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Abstract— We propose a method for portfolio selection with
trading strategies constrained to having a finite variation. A
linear combination of logarithms of each asset holdings values
are used as a criterion, which also includes a penalty on the
logarithmic rates of change of trading strategies. A simulation
example shows a significant reduction in transaction cost as
compared to a log-optimal portfolio.

Index Terms— Finite variation, log-optimal portfolio, no
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I. INTRODUCTION

One of the main aims in portfolio selection is optimal
wealth growth. When investor is constrained to constant frac-
tions of wealth allocated across the assets, then maximizing
the log-mean of portfolio wealth is the best criterion to use
for the long term investment. Such a portfolio is said to
be log − optimal . These portfolios were introduced in [5]
and [7] for the case of discrete-time static portfolios and
more fully developed in [1]. A similar optimization problem
in a market with transaction cost is given in [2]. Log-
optimal portfolios in continuous-time dynamic case (which
also lead to constant fractions of wealth), with constraints
and transaction cost can be found in textbooks such as [6].
Having constant fractions of wealth allocated across the
assets means the trading strategies will be of infinite vari-
ation. This may lead to a large transaction cost. Hence,
in this paper we constrain the trading strategies to have
a finite variation. This leads to a difference in wealth in
comparison with the log-optimal portfolio. By minimizing
such a difference, and including a penalty on the rates of
change of trading strategies, we obtain explicit formulae for
the number of shares to be held at each discrete time instant.
We do this under the no short-selling constraint and a market
with no transaction cost. Thus, this can be seen as an implicit
approach to reducing the transaction cost.
The rest of the paper is organized as follows. In sec.II an
introduction to the log-optimal portfolio problem and its
solution is given. The finite variation constraint is introduced
in sec.III, where a criterion that minimizes an upper bound
of the error between such a constrained portfolio and the
log-optimal one is also proposed. Formulation of the control
problem to be solved, and its explicit solution are given in
sec.IV. Bounds on the trading strategies are found and used
in solving the problem of restricting the number of shares
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per asset in sec.V. A significant reduction in transaction cost
as compared to log-optimal portfolio, is illustrated with a
simulation example in sec.VI.

II. LOG-OPTIMAL PORTFOLIO IN CONTINUOUS AND

DISCRETE TIME

We study a market consisting of a single risk-free asset and
n risky assets, the prices of which are given in the following
standard form

dS0(t) = rS0(t)dt (1)

dSi(t) = Si(t)

⎡
⎣µidt +

n∑
j=1

σijdWj(t)

⎤
⎦ (2)

and Si(0) > 0, i = 0, 1, ..., n. The interest rate r, the drift µi

and volatility σij , are all assumed to be positive constants.
The noise terms dWj(t) are differentials of independent
standard Brownian motions. Volatility matrix σ, given by

σ = {σij}n
i,j=1,

is assumed to be nonsingular. The trading strategy is defined
as an adapted real-valued process [v0(t), . . . , vn(t)]′, where
vi(t) represents the number of shares per asset. Portfolio
value, i.e. the total wealth, at time t is given by:

y(t) =
n∑

i=0

vi(t)Si(t) =
n∑

i=0

yi(t). (3)

Here yi(t), i = 0, 1, ..., n, denotes the value of the holdings
per asset. These can also be expressed in terms of the
fractions αi(t) of y(t) allocated to asset i, as follows:

yi(t) = vi(t)Si(t) = αi(t)y(t), i = 0, 1, ..., n, (4)
n∑

i=0

αi(t) = 1 (5)

A portfolio is self-financing if the change in its value occurs
only due to price changes, and is described by

dy(t) =
n∑

i=0

vi(t)dSi(t) (6)
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Substituting (1) and (2) in (6) and making use of the relations
(4) and (5), one obtains:

dy(t) = y(t)

⎡
⎣α0rdt+

n∑
i=1

αi

⎛
⎝µidt+

n∑
j=1

σijdWj

⎞
⎠

⎤
⎦

=y(t)

⎡
⎣rdt+

n∑
i=1

αi(µi−r)dt+
n∑

j=1

(
n∑

i=1

αiσij

)
dWj

⎤
⎦ (7)

The portfolio value (7) is a controlled stochastic process with
fractions of wealth αi(t), i = 1, ..., n as control variables.
Assuming these to be constant over time, the optimal growth
of y(t) on the long run is achieved by maximizing its log-
mean at some instant of time t. Following the presentation
in [8], we first derive the dynamics of ln[y(t)] from (7) using
Ito’s lemma as

d ln y(t)=

⎡
⎣r+

n∑
i=1

αi(µi − r)− 1
2

n∑
j=1

(
n∑

i=1

αiσij

)2
⎤
⎦dt

+
n∑

i=1

αi

n∑
j=1

σijdWj (8)

The log-optimal portfolio problem is that of selecting αi,
i = 1, 2, ..., n, such that

max E

[
ln

y(t)
y(0)

]
(9)

is achieved for some t (or equivalently, for every t > 0),
subject to (8). After integrating (8) and taking the expectation
of the result, one obtains

E

[
ln

y(t)
y(0)

]
=

⎡
⎣r+

n∑
i=1

αi(µi − r)− 1
2

n∑
j=1

(
n∑

i=1

αiσij

)2
⎤
⎦t

(10)
This shows that log-optimal fractions αi, i = 1, 2, ..., n, solve
the following problem:

max

⎡
⎣r+

n∑
i=1

αi(µi − r)− 1
2

n∑
j=1

(
n∑

i=1

αiσij

)2
⎤
⎦ (11)

Forward difference with a sampling time T , gives the
discrete form of (8) as

∆ln y(k) =

⎡
⎣r+

n∑
i=1

αi(µi − r)− 1
2

n∑
j=1

(
n∑

i=1

αiσij

)2
⎤
⎦ T

+
n∑

i=1

αi

n∑
j=1

σij

√
Tej(k) (12)

where ej(k), j = 1, 2, ..., n, are gaussian i.i.d. random
variables with zero mean and variance one. It is clear from
(12) that the values of αi, i = 1, 2, ..., n, such that

maxE [∆ln y(k)], (13)

or equivalently,

max E [ln y(k + 1)], (14)

is achieved for every k, are the log-optimal ones. This means
that optimization problems (9), (13), and (14), all lead to
solving (11).

III. DYNAMICS OF ASSET HOLDINGS UNDER THE FINITE

VARIATION CONSTRAINTS

Let us introduce the no short-selling constraint as

Assumption(A1). Borrowing and short-selling of
assets is not allowed: αi(t), vi(t) ≥ 0, i = 0, 1, ..., n.

The solution of (11) under the no short-selling constraints,
will be denoted by α∗

i , i = 0, 1, ..., n, and the corresponding
logarithm of wealth as ln [y∗(k)]. One can easily show that
for such constant fractions of wealth, the trading strategies
vi(t) have an infinite variation. This may contribute
significantly to the transaction cost. Hence, in this section
we will constrain the trading strategies to have a finite
variation and be differentiable. This is a subset of a
more general class of trading strategies of finite variation
introduced in [3], [4].

Assumption(A2). Trading strategies have a finite
logarithmic variation:

d ln[vi(t)] = ui(t)dt, i = 0, 1, 2, ..., n, (15)

where u(·) is a continuous, adapted process.

In this case, the dynamics of fractions of wealth can
be expressed as1

d ln[αi(t)] = ui(t) + d ln[Si(t)] − d ln[y(t)]. (16)

Using Ito’s lemma, the dynamics of ln[Si(t)] is obtained
from (2) as

d ln[Si(t)] = µidt − 1
2

n∑
j=1

σ2
ijdt +

n∑
j=1

σijdWj(t). (17)

This means that (16) will always have noise terms, and the
assumption of constant fractions of wealth can no longer be
made. This also means there is no guarantee that the log-
optimal performance E[ln y∗(k + 1)] can be reached. Thus,
the aim will be to minimize the following error

e(k + 1) = ln y∗(k + 1) − ln y(k + 1) (18)

where ln y(k + 1) corresponds to a portfolio with finite
varying trading strategies. An upper bound on e(k + 1)
can be found using Jensen’s inequality [10], as follows.
Let γi(k + 1), i = 0, 1, ..., n, be variables such that 0 ≤
γi(k + 1) ≤ 1, and

n∑
i=0

γi(k + 1) = 1.

1See the proof of Lemma 2 for a similar derivation.
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Then the following holds for each k

ln[y(k + 1)] ≥
n∑

i=0

γi(k + 1) ln[yi(k + 1)].

An upper bound on the error eu(k + 1) ≥ e(k + 1) can thus
be expressed as

eu(k +1) = ln y∗(k + 1)−
n∑

i=0

γi(k +1) ln[yi(k +1)] (19)

The objective is to make this upper bound as close to zero as
possible. One way of achieving it is to constrain the variance
to be zero and minimize the mean (other approaches are also
possible). Due to log-optimality of ln [y∗(k + 1)] we have
that

E [ln y∗(k + 1)] ≥ E

[
n∑

i=0

γi(k + 1) ln yi(k + 1)

]
, (20)

and thus E[eu(k + 1)] is minimized if

max E

[
n∑

i=0

γi(k + 1) ln yi(k + 1)

]
(21)

is achieved for each k. In order to find V ar[eu(k + 1)],
we need the dynamics of logarithmic asset holdings values
ln [yi(k + 1)] under the finite variation constraints. These are
derived in continuous time setting below.

Lemma 1: Portfolio is self-financing under assumptions
(A1) and (A2) if

n∑
i=0

yi(t)ui(t)dt = 0. (22)

Proof : Applying Ito’s lemma to (3) under assumption (A2)
one obtains

dy(t) =
n∑

i=0

vi(t)dSi(t) +
n∑

i=0

Si(t)dvi(t) (23)

Substituting the self-financing equation (6), we have
n∑

i=0

Sidvi =
n∑

i=0

Si(t)vi(t)
dvi(t)
vi(t)

=
n∑

i=0

yi(t)d ln[vi(t)] = 0

(24)

Lemma 2: Let xi(t) = ln[yi(t)], i = 0, 1, 2..., n. Then, in
a self-financing portfolio, under the assumptions (A1) and
(A2), the following holds

dx0(t) = −
n∑

i=1

exi(t)−x0(t)ui(t)dt + rdt (25)

dxi(t) = ui(t)dt + µidt − 1
2

n∑
j=1

σ2
ijdt +

n∑
j=1

σijdWj(t)

(26)
Proof : First consider the case when i = 1, 2, ..., n. Taking
the logarithm of (4), which is allowed due to assumption
(A1), we obtain

ln[yi(t)] = ln[vi(t)] + ln[Si(t)]. (27)

The differential of (27) is

d ln[yi(t)] = d ln[vi(t)] + d ln[Si(t)], (28)

which after substituting (15) and (17) gives equations (26).
Similarly, we obtain the dynamics of ln[y0(t)] as

d ln[y0(t)] = d ln[v0(t)] + d ln[S0(t)] (29)

= −
n∑

i=1

eln[yi(t)]−ln[y0(t)]ui(t)dt + rdt, (30)

where we have used the self-financing condition (22) in the
form

d ln[v0(t)] = −
n∑

i=1

eln[yi(t)]−ln[y0(t)]ui(t)dt. (31)

Remark 1: Note that there are no explicit constraints on
the state variables xi(t), i = 0, 1, ..., n, or on the control
variables ui(t), i = 1, 2, ..., n, of equations (25) and(26).
Using the forward difference approximation with a sampling
time T , we obtain the discrete form of (25) and (26) as

∆x0(k) = −
n∑

i=1

exi(k)−x0(k)ui(k)T + rT (32)

∆xi(k) = ui(k)T +µiT− 1
2

n∑
j=1

σ2
ijT +

n∑
j=1

σij
√

Tej(k)

(33)

Theorem 1: For k = 0, 1, ..., the variance of eu(k + 1) is
zero, iff we select

γi(k + 1) = α∗
i (34)

for each i = 0, 1, ..., n, where α∗
i solve (11) under the no

short-selling constraints.
Proof : Substituting the log-optimal logarithm of wealth
ln [y∗(k + 1)] from (12) in (19), together with x0(k+1) and
xi(k + 1), i = 1, 2, ..., n, from (32) and (33), respectively,
we obtain

V ar[eu(k+1)] =
n∑

j=1

[
n∑

i=1

(α∗
i − γi(k + 1)) σij

]2

T. (35)

It is clear that a sufficient condition for (35) to be equal to
zero, is for (34) to hold. The necessary conditions for (35)
to be zero are

n∑
i=1

(α∗
i − γi(k + 1)) σij = 0

for every j = 1, 2, ..., n. This system of equations can also
be written as

σ′D = 0 (36)

where D = [α∗
1 −γ1(k +1), . . . , α∗

n −γn(k +1)]′. Since the
volatility matrix σ is nonsingular, the system of equations
(36) has a unique solution given by D = 0, which gives
(34) for each k.
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Due to (20), the error bound eu(k +1) with γi(k +1) = α∗
i ,

is not zero in general, although its variance is. Combining
(34) and (21) we obtain the criterion than minimizes
eu(k + 1) as

max E

[
n∑

i=0

γ∗
i ln yi(k + 1)

]
= max E

[
n∑

i=0

γ∗
i xi(k + 1)

]
(37)

for each k = 0, 1, ..., where2 γ∗
i = α∗

i .

IV. MAIN RESULT

In order to give the investor the means for trade off
between lower transaction cost and higher profit, we extend
the criterion (37) to include a penalty on the logarithmic
rates of change of trading strategies ui(k), and the resulting
optimization problem can be stated as follows.

Portfolio control problem. Let bi(k), i = 1, 2, ..., n, be
some known positive variables, and the objective function
be defined as

V (k) = E

[
n∑

i=0

γ∗
i ∆xi(k) −

n∑
i=1

bi(k)u2
i (k)T

]
, (38)

where the states ∆xi(k) are given by (32) and (33). The
control problem is that of finding ui(k), i = 1, 2, ..., that
maximizes V (k), for every k = 0, 1, 2, ....

For simplicity, we use ∆xi(k) in (38) rather than xi(k + 1)
as in (37), which results in identical controls u∗

i (k). Also,
without loss of generality, we will deal with constant penalty
coefficients bi(k) = bi, where bi is some known positive
constant. Since the criterion (38) minimizes an upper bound
on the error between the log-optimal portfolio and the one
with finite variation constraints, we propose to call the
resulting portfolio pseudo−log−optimal . The controls are
now the logarithmic rates of change of trading strategies,
rather than the fractions of wealth allocated across the
assets.

Theorem 2: The solution to portfolio control problem
always exists, is unique, and for every k = 0, 1, 2, ..., is
given by

u∗
i (k) =

1
2bi

[
γ∗

i − γ∗
0exi(k)−x0(k)

]
, i = 1, 2, ..., n. (39)

Proof : The objective function (38) is

V (k) =

[
−

n∑
i=1

exi(k)−x0(k)ui(k)T + rT

]
γ∗
0

+
n∑

i=1

γ∗
i

⎡
⎣ui(k)T +µiT− 1

2

n∑
j=1

σ2
ijT

⎤
⎦−

n∑
i=1

biu
2
i (k)T (40)

Taking the partial derivatives with respect to ui(k), for
every i = 1, 2, ..., n, and equating to zero, we obtain

∂V (k)
∂ui(k)

= −exi(k)−x0(k)γ∗
0T + γ∗

i T − 2biui(k)T = 0 (41)

2We use this notation for clarity.

These equations always have a unique solution given by
(39). The elements of the Hessian H of V (k) are given by:

[H]ij =
{

0 : i �= j
−2biT : i = j

(42)

Since bi > 0, the Hessian is negative definite. Thus, (39) is
the maximum of V (k).

Remark 2: Optimal controls (39) contain the fractions of
wealth γ∗

i = α∗
i , i = 0, 1, 2, ..., n, from the log-optimal

portfolio. This means that one needs to solve (11) under
the no short-selling constraints before implementing (39).
The optimal trading strategies v∗i (k + 1), i = 0, 1, ..., n,, for
k = 0, 1, ..., n, are found by applying the forward difference
to (15) and (31), and using optimal controls u∗

i (k) from (39)
to obtain

v∗i (k + 1) = v∗i (k)eu∗
i (k)T , i = 1, 2, ..., n. (43)

v∗0(k + 1) = v∗0(k)eu∗
0(k)T , (44)

where

u∗
0(k) = −

n∑
i=1

exi(k)−x0(k)u∗
i (k)

Equations (43) and (44), do not give an answer on how
to make the initial optimal selection v∗i (0), i = 0, 1, ..., n,
which is understandable since the optimization has been
carried out with respect to logarithmic rates of change rather
than the quantities themselves. Thus, we make the initial
selection identical with the log-optimal portfolio, which gives
e(0) = ln y∗(0) − ln y(0) = 0. In this case we have

v∗
i (0) =

α∗
i y(0)
Si(0)

, i = 0, 1, ..., n. (45)

Remark 3: The controls in (39) will have the same form
for any value of T . In particular, as T approaches zero, the
control in (39) approaches a continuous function (with k
replaced by t). The optimal trading strategies are then derived
by solving equations in (15) with initial conditions given by
(45).

V. BOUNDS ON TRADING STRATEGIES AND THE

PROBLEM OF RESTRICTING THE NUMBER OF SHARES

From (39) is clear that the logarithmic variations are finite.
The following result gives bounds on those variations.

Lemma 3: Lower and upper bounds on the optimal
logarithmic changes ∆ln v∗i (k) = ln[v∗

i (k + 1)] − ln[v∗i (k)],
i = 0, 1, 2, ..., n, are

−T

2
max (γ∗

i )y(k)
min(bi)y0(k)

≤ ∆ln v∗0(k) ≤ Tγ∗
0

2min(bi)
y2(k)
y2
0(k)

(46)

−Tγ∗
0

2b1

yi(k)
y0(k)

≤ ∆ln v∗i (k) ≤ Tγ∗
i

2bi
(47)

where max(γ∗
i ) and min(bi) represent the maximal γ∗

i and
minimum bi for i = 1, 2, ..., n, respectively.
Proof : First we prove (46). The lower bound is found by
starting from the discrete form of (24) and making use of
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(39) as

0=
n∑

i=0

yi(k)∆ln v∗i (k)≤
n∑

i=1

yi(k)
Tγ∗

i

2bi
+y0(k)∆ln v∗0(k)

≤ T max(γ∗
i )

2min(bi)

n∑
i=1

yi(k) + y0(k)∆ln v∗
0(k)

=
T max(γ∗

i )
2min(bi)

[y(k) − y0(k)] + y0(k)∆ln v∗0(k).

∆ln v∗0(k)≥ T max(γ∗
i )

2min(bi)

[
1− y(k)

y0(k)

]
≥−T max(γ∗

i )y(k)
2min(bi)y0(k)

Similarly, we find the upper bound as

0=
n∑

i=0

yi(k)∆ln v∗i (k)≥
n∑

i=1

−Tγ∗
0y2

i (k)
2biy0(k)

+y0(k)∆ln v∗0(k)

≥ − Tγ∗
0

2min (bi)y0(k)

n∑
i=1

y2
i (k) + y0(k)∆ln v∗0(k)

∆ln v∗
0(k) ≤ Tγ∗

0

2min (bi)
y2(k)
y2
0(k)

Bounds in (47) follow directly from (43) and (39).

An important application of the upper bounds is when
we restrict the number of shares per asset, where for some
deterministic Mi(k), k = 1, 2, ..., it is required that

v∗
i (k) ≤ Mi(k) (48)

for every i = 0, 1, 2, ..., n. Considering the sampling time T
as fixed, the penalty coefficients bi, i = 1, 2, ..., n, can be
selected as follows, in order for (48) to hold. First note that
the upper bounds in (46) and (47) can be expressed as

v∗0(k + 1) ≤ v∗0(k) exp
[

Tγ∗
0y2(k)

2min (bi)y2
0(k)

]
(49)

v∗i (k + 1) ≤ v∗i (k) exp
(

Tγ∗
i

2bi

)
, i = 1, 2, ..., n. (50)

Comparing these with (48), one can see that sufficient
conditions for bi, i = 1, 2, ..., n (which in general can be
time varying), to satisfy for every k = 1, 2, ..., are

Tγ∗
0y2(k)

2min (bi)y2
0(k)

≤ ln
[
M0(k + 1)

v∗0(k)

]
(51)

Tγ∗
i

2bi
≤ ln

[
Mi(k + 1)

v∗
i (k)

]
(52)

For the special case of unrestricted number of shares for
the risk free asset (e.g. the bank account) and of constant
restriction on the remaining assets Mi(k) = Mi, i =
1, 2, ..., n, we have the following

Lemma 4: Let the initial selection be such that
v∗

i (0) < Mi for every i = 1, 2, ..., n. Then the upper

constraints

v∗i (k) ≤ Mi (53)

are satisfied for every k = 1, 2, ..., if

bi ≥ Tγ∗
i

2 ln
[

Mi

vi(0)

] (54)

Proof : Referring to (50), for k = 1, 2, ..., we have

v∗i (k) ≤ v∗
i (0) exp

(
kTγ∗

i

2bi

)
. (55)

A sufficient condition for (53) is

v∗
i (0) exp

(
kTγ∗

i

2bi

)
≤ Mi

exp
Tγ∗

i

2bi
≤

[
Mi

v∗i (0)

] 1
k

(56)

Due to assumption [Mi/vi(0)] > 1, the above inequality
yields

exp
Tγ∗

i

2bi
≤

[
Mi

v∗
i (0)

]
(57)

for every k = 1, 2, ..., and hence the result in (54).
One solution to the problem of having v∗i (0) < Mi,
i = 1, 2, ..., n, is to solve the log-optimal portfolio problem
(11) under assumption (A1), with additional constraints

αi <
Si(0)Mi

y(0)
, i = 1, 2, ..., n.

VI. SIMULATION EXAMPLE

Let us consider a market having a bank account with
r = 0.04, S0(0) = 1, and a single stock with µ = 0.05,
σ = 0.25, and an initial price of S1(0) = 1. We choose
the sampling time as T = 0.004, and the initial capital
y(0) = 1. Log-optimal portfolio gives α∗

1 = 0.16, and
v∗
0(0) = 0.84, v∗1(0) = 0.16. The control law (39) becomes

u∗
1(k) =

1
b1

[
0.16 − 0.84

v1(k)S1(k)
v0(k)S0(k)

]
.

Let us also have two different values of penalty coefficients,
b
(1)
1 = 0.05 and b

(2)
1 = 0.5. In a market with no transaction

cost, for one realization of the stock price, the trading of
stock for the log-optimal and pseudo-log-optimal portfolios
are shown in Fig.1. The trading takes place during the
interval of time [0, 10]. The total portfolio wealth is shown
in Fig.2, where one can notice an almost undistinguishable
behavior of portfolios at the beginning of trading period.
In Fig.3, the end period portfolio wealth is enlarged. We
assume there is no transaction cost for the bank account.
The transaction costs that would have accumulated at time
(k + 1)T for the log-optimal Cl(k + 1) and pseudo-log-
optimal Cp(k + 1) portfolios, are assumed to be:

Cl(k + 1)=Cl(k)+0.01α∗ | y∗(k+1)−y∗(k)S∗
1 (k+1) |

Cp(k + 1)=Cp(k)+0.01 | v∗1(k+1) − v∗
1(k) | S1(k)
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Fig. 1. Trading strategies (number of shares) of stock for log-
optimal and pseudo-log-optimal portfolios.
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Fig. 2. Total portfolio wealth during the trading period.

with Cl(0)=Cp(0)=0.01v∗
1(0)S1(0), and S∗

1 (k + 1)=S1(k +
1)/S1(k). This corresponds to a charge of 1% of the total
transaction value of buying or selling. The total wealth yf

and transaction cost Cf at the end of trading period are:

Log − optimal: yf = 1.40838 , Cf = 0.04953
b(1)

1 : yf = 1.39561 , Cf = 0.00407
b(2)

1 : yf = 1.38984 , Cf = 0.00218

This shows that for almost the same final wealth, the
transaction cost is more than 12 and 22 times smaller
in pseudo-log-optimal portfolios in comparison with the
log-optimal one.

VII. CONCLUSIONS

A new method for portfolio control with no short selling
has been suggested which constrains the trading strategies
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Fig. 3. Total portfolio wealth at the end of trading period.

to have a finite variation. This method minimizes an upper
bound on the error between the log-optimal portfolio and
the one with finite variation constraints. A penalty on the
logarithmic rates of change is also included, offering the
investor the means for trade off between lower transaction
cost and higher profit. Explicit formulae are found for
the optimal number of shares to be held. Bounds on the
finite varying trading strategies are suggested and used for
proposing a solution to the problem of restricting the number
of shares per asset. For one realization of the stock price,
a simulation example illustrates a significant reduction
in transaction cost in comparison with the log-optimal
portfolio, while maintaining almost the same total wealth.
Extension of these results to log-mean-variance ([8], [9])
and power utility portfolios ([6], [8]), as well as explicit
inclusion of transaction cost in the model, are the focus of
current research.
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