521 is used,

resulting 521 features of BOTW.

4) Regression models: Separate Arousal, Valence and

Likability predictions are obtained from individual modali-

ties as described in the last subsection. The regression task

is performed using linear SVR provided with the liblinear

library [29]. Unimodal predictions are first obtained from the

five feature sets provided in SEWA dataset (LLD, BOAW,

facial landmark video, BOVW and BOTW). We conducted

additional experiments by scaling and shifting the unimodal

estimation according to the training label in order to correct

the bias and scaling issues. These unimodal estimations are

used as an input in multimodal estimation in the proposed
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late fusion approaches.

B. Multi-modal affect estimation

In this section, we leverage the individual advantage of

each modality by combining them in a multimodal fashion

manner. It is also to the examine the possibility to construct

prediction equation of each affect. Each of the initial predic-

tion from audio, video and text is denoted as yA, yV , yT , and

become and input in the following subsequent multimodal

fusion.

1) Linear Regression (LR): LR attempts to model the re-

lationship between two variables by fitting a linear equation

to observed data. In the case of continuous affect estimation,

regression coefficients γ need to be weighted separately

according to contribution of each modality towards affects.

Equation 1 is the linear regression formula where γ and εm
are the regression coefficients and bias term computed in

development sets, and yf is the final fused prediction.

yf = γA(yA) + γV (yV ) + γT (yT ) + εm (1)

2) Exponent Weighted Decision Fusion: In this paper, we

leverage the exponent weighted decision fusion approach by

Kim et al. [30] in regression manner, where its validation

accuracy represent by the correlation from development

dataset. Suppose an SVR model with a best correlation, C
,

where CA is the best correlation for audio, CV is for the best

correlation for video and CT is the best correlation for text,

will provide an initial prediction for each modality. Then,

the final ensemble of our initial prediction from each of the

features in the exponent weighted decision fusion become:

yf = (CA)
q(yA) + (CV )

q(yV ) + (CT )
q(yT ) (2)

where a decision weight in terms of (C)q reflects the

significance of initial prediction according to each modality

and an exponent q is a hyper-parameter tuning. Here, the

value of q is found by a simple uniform search: scanned

over [-50:0.1:150] then selected to provide the maximum

correlation after the fusion. The scanning procedure and

the corresponding correlation values for the selected q are

illustrated in Figure 2.

3) Genetic Programming (GP): GP is inspired from

by biological evolution in nature. In order to improve

their genomes, the evolution begins by iteratively process

randomly generated solutions (individuals). The objective

function are the individual fitness. Iteratively, the repro-

duction generation is constructed by survival-of-the-fittest
individuals, by employing crossover and mutation. In brief,

crossover is the recombination of parent genome to produce

child genome while mutation is a possible modification that

happens to child genome. The iterative process stop when

the maximum number of generations is reached or the best

fitness is visited.

Multi gene GP is the results of combination of GP,

multiple gene and linear regression. In other words, each

Figure 2. Ccorr values as an exponent q is scanned in the exponentially
weighted decision fusion. Noted that when proper q was selected, it gives
maximum Ccorr in the development sets.

solution is formed by a linear combination of one or more

such functions, called genes. A graphical representation of

formulation with three input variable, x1, x2, x3 as shown

in Figure 3. As can be seen, the structure of this model

contain nonlinear terms such as sin, exp, cos, and the overall

model is a weighted linear combination with respect to each

coefficient.

Figure 3. Graphical formula with three input variable.

From Figure 3, the solution is in the from of:

yf = w0 + w1g1(x) + w2g2(x) + ...+ wngn(x) (3)

where n is the number of gene. Each gene is applied to the

feature matrix, producing N × 1 vector where:

yf = [1g1g2...gn] · w (4)

with 1 being N × 1 vector of ones. The output y of the

whole solution is then given by formula:

yf = G · w (5)

The optimal coefficient vector w∗ can then be found using

the least-squares estimation with respect to the true target

vector y

w∗ = (GᵀG)−1Gᵀy (6)

IV. EXPERIMENTAL RESULTS

This section empirically evaluates the proposed algorithm

in SEWA dataset.
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A. Experimental Set-ups and Evaluation Metrics

We reported the performance of our proposed architecture

based on Ccorr [6] metric:

Ccorr =
2ρσŷσy

σ2
ŷ + σ2

y + (μŷ − μy)2
(7)

where ρ is the Pcorr between two time series (e.g: predic-

tion and gold-standard); μhaty and μy are the means of each

time series; and σ2
ŷx and σ2

y are the corresponding variance.

Here, the value of Ccorr is within the range of [−1, 1], where

±1 represents perfect concordance and discordance while 0

means no concordance between two time series.

B. Affect Estimation in Unimodal Modality

Table I displays the results in terms of Ccorr obtained

from unimodal modality of SVR on the development sets

of SEWA. On Arousal, the best performance is achieved

with video modality, more specifically on BOVW features.

In Valence, the highest results of Ccorr is taken from audio

modality, more specifically on BOAW features. Whereas in

Likability, the highest is from text modality, more specifi-

cally on BOTW features.

C. Affect Estimation in Mutimodal Modality

1) Linear Regression: In the first experiment, we build

fusion model by a simple linear regression of the predictions

obtained on the development partition, using Equation 1 in

Weka 3.7 [31] on top of MATLAB with the same setting as

mentioned above. Equation 8 9 10 shows the final equation

according to each affect, respectively.

yfAR = 0.956yA + 0.425yV + 0.404yT − 0.0915 (8)

yfV A = 0.299yA + 0.302yV + 0.249yT − 0.0116 (9)

yfLI = 0.144yA + 0.202yV + 0.348yT − 0.0069 (10)

2) EW: For the second experiment using EW, the best

exponent q is obtained from the first section, then the same

q is applied in the second section. Each of the q is scanned in

the range of [-50:0.1:150] and validated by using Equation 2

thus selected to provide the maximum performance after the

fusion. Equation 11 12 13 shows the final equation according

to each affect, respectively.

yfAR = (0.328)6.6(yA) + (0.455)6.6(yV )

+(0.407)6.6(yT )
(11)

yfV A = (0.401)2.1(yA) + (0.389)2.1(yV )

+(0.386)2.1(yT )
(12)

yfLI = (0.175)1.5(yT ) + (0.249)1.5(yV )

+(0.390)1.5(yT )
(13)

3) GP Modelling: Three multi gene GP models are estab-

lished in this paper for predicting the continuous affect for

each of affect dimension, respectively. GPTIPS2 developed

by Searson et al., [32] was used for model development. The

parameters that were set in the multi gene GP algorithms

include: a population size of 250, a tournament size of 20,

maximum number of genes allowed in an individual 8, func-

tion set {+,-,x,/,sin,cos,exp} and terminal sets {yA, yV , yT }.
The resulting prediction equation discovered by a multi gene

GP model according to each affect is reported as follows:

yfAR = 5.5e−4 sin(27y3V ) + 0.31eyT − 200y3V y
9
T

+3.4yA(y
3
A + yV y

2
A + yV )

−0.025e(−3yV ) sin(9.5yT )

+0.1y
1/4
A − 0.1y3T − 0.33

(14)

yfV A = 0.057 sin(16yV yT )− 0.32 sin(yAyV yT )

+0.13 sin(y2V (yA + 7.8))

+0.12y2T e
−yT (yA + 7.8)

+0.16yA(e
−yT )1/2(yV + 7.5)yA + 4.5e(−3)

(15)

yfLI = 0.15yV + 0.15yT + 0.15 sin(sin(yA))

−0.18|yT |+ 9.3y4V yT − 3.4e3y7V yT

+0.36y2A − 6.5y3V + 79y5V

+399yAy
3
V yT + 5.6e3yAy

5
V yT − 6.9e(−3)

(16)

Table I
UNIMODAL PERFORMANCE USING Ccorr ON THE DEVELOPMENT SET

Modality Features Ccorr

Arousal Valence Likability

Audio

LLD 4s .380 .338 .062
LLD 6s .342 .274 .089

BOAW 4s .325 .390 .032
BOAW 6s .327 .392 .104

Video
BOVW 4s .453 .384 .172
BOVW 6s .370 .340 .132

Text BOTW 6s .364 .382 .317

4) Performance Comparison: Closer inspection on Table

II shows that in most cases, decision fusion gives better

results than feature fusion method. We suspect that, given

the fact that features are extracted in the same manner,

there are tendency of the features have similar or nearly

similar distribution, which makes one of them is redundant,

when performing feature fusion. Our finding confirms that

in Arousal and Valence dimension, the multimodal system

in Table II performs better than the best unimodal system

in Table I. The new dimension, Likability however performs

the best result on unimodal system on text modality. In LR,

overall we have achieved a better performance for estimating

Arousal than Valence and Likability consistent with existing

linear modeling frameworks, as shown in Equation 8. From

this Equation, it shows that audio modality gives the highest
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weighting factors which contribute significantly to the higher

performance in Arousal. However, when it comes to Valence

and Likability dimensions, there seems to be relatively lower

performance in estimating those two affect, most likely due

to non-linearities in the relationship between the features

and those two affect ratings. We further investigate those

non-linearity behavior on those two affect ratings using EW

and multi gene GP approach. By using EW, the system

performance is further improved upon using non-linearity

behavior in estimating Valence and Likability. By having

proper q selection in EW approach gives significant gain

in Ccorr results for Valence and Likability, from 0.507 to

0.549 and 0.215 to 0.231 respectively. However, when we

compare the results of Likability with the baseline approach,

the baseline approach has slightly higher performance than

our proposed multi gene GP approach. This may be due to

the fact that the SVR models in the first stage have already

fit well for the Likability with the original feature vector.

Notably, the formula produced by multi gene GP seems

to be more compact than yielded by LR and EW, which

yields the best results on Ccorr in Valence and Likability

dimensions, by 0.559 and 0.257 respectively. Looking at the

performance increase, we can conclude that a model with

simple structure is incapable of describing such complex

functional mapping in a satisfactory manner. A lower Ccorr

on multi gene GP and EW instead of LR confirms the

assumption that evolution of Arousal dimension are linear

in time, consistent with the assumption in [9].

Recent published results by Chen et al. [33] in validation

set achieved achieved higher results where additional fea-

tures and multitask learning were used. However, it is not

strictly comparable because 2-fold cross-validation protocol

was used in our results. Our focus is on the relationship

between multiple modalities where proposed methods can

give the mathematical expressions.

Table II
MULTIMODAL PERFORMANCE USING Ccorr ON 2-FOLD CROSS

VALIDATION

Fusion
Type

Fusion
Method

Ccorr

Arousal Valence Likability
Feature [6] Concatenate .525 .507 .235

Decision
LR .592 .507 .215
EW .440 .549 .231

multi gene GP .572 .562 .258
Chen et al. [33] Multi-task learning .750 .776 .579

V. CONCLUSION

This work investigates the possibility of employing dif-

ferent modeling approach, including LR, EW and multi

gene GP, for constructing prediction fusion rules at the

decision level in continuous affect estimation in-the-wild.

To train and verify these multimodal fusion approaches, a

dataset containing text and audiovisual recording is used.

LLD, BOAW, BOVW and BOTW features are extracted

respectively from audio, video and text modality. Then SVR

have been employed to estimate the initial prediction of

each affect. In fusion stage, the best initial prediction from

unimodal modality is selected, and LR, EW and multi gene

GP is being employed to construct the prediction rules.

Experimental results shows that the prediction equation of

multi gene GP shows better modeling outcome than the

benchmark results, outperform the baseline approach in all

affect dimension. Result comparison with other benchmark

method such as LR shows that multi gene GP significantly

improve the performance in Valence and Likability dimen-

sion. It confirms our initial assumption that there exists non-

linearity behavior in those two affect dimension. As for

Arousal dimension, LR perform better than baseline, EW

and multi gene GP fusion approach. It shows that Arousal

dimension is generally linear in time.

It should be mentioned here that the conclusion might not

completely correct due to the use of the dataset. Although it

is a very good dataset, however, the total number of samples

is still limited and the features and first baseline regression

method is very basic. In our future work, we would like to

use more multimodal datasets and features to improve the

system and verify these assumptions.
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