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Abstract. Some systems interact with their environment at physically distributed interfaces,
called ports, and in testing such a system it is normal to place a tester at each port. Each tester
observes only the events at its port and it is known that this limited observational power introduces
additional controllability and observability problems into testing. Given a multi-port finite state
machine (FSM) M , we consider the problems of defining strategies for the testers to either reach
a given state of M or to distinguish two states of M . These are important problems since most
techniques for testing from a single-port FSM use sequences that reach and distinguish states. Both
problems can be solved in low-order polynomial time for single-port FSMs but we prove that the
corresponding decision problems are undecidable for multi-port FSMs. However, we also show that
they can be solved in low order polynomial times for deterministic FSMs if we restrict attention
to controllable tests. These results have important ramifications for testing from a multi-port FSM
since they suggest that methods for testing from a single-port FSMs cannot be easily adapted. In
addition, two FSMs can be distinguished if and only if their initial states can be distinguished and
so the results suggest that, in contrast to single-port FSMs, we cannot expect to produce general
complete test generation methods for multi-port FSMs.
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1. Introduction. Many systems have physically distributed interfaces, called
ports, at which they interact with their environment. Examples include communica-
tions protocols but also web-based systems and cloud computing. In testing such a
system we place a tester at each port and the tester at a port p only observes the
events that occur at p. It has been known for some time that this inability of the
tester to observe events at other ports introduces additional controllability and ob-
servability problems into testing (see, for example, [5, 6, 8, 11, 12, 21, 25, 34, 35]).
This has led to interest in algorithms that generate test sequences (input sequences)
that have no such controllability and observability problems but it is known that such
test sequences do not always exist.

In this paper we consider the black-box testing of a system under test (SUT)
that has multiple interfaces. Since distributed systems are often state-based, we
assume that the model of the SUT is state-based and in particular that it is a finite
state machine (FSM). We consider FSMs since many state-based formalisms, such
as statecharts and SDL, can be seen as FSMs, possibly with data added. Many
model-based testing techniques also use FSMs or similar formalisms (see, for example,
[4, 13, 15]). In addition, FSMs are a syntactically simple formalism that allow us
to investigate foundational issues. In particular, in this paper we prove negative
decidability results for FSMs and, having proved this for FSMs, we know that these
results must also hold for all formalisms that are more expressive.

It is known that the use of physically distributed ports introduces controllability
problems [11]. Let us suppose that we wish to apply the test sequence x1x2 to a
system specified by the FSM M , x1 is input at port 1, and x2 is input at 2. If M only
sends output to port 1 in response to x1 then the tester at port 2 cannot know when
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Fig. 1.1. A controllability problem

to send x2. This creates a controllability problem as illustrated in MSC1 in Figure
1.1 in which each vertical line represents a port with time progressing as we move
down a line. We have a controllability problem if a tester is required to send an input
but does not know when to send this input. There may be no sequence that satisfies
a test objective and that has no controllability problems [34]. Thus, if we wish to
achieve a test objective, such as testing the response of the SUT to an input when
in a particular state, we may have to use tests that contain controllability problems.
Despite this, almost all work in this area has restricted testing to the use of test
sequences that cause no controllability problems. This motivates the work described
in this paper: if we wish to be able to have tests that include controllability problems
and yet achieve certain test objectives then we need to know how, and when, we can
produce such tests.

When testing from a single-port FSM it is normal to produce a set of test se-
quences. In contrast, we show that we need the testers at each port to correspond to
adaptive strategies when testing from a multi-port FSM even when the FSM is deter-
ministic. The behaviour of the tester at a port p can then adapt to the observations
it makes. The use of such strategies is particularly important when we allow testing
to include controllability problems since the order in which inputs are received by the
SUT is not predictable and this introduces additional nondeterminism into testing.
Previous work, in testing from multi-port FSMs, appears not to have considered the
use of such strategies and has restricted attention to test sequences that do not cause
controllability problems.

In this paper we consider the problem of defining strategies to achieve two goals:
reaching a state of an FSM and distinguishing two states of an FSM. One of the main
motivations for considering these problems is that most algorithms for generating
tests from single-port FSMs use input sequences or adaptive processes to reach and
distinguish states (see, for example, [1, 2, 9, 17, 22, 26, 32]). If we can produce
strategies to reach and distinguish states of a multi-port FSM then we may be able to
adapt techniques for testing from a single-port FSM. We consider several situations.
First, we consider the case in which we are testing from a deterministic FSM (DFSM)
and we restrict testing to controllable tests. It transpires that in this situation the
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problems of reaching and distinguishing states can be solved in low-order polynomial
time. We then show that the problems, of reaching and distinguishing states, are
undecidable for nondeterministic FSMs even if we restrict attention to strategies that
cause no controllability problems. Finally, we prove that the general problems are
also undecidable for DFSMs.

There is an additional consequence of these results, which is that since the problem
of distinguishing two FSMs in testing corresponds to distinguishing their initial states,
it is undecidable whether two FSMs can be distinguished. This contrasts with the
case for single-port FSMs, the decidability result for single-port FSMs showing that
it is possible to find a finite set of test sequences that distinguishes between a single-
port FSM M and a finite set of faulty machines [27]. Given a single-port FSM M
and integer r, there are algorithms that return sets of test sequences that distinguish
between M and all faulty FSMs with at most r states (see, for example, [9, 14, 17, 19,
22, 32, 31]) and such sets are said to be r-complete. The results in this paper suggest
that we cannot expect to produce general algorithms that take a multi-port FSM and
return an r-complete set of test sequences.

The paper is structured as follows. First, in Section 2, we describe multi-port
FSMs and controllability problems. In Section 3 we then consider the problems of
reaching and distinguishing states of a DFSM when we restrict attention to sequences
that cause no controllability problems. In Section 4 we explain why strategies are
required in order to reach and distinguish states of a multi-port FSM when we do not
restrict attention to tests that cause no controllability problems and we explore such
strategies. Section 5 describes multi-player team games of incomplete information.
In Section 6 we use results from multi-player games to prove that it is undecidable
where there is a strategy that reaches a given state of a multi-port nondeterministic
FSM or that distinguishes two states of such an FSM. In Section 7 we then prove that
these problems are generally undecidable for DFSMs. Finally, conclusions are drawn
and future work discussed in Section 8.

2. Multi-port finite state machines and controllability problems. In this
paper we assume that the system being considered has m physically distributed in-
terfaces, called ports, and we let P = {1, . . . ,m} be the set of names of the ports. A
multi-port finite state machine M with m ports is defined by a tuple (S, s0, X, Y, h)
in which S = {s1, . . . , sn} is a finite set of states; s0 ∈ S is the initial state; X is the
finite input alphabet; Y is the finite output alphabet; and h is the transition relation
of type S ×X ↔ S × Y . For all p ∈ P , Xp is the set of inputs that can be received
at p and so X = X1 ∪ . . . ∪Xm. Similarly, Y = (Y1 ∪ {−})× . . .× (Ym ∪ {−}) where
for all p ∈ P , Yp denotes the outputs the SUT can send to port p and − denotes no
output being sent to a port. (y1, . . . , ym) ∈ Y denotes the value yp ∈ Yp ∪ {−} being
sent to port p (or no output being sent to p if yp = −). We assume that the sets of
Xp and Yp are pairwise disjoint: for all p, q ∈ P with p 6= q we have that Xp ∩Xq = ∅
and Yp ∩ Yq = ∅. We can ensure that this is the case by adding port labels to inputs
and outputs if necessary.

If (s′, y) ∈ h(s, x) and M receives input x when in state s then it can produce
output y and move to s′. This defines a transition (s, s′, x/y). This type of model
corresponds to a reactive system where an input or event triggers an operation and
this operation can change the state and produce output. Most work on testing state
based systems with multiple ports has used such formalisms but an alternative is to
allow transitions to be triggered by multiple inputs [16]. M is a deterministic FSM
(DFSM) if for all s ∈ S and x ∈ X , |h(s, x)| ≤ 1. M is completely specified if for

3



?>=<89:;s1

x1/(y1,y2)

&&

x2/(−,y2)

�� ?>=<89:;s2

x2/(−,y2)

��

x1/(y1,y2)
oo

?>=<89:;s4

x2/(−,y2)

HH

x1/(−,y2)

OO

?>=<89:;s3

x2/(y1,y2)

``@@@@@@@@@@@@@@@@@@@@@@@@@

x1/(y1,−)
oo

Fig. 2.1. Finite State Machine M0

all s ∈ S and x ∈ X , |h(s, x)| ≥ 1. This paper only considers completely specified
FSMs and throughout the paper M will refer to such an FSM. Since we are interested
in systems with multiple ports, a multi-port finite state machine will be called a
finite state machine (FSM); we will refer to FSMs with one port as single-port FSMs.
Single-port FSMs are sometimes called Mealy machines or transducers.

A DFSM, called M0 throughout the paper, is shown in Figure 2.1. In M0, the
initial state is s1, input x1 is received at port 1 and x2 is received at port 2. Here, for
example, if M0 receives input x2 at port 2 when in state s2 then it moves to states
s3 and sends output y2 to port 2 while if it receives input x2 at port 2 when in state
s3 then it moves to state s1 and sends output y1 to port 1 and y2 to port 2. Thus,
h(s2, x2) = {(s3, (−, y2))} and h(s3, x2) = {(s1, (y1, y2))}.

An FSM M interacts with its environment through a sequence of steps where each
step involves M receiving an input and producing an output and so each such step
corresponds to a transition of M . M thus interacts with its environment through a
sequence of consecutive transitions. Such a sequence ρ = t1 . . . tk, ti = (si, si+1, xi/yi),
is a walk with label x1/y1, . . . , xk/yk, starting state s1, and ending state sk+1. Here
x1/y1, . . . , xk/yk is an input/output sequence, also called a global trace, and x1, . . . , xk

is the input portion of this global trace. For example,M0 has a walk (s2, s3, x2/(−, y2))
(s3, s1, x2/(y1, y2)) and this has starting state s2, ending state s1, and label x2/(−, y2)
x2/(y1, y2) with input portion x2x2.

FSM M defines the regular language L(M) of labels of walks with starting state
s0. Similarly, we let LM (s) denote the set of labels of walks of M with starting state
s. Two states s and s′ of M are said to be equivalent if they define the same language:
LM (s) = LM (s′). Similarly, two FSMs M and N are equivalent if L(M) = L(N).

We assume that the ports of M are physically distributed, that separate agents
interact with M at these ports and there is no global clock. As a result, no agent
(tester) observes a global trace that occurs in testing. Instead, the agent at port p
observes a local trace: the sequence of inputs and outputs that occur at p. Given a
global trace σ and port p we will let πp(σ) denote the local trace at p, which is the
projection of σ at p. Here πp is defined by the following in which ǫ denotes the empty
sequence (see, for example, [23]).
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πp(ǫ) = ǫ

πp((x/(y1, . . . , ym))σ) = πp(σ) if x 6∈ Xp ∧ yp = −

πp((x/(y1, . . . , ym))σ) = xπp(σ) if x ∈ Xp ∧ yp = −

πp((x/(y1, . . . , ym))σ) = ypπp(σ) if x 6∈ Xp ∧ yp 6= −

πp((x/(y1, . . . , ym))σ) = xypπp(σ) if x ∈ Xp ∧ yp 6= −

Two global traces are indistinguishable if their projections are identical at each
port. More formally, global traces σ1 and σ2 are indistinguishable, written σ1 ∼ σ2, if
for all p ∈ P we have that πp(σ1) = πp(σ2). This corresponds to the assumption that
the agent at each port only observes the sequence of events (local trace) at its port
and so the most we can do is to later bring together these local traces. For example,
if we consider global traces σ1 = x1/(y1, y2)x1/(y1,−) and σ2 = x1/(y1,−)x1/(y1, y2)
we find that π1(σ1) = x1y1x1y1, π1(σ2) = x1y1x1y1, π2(σ1) = y2, and π2(σ2) = y2
and so σ1 ∼ σ2. Clearly ∼ is an equivalence relation.

If we are testing from a DFSM M and wish to trigger a walk whose label is the
global trace σ ∈ L(M) then the tester at port p ∈ P has to ‘implement’ the projection
πp(σ) of σ. Here, the tester at port p has to decide when to apply input on the basis
of the observations it makes, in contrast to the situation where we wish to apply an
input sequence to a single-port FSM. Let us suppose, for example, that we wish to
apply the test sequence x1x2x2 in testing from DFSM M0 and thus to execute a walk
with label σ = x1/(y1, y2)x2/(−, y2)x2/(y1, y2) ∈ L(M0). Then the tester at port 1
simply has to apply x1 and then observe output while the tester at port 2 has to wait
for y2 before it applies x2 twice. In Section 4 we discuss the use of strategies, which
are adaptive processes, in testing.

In testing a multi-port system, we place a tester at each port and the tester at
a port p only observes the interactions that occur at p. Thus, the tester at p can
only know when to send an input to the SUT through the observations it makes. It
is known that this restriction can lead to controllability problems in testing (see, for
example, [5, 6, 8, 11, 12, 21, 25, 34, 35]). A controllability problem occurs when the
tester at a port p ∈ P should apply an input x but cannot know when to do this
based on the observations it makes. For DFSMs, this has been characterised in terms
of the corresponding global trace being synchronisable.

Definition 2.1. Walk ρ = t1 . . . tk, ti = (si, si+1, xi/yi), is synchronisable
if for all 1 < i ≤ k we have that the port p ∈ P at which xi is applied satis-
fies: πp(xi−1/yi−1) 6= ǫ. We also say that the label of ρ is synchronisable and
that x1, . . . , xk is synchronisable from state s1. Given a DFSM M , test sequence
w = x1, . . . , xk is controllable for M if the global trace σ ∈ L(M) with input portion
w is synchronisable and we simply say that w is controllable when M is clear.

We use the terms synchronisable and controllable to be consistent with the lit-
erature. The term synchronisable will be used with walks and their labels while the
term controllable will be used for test sequences and test strategies.

If we consider M0, we find that the walk (s2, s3, x2/(−, y2))(s3, s1, x2/(y1, y2)) is
synchronisable since the second transition has input at port 2 and the first transi-
tion has label x2/(−, y2) with π2(x2/(−, y2)) = x2y2 6= ǫ. In practice, this means
that the tester at port 2 knows when to apply x2 to trigger the second transi-
tion: either after sending x2 or receiving y2 in response. In contrast, the walk
(s2, s3, x2/(−, y2))(s3, s4, x1/(y1,−)) is not synchronisable since the input of the sec-
ond transition is at port 1 but we have that π1(x2/(−, y2)) = ǫ. The problem here
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is that the tester at port 1 does not observe either the input or output of the first
transition in this walk and so cannot know when to apply its input.

Essentially, if we apply a test sequence that is not controllable then the order in
which the inputs are received is not predictable. As a result, there may be several
different walks of the FSM that are consistent with the attempts of the local testers
to apply this test sequence. Thus, even if the SUT and the testers are deterministic,
the use of a test sequence that is not controllable can introduce non-determinism
into testing since the composition of the SUT and testers may be non-deterministic.
As a result there has been interest in producing test sequences that are controllable.
However, it is known that in general we may have no controllable test sequence that
achieves an objective such as testing a particular transition. For example, in M0 we
can observe that no synchronisable walk with starting state s1 includes the transition
(s3, s4, x1/(y1,−)) since the only transition with ending state s3 has input at port 2
and produces no output at port 1. This is part of the motivation for the work in this
paper: if we cannot achieve a test objective, such as testing a particular transition,
using controllable test sequences then we need to use tests that have controllability
problems and we would like to know how and when we can generate these.

This notion of controllability has been generalised to non-deterministic FSMs. It
might appear that we can simply require that all possible global traces, produced in
response to a test sequence, are synchronisable. However, it has been shown that this
is not sufficient since we can have situations such as the following in which we are
testing with test sequence x1x1x2 and there are two possible global traces [18]:

1. a synchronisable global trace x1/(y1,−)x1/(−, y2)x2/(−, y2); and
2. a synchronisable global trace x1/(y1, y2)x1/(−, y2)x2/(y1,−);

The problem is that in the first global trace the tester at port 2 should apply x2

after receiving y2 while in the second it should apply x2 after receiving y2y2. As a
result, if the tester at port 2 observes y2 then it does not know whether to send x2 or
wait for another y2 since it does not observe behaviour at port 1. These two scenarios
are illustrated in Figures 2.2 and 2.3.

This problem only occurs if there is a port p and prefixes σ1 and σ2 of global
traces in response to the test sequence being used such that σ1 and σ2 have identical
projections at port p, and so cannot be distinguished by p, and yet the actions at p
must differ after σ1 and σ2. This has been formalised in the following way [18].

Definition 2.2. Given FSM M , a test sequence w is controllable for M if
there do not exist σ1, σ2 ∈ L(M) whose input portions are prefixes of w such that
|σ1| 6= |σ2| and the next input to be applied after σ1 is to be applied at a port p such
that πp(σ1) = πp(σ2).

3. Controllable testing from a DFSM. In this section we adapt results in the
literature to show that the problems of reaching states and distinguishing states can
be solved in low-order polynomial time if we are testing from a DFSM and restricting
attention to controllable test sequences [20, 23]. First we consider the problem of
reaching a state of a DFSM using a controllable test sequence. The method developed
in this paper is based on work in [20], which adapts an approach given in [21]. The
basic idea is that we produce a DFSM χmin(M) from M whose walks are exactly
the synchronisable walks of M and we can then determine which states of M have
corresponding reachable states in χmin(M). Note that [20] defines χmin(M) but does
not consider its use to determine reachability.

The construction of the DFSM χmin(M) is based on the following sets.
1. For state si ∈ S and port p ∈ P , Departp(si) = {(si, sj, x/y)|(sj , y) ∈

6



Port 1 SUT Port 2

x1

y1

x1

y2

x2

y2

msc MSC2

Fig. 2.2. A first global trace involved in a controllability problem

Port 1 SUT Port 2

x1

y1 y2

x1

y2

x2

y1

msc MSC3

Fig. 2.3. A second global trace involved in a controllability problem

7



h(si, x) ∧ x ∈ Xp}. This corresponds to the set of transitions with start-
ing state si and input at p.

2. For state si and port set P ′ ⊆ P , ArriveP
′

(si) = {(sj , si, x/y) ∈ T |P ′ =
{p′ ∈ P|πp′(x/y) 6= ǫ}}. This is the set of transitions of M with ending state
si that involve the set P ′ of ports.

In a synchronisable walk, if there is a transition t ∈ ArriveP
′

(si) then this can
only be followed by a transition t′ if t′ ∈ Departp(si) for some p ∈ P ′.

Consider, for example, the DFSM M0 given in Figure 2.1. If we use the label
tij to denote the transition with starting state si and input xj then we have that
Departj(si) = {tij} and we also obtain the following sets.

Arrive{1,2}(s1) {t21, t32, t41}

Arrive{2}(s1) {t12}

Arrive{1,2}(s2) {t11}

Arrive{2}(s3) {t22}

Arrive{1}(s4) {t31}

Arrive{2}(s4) {t42}
We can now define χmin(M) = (S′, s′0, X, Y, h′). First, the following define the

state set S′ (recall that M has states set S = {s1, . . . , sn} and initial state s0).
1. For all 1 ≤ i ≤ n and P ′ ⊆ P we include sP

′

i in S′ if ArriveP
′

(si) 6= ∅.
2. If the initial state s0 of M corresponds to state si ∈ S then state sPi is in S′,

we call this sP0 and we set the initial state s′0 of χminM to be sP0 .
We require sP0 to be in S′ since this represents the DFSM being in the initial

state and testing having not started: the next (first) input can then be at any port.
We can define h′ by the following:

1. h′(sP
′

i , x) = ∅ if x ∈ Xp and p 6∈ P ′

2. h′(sP
′

i , x) = {(sP
′′

j , y)} if x ∈ Xp, p ∈ P ′, h(si, x) = (sj , y) and P ′′ = {p ∈
P|πp(x/y) 6= ǫ}.

The DFSM χmin(M0) is shown in Figure 3.1.
The DFSM χmin(M) is constructed in a manner that ensures that all walks of

χmin(M) are synchronisable. The following results have been proved [20].
Proposition 3.1. For each synchronisable walk ρ in M that starts at s0, there

is a unique synchronisable walk ρ′ in χmin(M) that starts at sP0 such that label(ρ) =
label(ρ′).

Proposition 3.2. For each walk ρ′ in χmin(M) that starts at sP0 , there is a
unique synchronisable walk ρ in M that starts at s0 such that label(ρ) = label(ρ′).

We can now bring these together to prove the following result.
Theorem 3.3. Given a DFSM M , there exists a test sequence w that reaches

state si of M and that causes no controllability problems if and only if there is a set
P ′ ⊆ P such that the state sP

′

i can be reached from the initial state of χmin(M). In
addition, if M has n states and p inputs then we can decide whether such an input
sequence w exists in O(np2) time.

Proof. The first part follows from Propositions 3.1 and 3.2.
For complexity, first note that if M has T transitions then χmin(M) has at most

T + 1 states and so at most p(T + 1) transitions. The problem has therefore been
reduced to deciding reachability in a graph with at most T + 1 vertices and p(T + 1)
edges and this can be solved in O((T + 1) + p(T + 1)) = O(p(T + 1)) time using
depth-first search [36]. Further, T = np and so we obtain the result.

Now, we consider the problem of distinguishing two states of a DFSM. The fol-
lowing definition of what it means to distinguish two states of a DFSM, while avoiding
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Fig. 3.1. Finite State Machine χmin(M0)

controllability problems, is equivalent to one in [23].

Definition 3.4. Let us suppose that M is a DFSM, input sequence w is control-
lable from states s1 and s2 of M and that σ1 and σ2 label walks with starting states s1
and s2 respectively and have input portion w. We say that w locally s-distinguishes
states s1 and s2 of at port p ∈ P if πp(σ1) 6= πp(σ2). Further, w locally s-distinguishes
states s1 and s2 of M if there exists a port p ∈ P such that x locally s-distinguishes
s1 and s2 at pi.

This says that w must lead to no controllability problems when applied in states
s1 and s2 and the application of w in these states must lead to a different observation
at some port p.

The following results have been proved [23].

Theorem 3.5. Let M denote a DFSM with n states and m ports. Given states
s1, s2 of M and port p ∈ P, if s1 and s2 are locally s-distinguished by an input
sequence starting with an element of Xp then they are locally s-distinguished by an
input sequence of length at most m(n− 1) that starts with an element of Xp.

Theorem 3.6. Given integers n > 1 and m > 1 there exists a DFSM M with
n states and m ports that has locally s-distinguishable states s1 and s2 that cannot be
locally s-distinguished by any input sequence of length less than m(n− 2) + 1.

In addition, for a DFSM with n states and p inputs, [23] gives an O(pn2) algorithm
that determines whether two states of a DFSM are locally s-distinguishable and, if
they are, returns a shortest sequence that locally s-distinguishes them. Thus, we
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obtain the following result.

Theorem 3.7. For a DFSM M with n states and p inputs, we can decide in
O(pn2) time whether there are input sequences that distinguish states s1 and s2 of a
DFSM M and that are synchronisable from s1 and s2.

4. Using strategies for testing. Most work on testing from single-port FSMs
assumes that a preset input sequence is applied. For deterministic single-port systems,
we gain nothing in potential test effectiveness by using an adaptive process since as
soon as the behaviour of the SUT diverges from that of M we know there has been
a failure: there is no need to adapt to such situations even if this can make testing
more efficient. In the context of testing from a nondeterministic FSM there has been
some interest in adaptive testing (see, for example, [3, 19, 24, 37]).

The situation is different when testing a system with multiple ports. Consider,
for example, the fragment of a DFSM shown in Figure 4.1 in which x1 and x′

1 are
input at port 1 and x2 is input at port 2. Assume also that no other transitions of
the DFSM can contribute to reaching state s. If we wish to reach state s then we
require an adaptive process. This is because initially x1 must be received at port 1
and x2 must be received at port 2. The order in which x1 and x2 are received is
unpredictable, as a result of controllability problems. However, the tester at port 1
knows that if they receive output y′1 then they must send input x′

1 and if they receive
output y1 then they must send input x1 and so the tester at port 1 must adapt its
behaviour to the observations made. Thus, when we have multiple-ports, even when
testing from a DFSM we may want testing to be adaptive.

Note that if we are testing from a DFSM M using test sequences that lead to no
controllability problems then we require only a limited amount of adaptivity. This is
because the test sequence w defines only one walk ρ from the initial state M and we
simply take the projection of the label σ of ρ at port p in order to define the tester
at p. While the tester at a port p may have to observe events at its interface in order
to determine when to apply input, the actual sequence of inputs and outputs at port
p is fixed. This is why, in Section 3, when we investigated controllable testing from a
DFSM M we only considered single walks through M .
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We will assume that each tester applies a strategy and so the local strategy µp

for the tester at a port p is a mapping from its observations to the next input it
should apply. It might appear that a local strategy should be a mapping from the
observed sequence of outputs, at that port, to the next input. However, since the
tester at p does not supply all of the inputs, there can be times in testing where the
observations it has made should not be followed by input at p: the tester at p should
wait for additional outputs or possibly it has finished. In addition, the tester at p
might wish to send an input x′ after an input x without receiving output between
these values. Thus, a local strategy for the local tester at p is a partial function µp

of type (Xp ∪ Yp)
∗ → Xp. A global strategy µ is a tuple (µ1, . . . , µm) such that for all

p ∈ P we have that µp is a local strategy for the tester at port p.

Let us suppose that we are testing the SUT against FSM M using global strategy
µ = (µ1, . . . , µm). Each local tester uses its local strategy in order to interact with
the SUT in the following way: if the sequence of observations at p is σp and µp(σp)
is defined and equals x then the local tester at p sends x to the SUT and otherwise it
does nothing. The SUT receives the input of x at some later point and this triggers a
transition. We assume that if the tester at port p sends inputs x and then x′, the SUT
must receive x before x′1. We can define the set of possible sequences of interactions
the local tester at p can have with any SUT given local strategy µp.

Definition 4.1. A sequence σ ∈ (Xp ∪ Yp)
∗ is an evolution of local strategy µp

if the following properties hold:

1. If σ1x is a prefix of σ and x ∈ Xp then µp(σ1) = x. This says that the local
tester at p can only send an input x to the SUT when this is specified by the
strategy.

2. If σ1 is a prefix of σ and µp(σ1) = x then σ1x is prefix of σ. This says that
the local tester at p must send an input to the SUT whenever this is specified
by the strategy.

We let Ev(µp) denote the set of evolutions of µp.

The set of possible evolutions of a local strategy µp defines the sequences of events
that can occur at port p under µp. This may contain many irrelevant sequences since
we can extend a sequence with arbitrary outputs, and continue doing so while the
sequence is not in the domain of µp. However, we will not have to consider such
sequences since in testing we will only observe behaviours that are consistent with
both µp and the SUT.

We can now define the set of possible global traces that can occur when using a
global strategy µ = (µ1, . . . , µ) when testing an FSM implementation N : each such
global trace must be in L(N) and consistent with the possible evolutions of the local
strategies.

Definition 4.2. Let us suppose that M is an FSM, N is an FSM with the same
sets of ports, inputs and outputs, and µ = (µ1, . . . , µm) is a global strategy produced
from M . Then the set of possible global traces produced in testing N with µ is denoted
T r(N,µ), which is defined by the following: T r(N,µ) = {σ ∈ L(N)|∀p ∈ P .πp(σ) ∈
Ev(µp)}. For state s of N we similarly define T r(N,µ, s) = {σ ∈ LN(s)|∀p ∈
P .πp(σ) ∈ Ev(µp)}.

This definition says that the local trace at port p must be one that could result
from applying µp.

1This assumption holds if either the communications channels are first-in first-out (FIFO) or if
sufficient delays are introduced between inputs at a port in testing.

11



If σ ∈ T r(N,µ) then we must have that the tester at p should not supply any
further input after observing σ.

Proposition 4.3. Let us suppose that µ = (µ1, . . . , µm) is a global strategy and
σ ∈ T r(N,µ). Then for all p ∈ P we have that µp is not defined on πp(σ).

Proof. Proof by contradiction: assume that there is a port p ∈ P such that µp is
defined on πp(σ). By the definition of Ev(µp), if σ1 is a prefix of σ and µp(σ1) = x
then σ1x is prefix of σ. However, σ is a prefix of σ and so if µp(σ) = x then σx is a
prefix of σ. This provides a contradiction as required.

This says that if σ ∈ T r(N,µ) then after σ none of the local strategies is able
to supply additional input. In addition, since T r(N,µ) ⊆ L(N), N cannot produce
additional output without receiving input. Thus, if σ ∈ T r(N,µ) then testing stops
if the global trace σ occurs when testing N with µ.

Observe, however, that even if σ ∈ T r(N,µ), µp may be defined on a local trace
σ′ such that πp(σ) is a (proper) prefix of σ′.

Now consider the problem of reaching the state s in the fragment of the FSM
shown in Figure 4.1. We could choose the following local strategies µ1 and µ2 for the
testers at ports 1 and 2 respectively:

1. Under µ1 initially the input x1 is applied. If y′1 is observed then the next
input is x′

1 and if y1 is observed then the next input is x1. Thus, µ1 maps ǫ
to x1, x1y

′
1 to x′

1, and x1y1 to x1.
2. Under µ1 initially the input x2 is applied. Thus, µ2 maps ǫ to x2.

Thus, the global strategy (µ1, µ2) leads to the FSM moving to state s.
We now formally define what it means for a global strategy to reach a state and

then for it to distinguish two states.
Definition 4.4. Global strategy µ reaches the state s of M if for all σ ∈ T r(M,µ)

we have that every walk of M from state s0 with label σ has ending state s.
Definition 4.5. A global strategy µ distinguishes states s and s′ of FSM M if

for all σ ∈ T r(M,µ, s) and σ′ ∈ T r(M,µ, s′) we have that σ 6∼ σ′. Similarly, global
strategy µ distinguishes FSMs M1 and M2 if for all σ ∈ T r(M1, µ) and σ′ ∈ T r(M2, µ)
we have that σ 6∼ σ′.

This says that when using global strategy µ, if σ is a possible global trace produced
from state s then it is distinguishable from every global trace that can be produced
from using µ in state s′.

5. Multiplayer team games with incomplete information. We are inter-
ested in problems in which we have a model of the expected behaviour of the SUT
and wish to devise strategies for local testers that interact with the SUT. We focus
on two objectives: reaching states and distinguishing states. These problems can be
seen in terms of games in which one player is the SUT and the other players are the
testers. We therefore have two teams: the player representing the SUT forms one
team and the other players (testers) are in the other team. The team that contains
the testers wins if the objective is achieved and otherwise the other team, formed by
the SUT, wins.

Alur et al. [3] express the problems of reaching and distinguishing states of a
single-port non-deterministic FSM in terms of two player games. They then use
the result that the problem of deciding whether there is a winning strategy for a
two player game with incomplete information is EXPTIME-complete [33]. In two
player games we can have the players take turns to make moves and this has led to
the notion of alternation and corresponding computational models (see, for example,
[7, 28, 29, 30]). The game ends if, after a sequence of moves, one player has achieved
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a winning position. It is also normal for one player to be designated the ∀ player
and the other player to be the ∃ player. The basic idea is that we are interested in
whether the ∃ player has a winning strategy: one under which it is guaranteed to win
irrespective of the moves of the ∀ player. Thus, at each point in the game, if it is
the turn of the ∃ player then we consider one move (the one it chooses) while if it is
the turn of the ∀ player then we need to consider all allowed moves. Such games are
called ∃∀ games and they nicely fit the situation in which we are, for example, trying
to force a single-port SUT into a particular state since the SUT is the ∀ player and
the tester is the ∃ player.

As noted above, in contrast to single-port FSMs, the problems of reaching and
distinguishing states of an FSM that has multiple ports are similar to multiplayer
games. In this section we describe multiplayer team games and the result that we will
use. In a multiplayer team game there are two teams, which we call Black and White
in order to be consistent with [10]. A team wins if one of its players wins and a team
loses if one of the players from the other team wins.

Much of the work in game theory uses an approach in which moves synchronise:
the players make moves simultaneously. However, in our context a tester applies
an input and the SUT responds by (possibly) changing state and can also produce
output. Thus, it is more natural to consider games in which turns alternate in some
manner. In two player games it is natural to require the players to take turns but it
is less obvious how the next player should be determined in multiplayer games. One
possibility is to include a turn variable in a game, the value of this variable identifying
the player whose turn it now is [28, 29, 30]. An alternative described by Demaine
and Hearn [10] is to order the players and require that the turns cycle through the
players: if there are i players then we start with player 1, then player 2 etc. and once
player i has made a move we repeat this process/order. Since we use a result due to
Demaine and Hearn [10] we also require that moves cycle in this manner. We could
also consider games in which the next player to move is chosen randomly. However,
we would require a little more structure since the tester to next apply an input might
be chosen randomly but the SUT should have the next move.

Given a multiplayer game, there is the problem of deciding whether a partic-
ular team has a winning strategy: one that is guaranteed to lead to it reaching
a winning state. It has been stated that for a particular multiplayer game, called
TEAM-PRIVATE-PEEK, this problem is undecidable [30]. More recently, however,
Demaine and Hearn argue that TEAM-PRIVATE-PEEK is decidable but that the
general problem of deciding whether a team has a winning strategy is undecidable
[10]. They achieve this by adapting the approach of [30] and using a type of game
that they call Constraint Logic, which we now describe.

The games described by Demaine and Hearn [10] use what they call constraint
graphs. A constraint graph is based on a graph G = (V,E) in which V is a finite
set of vertices and E is a finite set of (undirected) edges. Each vertex and edge
is given a weight 1 (red) or 2 (blue). At any point in the game every edge has a
current direction and the inflow of a vertex is the sum of the weights of the edges
directed to that vertex. A configuration defines a direction for each edge and is a
legal configuration if for every vertex v the inflow of v is at least the weight of v. An
AND/OR constraint graph is a constraint graph in which every vertex has one of the
following forms

1. It is an AND vertex: it has minimum inflow 2 and is incident with three edges
with weights 1, 1, 2.
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2. It is an OR vertex: it has minimum inflow 2 and is incident with three edges
all with weight 2.

It is argued that AND vertices and OR vertices are similar to AND gates and
OR gates [10] but this is not important here. For us, what is important is that an
AND/OR constraint graph has a finite set of legal configurations. In addition, the
following problem has been defined [10].

Definition 5.1 (Team Private Constraint Logic (TPCL)). Let us suppose that
G = (V,E) denotes an AND/OR constraint graph, N and k are integers, we have a
partition of 1, . . . , N into nonempty sets W and B and for all 1 ≤ i ≤ N we have
sets Ei ⊂ E′

i ⊂ E and edge ei. The TPCL problem is: Does White have a winning
strategy for the following game?

Players 1, . . . , N take turns in the given order. For 1 ≤ i ≤ N , player i only sees
the direction of edges in E′

i and can change the direction of at most k edges from Ei.
A move by i must be known to be legal based on the knowledge of the directions of the
edges in E′

i. Player i wins if it reverses the direction of edge ei and White wins if a
player from W wins.

The following results is proved in [10] (Theorem 9).
Theorem 5.2. It is undecidable whether White has a winning strategy for TPCL

even with N = 3 players.
The proof of this result is based on a result that shows that if a particular type

of 3 player game is decidable then it is also decidable whether a Turing machine MT

terminates in an accepting state when starting with the empty tape. In the game,
each White player Wi (i ∈ {1, 2}) is required to provide two sequences Ui and Vi

of configurations2 of MT and does so one value at a time, with the subsequences
representing the configurations being separated by a special symbol #. W wins if a
sequence of configurations provided reaches a terminating configuration in which MT

is in an accepting state and B fails to demonstrate one of the following: one of the
four sequences of configurations provided is not a legal computation of MT starting
with an empty tape or U1 6= U2 or V1 6= V2. At each point in the game, B chooses
whether the next value provided by W1 is from U1 or V1 and also whether the next
value provided by W2 is from U2 or V2. Player B can nondeterministically choose
to check any one of the conditions under which it wins. For example, it can check
that parts of U1 and U2 are consistent or that parts of V1 and V2 are consistent by
simply receiving these parts in the same turn and comparing them. It can also, for
example, let U2 run one configuration ahead of U1 and check that the configuration
in U2 is consistent with having taken one move of MT from the configuration of U1.
Importantly, each check can be made in constant space and in order for W to have a
winning strategy, under that strategy it cannot fail any of these checks since it does
not know which are being applied. As a result, W has a winning strategy for this
game if and only if it is possible to provide sequences U and V of computations of
MT in which MT starts with an empty tape and terminates in an accepting state.
Thus, W has a winning strategy if and only if MT terminates in an accepting state
when starting with the empty tape.

We use the following special case.
Definition 5.3 (3 Player Team Private Constraint Logic (3TPCL)). Let us

suppose that G = (V,E) denotes an AND/OR constraint graph, k is an integer, we
have sets W = {W1,W2} and B = {B3} in which Wi is player i (i ∈ {1, 2}) and B3

2A configuration is a sequence of values representing the current state of MT and the non-empty
part of the tape of MT .
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is player 3 and for all 1 ≤ i ≤ 3 we have sets Ei ⊂ E′
i ⊂ E and edge ei. The 3TPCL

problem is: Does White have a winning strategy for the following game?
Players 1, 2, and 3 take turns in the given order. For 1 ≤ i ≤ 3, player i only

sees the direction of edges in E′
i and can change the direction of at most k edges from

Ei. A move by i must be known to be legal based on the knowledge of the directions of
the edges in E′

i. Player i wins if it reverses the direction of edge ei and White wins if
a player from W wins.

We will show that if the 3TPCL problem can be solved then the TPCL problem
can also be solved.

Theorem 5.4. It is undecidable whether White has a winning strategy for
3TPCL.

Proof. Proof by contradiction: assume that it is decidable whether White has a
winning strategy for 3TPCL. We now prove that this must mean that it is decidable
whether White has a winning strategy for TPCL with three players.

Assume we have an instance of the TPCL problem with three players defined
by: AND/OR constraint graph G = (V,E), integer k, a partition of {1, 2, 3} into
nonempty sets W and B, and for all 1 ≤ i ≤ 3 sets Ei ⊂ E′

i ⊂ E and edge ei. As has
been noted elsewhere [28, 29, 30], problems in which White has only one player can
be represented as two player problems, for which the outcome problem is decidable,
and so we can assume that White has two players and Black has one player.

We have three cases.
1. Players 1 and 2 are in W and so this is an instance of the 3TPCL and so we

can decide whether White has a winning strategy.
2. Player 1 is in B. For each allowed move of player 1, we obtain an instance of

the 3TPCL and White has a winning strategy if and only if it has a winning
strategy for all of these instances of the 3TPCL. Thus, since it is decidable
whether White has a winning strategy for 3TPCL and player 1 has a finite
set of moves, we can decide whether White has a winning strategy for this
game.

3. Player 2 is in B. For each allowed move of player 1 we obtain an instance of
the TPCL in which Black moves first. White has a winning strategy if and
only if it has a winning strategy for one of these instances of the TPCL and
we have already seen that we can decide this. Thus, since player 1 has a finite
set of moves, it is decidable whether White has a winning strategy.

In each case, it is decidable whether White has a winning strategy but this con-
tradicts Theorem 5.2.

6. Nondeterministic FSMs. Alur et al. [3] showed that the problem of de-
ciding whether there is a strategy that reaches a given state of a nondeterministic
single-port FSM is EXPTIME-complete. They achieve this by showing that the out-
come problem for a ∃∀ game can be converted into a problem of finding a strategy
to reach a state of a nondeterministic single-port FSM. Instead, we show that we
can represent an instance of the 3TPCL problem in terms of reaching a state of a
multi-port FSM.

Theorem 6.1. The following problem is undecidable: Given a multi-port FSM
M and a state sr of M , is there a global strategy that reaches sr.

Proof. We assume that an instance of the 3TPCL has been given and show that
if we can decide reachability for multi-port FSMs then we can also solve this instance
of the 3TPCL.

We will define a multi-port FSM M with m = 2 ports. Each state of M will be a
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legal configuration of the 3TPCL combined with a value for a variable t whose value
can be 1 or 2. Here the value 1 for t will denote the situation in which W1 is allowed
to move and port 1 can apply the next input, while 2 will denote the situation in
which W2 is allowed to move and port 2 can supply the next input. We will have two
additional states: sr is the state that will represent W winning while se will denote
an ‘error state’ from which we cannot reach sr. In states sr and se, the response of M
to input is to stay in the same state and produce no output. For W1 and W2, we will
construct M so that if input is received at port i ∈ {1, 2} when t 6= i then W cannot
win (sr cannot be reached) and this is achieved by moving to state se. Thus, in order
to reach sr a tester corresponding to W1 or W2 can only apply input when it is the
turn of the corresponding player. Since the 3TPCL has a finite set of configurations,
M has a finite set of states.

We now define the response of M to inputs when not in states sr or se. If input
is received at port 1 when t is not 1 or input is received at port 2 when t is not 2 then
M moves to state se, producing no output. From here we cannot reach sr and so if
we wish to reach sr we must avoid such situations.

Each potential move for Wi (i ∈ {1, 2}) is represented by an input at i. There
are a finite number of possible moves and so the input sets are finite. If t = i and an
input is received at i then there are four possibilities:

1. The input represents an allowed winning move for player i in the current state
of the game, as represented by the state of M . Then M changes its state to
sr and sends unique output win to ports 1 and 2 to indicate that W has won.

2. The input represents an illegal move for player i in the current configuration
of the game, as represented by the state of M . Then M moves to state se
and produces no output.

3. The input represents a legal non-winning move for player 1 in the current
configuration of the game (so t = 1). Then M changes its state to represent
the configuration of the game after the move and the value of t is increased
to 2. M sends the following output to each port/player j, j ∈ {1, 2}: the
current state of the part of the constraint graph that corresponds to the set
E′

j visible to Wj and the new value of t.
4. The input represents a legal non-winning move for player 2 in the current con-

figuration of the game (so t = 2). If B3 has a winning move after this then M
moves to state se and produces no output. OtherwiseM non-deterministically
changes its state to represent the configuration of the game after a sequence
of two moves: the move represented by the input followed by a legal move
for B3. In addition, the value of t is changed to 1. M sends the following
output to each port/player j, j ∈ {1, 2}: the current state of the part of the
constraint graph that corresponds to the set E′

j visible to Wj and the new
value of t.

These transitions allow us to model the moves of all of the players: input at 1
models a move of W1 and input at 2 models a move of W2 and, if this is not winning,
a following move by B3.

The above rules define an FSM M . Now observe that a sequence of inputs takes
M to state sr if and only if the corresponding sequence of moves leads to W winning.
Thus, there is a strategy that takes M to state sr if and only if W has a winning
strategy for this game and this can be done for any instance of the 3TPCL. The result
thus follows from Theorem 5.4.

We now prove that if we can decide whether there are strategies to distinguish
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states then we can also decide whether there are strategies to reach states and thus
the second problem, of distinguishing states, is also undecidable.

Theorem 6.2. The following problems are undecidable:
1. Given FSMs M ′ and M ′′, is there a global strategy that distinguishes between

M ′ and M ′′.
2. Given an FSM M and two states s1 and s2 of M , is there a global strategy

that distinguishes between s1 and s2.

Proof. We prove the first result by reducing the problem of reaching states to
this, using Theorem 6.1 that tells us that it is undecidable whether there is a strategy
to reach a given state of an FSM. Let us suppose that we have a state sr of FSM M
with m ports and state set S = {s1, . . . , sn} and initial state s0 ∈ S. Then for each
port p ∈ P we introduce a new input x′

p 6∈ Xp and a new output y′p 6∈ (Yp ∪ {−}) and
define FSMs M ′ and M ′′:

1. M ′ is identical to M except that for every state s of M and port p ∈ P we
add a transition from s to s with input x′

p at p and no output.
2. M ′′ is formed from two copies M1 and M2 of M ′. We let S = {s1, . . . , sn}

be the set of states of M1 and S′ = {s′1, . . . , s
′
n} be the set of states of M2.

M2 is isomorphic to M ′ and thus a state s′i of M2 cannot be distinguished
from the corresponding state si of M

′. M1 is identical to M ′ except for the
transitions with input x′

1, . . . , x
′
m: if M ′′ receives x′

p at p when in state sr
then it produces output (y′1, . . . , y

′
m) and from every other state si 6= sr of

M1 the transition with input xp takes M ′′ to state s′i of M2 and produces no
output. The initial state of M ′′ is s0.

A strategy can only distinguish between M ′ and M ′′ if it leads to the input of
some x′

p when M ′′ must be in state sr since: M ′ and M ′′ produce identical behaviour
unless an x′

p is input and if an x′
p is input when M ′′ is in a state other than sr

then M ′ and M ′′ produce identical behaviour in response to x′
p and then are in

equivalent states and so cannot be distinguished. Thus, if µ = (µ1, . . . , µm) is a
global strategy that distinguishes M ′ and M ′′ then we can produce a global strategy
µ′ = (µ′

1, . . . , µ
′
m) from µ by: µ′

p is µp restricted to sequences from (Xp∪Yp)
∗. Since µ

distinguishes between the initial states ofM ′ and M ′′, the application of µ′ toM must
be guaranteed to lead to M being in state sr and so µ′ must reach sr in M . Thus,
the problem of deciding whether there is a strategy that reaches a given state sr can
be reduced to the problem of deciding whether there is a strategy that distinguishes
two states and so the result follows.

The second result follows from the observation that the problem of distinguishing
between two FSMs can be expressed as a problem of distinguishing between the initial
states of these FSMs.

Note that in the FSM constructed in the proof of Theorem 6.1, in any strategy
that reaches state sr we have that each port receives output in response to each input
provided. Thus, there are no controllability problems. As a result, in contrast to the
situation with DFSMs, we know that it is generally undecidable whether there is a
strategy to reach a state of an FSM or to distinguish two states of an FSM even if we
restrict testing to strategies that have no controllability problems.

7. Deterministic FSMs. In this section we investigate the problems of reaching
and distinguishing states of a DFSM. Initially it might appear that results regarding
multiplayer games cannot be applied since they require us to consider all possible
moves for the players in B and in order to represent this it seems that we need the FSM
to be nondeterministic. However, we have seen that when there are controllability
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problems the combination of testers with a DFSM can be nondeterministic and we
will use this to simulate non-determinism and thus the possible moves for players in
B.

We now investigate the problem of deciding whether a global strategy exists to
reach a given state s of M .

Theorem 7.1. The following problem is undecidable: Given a multi-port DFSM
M and a state sr of M , is there a global strategy that reaches sr.

Proof. We assume that an instance of the 3TPCL has been given and show that
if we can decide reachability for multi-port FSMs then we can also solve this instance
of the 3TPCL.

We will define a multi-port FSM M with m ≥ 2 ports. Each state of M will
represent a legal configuration of the 3TPCL combined with a value for a variable t
whose value can be 1, 2, or 3. Here the value 1 will denote the situation in which
W1 is allowed to move and port 1 can apply the next input, while 2 will denote the
situation in which W2 is allowed to move and port 2 can supply the next input. If t
has the value 3 then we will be simulating a move of B3. We will have two additional
states: sr is the state that will represent W winning while se will denote an ‘error
state’ from which we cannot reach sr. In states sr and se, the response of M to input
is to stay in the same state and produce no output. For W1 and W2, we will construct
M so that if input is received at port i ∈ {1, 2} when t 6= i then W cannot win (sr
cannot be reached) and this is achieved by moving to state se. Thus, in order to reach
sr the testers corresponding to W1 and W2 can only apply input when it is the turn
of the corresponding player.

We now define the response of M to inputs when not in states sr or se. If input
is received at port 1 when t is not 1 or input is received at port 2 when t is not 2 then
M moves to state se, producing no output.

Each potential move for Wi (i ∈ {1, 2}) is represented by an input at i. If t = i
with i ∈ {1, 2} and an input is received at i then there are three possibilities:

1. The input represents an allowed winning move for player i in the configuration
of the game, as represented by the state of M . Then M changes its state to
sr and sends unique output win to every port to indicate that W has won.

2. The input represents a legal non-winning move for player i in the current
configuration of the game, as represented by the state of M . If t = 2 and in
the resultant configuration B3 has a winning move then M moves to state
se and produces no output. Otherwise, M changes its state to represent the
configuration of the game after the move and the value of t is increased by 1.
M sends the following output to each port/player j, j ∈ {1, 2}: the current
part of the constraint graph that corresponds to the set E′

j that is visible to
Wj and the new value of t. If the new value of t is 3 then M also sends the
value 3 to the ports 3, . . . ,m.

3. The input represents an illegal move for player i in the current configuration
of the game, as represented by the state of M . Then M moves to state se
and produces no output.

These transitions allow us to model the moves of W1 and W2 and for the ports 1
and 2, at which these moves are input, to know when to make moves. It remains to
represent the moves of player B3. We cannot simply include these moves within the
move of W2 since there may be many possible moves for B3 but M is deterministic.
Instead, when t = 3 we require input of a (fixed) value at each one of the ports
3, . . . ,m. In a given state, we map each order in which inputs can be received from
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the ports, which represents a permutation of the values 3, . . . ,m, to an allowed move
of B3 in the current configuration and we ensure that all allowed moves of B3 are
included. We can represent all allowed moves of B3 in this way, by including a walk
of M for each order, as long as we choose a sufficiently large (but finite) value of m.
Specifically, it is sufficient to choose a value of m such that (m − 2)! is at least the
number of configurations of the game. Once M has received all of these inputs, one
from each port 3, . . . ,m, it changes the state to the one that corresponds to the new
game configuration and sets t = 1. Again, M also sends the following output to port
j, j ∈ {1, 2}: the current state of the part of the constraint graph that corresponds
to E′

j and the new value of t (which is 1). The last transition, of a walk representing
a move of B3, is responsible for changing the value of t and sending the output. If
M receives more than one input at a port in 3, . . . ,m before receiving one from each
port or it receives input from one of these ports when t 6= 3 then it moves to the state
se. Thus, in order to change the state of M when t = 3 it is necessary for each port
3, . . . ,m of M to receive exactly one input and the order in which these inputs are
received defines the (allowed) move of B3, which is then simulated by M .

The above rules define an FSM M . Now observe that a sequence of inputs takes
M to state sr if and only if the corresponding sequence of moves, with the inputs at
ports 3, . . . ,m removed, leads to W winning. Thus, there is a strategy that takes M
to state sr if and only if W has a winning strategy for this game and this can be done
for any instance of the 3TPCL. The result thus follows from Theorem 5.4.

The proof of the following is the same as that of Theorem 6.2 except that is builds
on Theorem 7.1 rather than Theorem 6.1.

Theorem 7.2. The following problems are undecidable:

1. Given DFSMs M ′ and M ′′, is there a global strategy that distinguishes between
M ′ and M ′′.

2. Given DFSM M and two states s1 and s2 of M , is there a global strategy that
distinguishes between s1 and s2.

8. Conclusions. Some systems have physically distributed interfaces, called
ports, at which they interact with their environment. In testing we place a tester
at each port and a tester at a port p observes only the events that occur at p. It is
known that this can introduce controllability and observability problems into testing
and there is the challenge of producing general test generation methods for testing
from multi-port finite state machines (FSMs).

Techniques for testing from a single-port FSM typically use sequences that reach
and distinguish the states of the FSM and such sequences can be produced in low-
order polynomial time. This suggests that if we wish to develop methods for testing
from an FSM M that has multiple ports then we might use sequences that achieve this
for M . In this paper we have shown that in order to reach and distinguish states of a
multi-port FSM M we may need to apply an (adaptive) strategy, rather than a preset
test sequence, at each port and have considered the problem of deciding whether such
strategies exist.

The main results of the paper are that the problems of deciding whether there is
an adaptive strategy that reaches a given state or that distinguishes two particular
states are undecidable. This is true for both nondeterministic and deterministic FSMs.
These results have important practical ramifications. First, if we produce a test
generation method that requires strategies to reach and distinguish states of a multi-
port FSM then we know that it cannot be a general test generation method. In
addition, the problem of distinguishing two multi-port FSMs in testing corresponds
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to distinguishing their initial states. As a result, it is undecidable whether two FSMs
can be distinguished and this shows that we cannot expect to be able to find general
test generation methods that produce test sequences that distinguish between a multi-
port FSM M and a finite set of faulty machines. This contrasts with the situation
for single-port FSMs, where it is possible to produce test sequences that distinguish
between a single-port FSM specification M and a faulty FSM M ′ and so, given such a
single-port FSM M and integer r, it is possible to produce a set of test sequences that
distinguish between M and all faulty FSMs with at most r states (see, for example,
[9, 14, 17, 19, 22, 32, 31]). Such sets are said to be r-complete and the results in this
paper suggest that we cannot expect to be able to produce general algorithms that
take a multi-port FSM M and return an r-complete set of test sequences. However, we
have also proved that the problems of reaching and distinguishing states can be solved
in low order polynomial time when testing from a deterministic FSM and restricting
attention to test sequences that cause no controllability problems. It may therefore
be possible to develop test generation algorithms that return r-complete sets of test
sequences.

There are several possible directions for future work. First, there may be signif-
icant classes of systems for which the problems of reaching and distinguishing states
can be solved and it would be useful to identify such classes and develop correspond-
ing algorithms. In addition, there is the challenge of devising test generation tech-
niques for multi-port FSMs that do not depend on strategies to reach and distinguish
states. There has been recent work that considers models in which a transition can
be triggered by multiple inputs [16]. Naturally, since this is a richer formalism than
multi-port FSMs, the negative decidability results developed in this paper also hold
for the richer class of models. However, there would be value in investigating the
problem of generating tests for such models since it is likely to be quite different from
that of generating tests for multi-port FSMs.
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