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Abstract—This paper presents a novel application of neural net-
work modeling in the optimization of sensor locations for the mea-
surement of flue gas flow in industrial ducts and stacks. The pro-
posed neural network model has been validated with an experi-
ment based upon a case-study power plant. The results have shown
that the optimized sensor location can be easily determined with
this model. The industry can directly benefit from the improve-
ment of measurement accuracy of the flue gas flow in the optimized
sensor location and the reduction of manual measurement opera-
tion with Pitot tube.

Index Terms—Data acquisition, fluid flow measurement, neural
networks, optimization, sensor location.

I. INTRODUCTION

CURRENT measurements of emissions of pollutants to
the environment have errors in excess of 20% at most

thermal power stations and other industrial installations [1].
This is mainly due to the nonoptimum sensor location, inac-
curacies in the measurement of flue gas flows, and the fact
that the gas samples collected do not accurately represent the
entire sample. In order to reduce the measurement error, it is
necessary to optimize sensor locations in industrial ducts and
stacks. The measurement accuracy is significantly influenced
by the gas samples that do not accurately represent the entire
sample. In practice, this is largely due to the unstable gas flow
in the sampled locations. A neural network model [2] was
successfully set up to establish the relationship between the
gas flows in a sampling location and a reference one which is
stable and representative. In this paper, a novel neural network
model is presented to optimize sensor location. It is the inverse
model of the [2], which can predict the velocity profiles in
ducts and stacks with flowrate and sensor location. Then it can
optimize the sensor location according to velocity profiles on
each section with the criterion of ISO 10780 [3].

Because setting up relationships between velocity, flowrate
and sensor location is a multi-input, nonlinear problem, it is dif-
ficult to model using a conventional mathematical method. The
use of artificial neural networks is proposed due to its learning
ability, and capacity for solving nonlinear and complicated
problems, among other advantages [4]. The significance of this
neural network model is that it can provide an effective way to
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calculate velocity profiles on each section in ducts and stacks
over the traditional method CFD. With the proposed neural
network model, the optimized sensor location can be quickly
found. The flue gas flow can be more accurately measured at
the optimized sensor location.

II. M ODELLING OF THE FLUE GAS FLOW

A. Measurement Method of the Flue Gas Flow Rate

The measurement of the flue gas flow rate was performed
manually using a traditional method with a Pitot tube according
to the ISO 10780. The average velocity of the gas stream is
calculated from the individual velocity measurements using a
Pitot tube to transverse the cross-section of a duct or stack. The
volume flow rateqv is determined as the product of the cross-
sectional area and the average velocity of the gas stream at that
cross-section.

The average Pitot tube pressure difference�p is calculated
according to the ISO 10780
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where�pi is the pressure difference at sampling pointI; in
kilopascals.n is the number of sampling points.

The average gas velocityv is then given as [2]

v = KC

s
Ts�p

peMs

where
K Pitot tube coefficient;
C Pitot tube constant= 129 (m/s)� [kg/(kmol � K)]1=2;
Ts average temperature at the section, in Kelvins;
�p average Pitot tube pressure difference in the section, in

kilopascals;
pe absolute gas pressure, in kilopascals;
Ms molar mass of gas.

Thus, the volume flow rate at the duct condition is

qvs = v �A

where
v average gas velocity in one section, in m/s;
A cross-sectional area, in m2;
qvs volume flow rate at duct condition, in m3/s.
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Fig. 1. Neural network model for predicting the individual velocity with
flowrate.

Fig. 2. Construction of the duct.

The volume flow rate at standard reference condition (i.e., 0�C
and 101.3 kPa)q

vr
can be expressed as

qvr = qvs
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B. Neural Network Modeling for the Optimization of Sensor
Locations

A neural network model of flue gas flow has been discussed in
[2], in which the flue gas flow rate was predicted with individual
velocity and other variables of the operating conditions. The
new neural network model presented in this paper is, in fact, the
inverse model of that in [2]. This model can be used to predict
individual velocity using the volume flow rate in the duct or
stack, with its architecture shown in Fig. 1.

In Fig. 1, the input vector is defined as[z � r 
owrate];where
z; �; andr are the coordinates of the measurement point in a pre-
defined coordinate system. Thez axis represents the location of
the sampling plane along the centerline of the duct. Due to the
circular shapes of the duct cross-sections, the positions of sam-
pling points in these sampling planes are represented as polar
coordinates,θ andr: The flowrate is the volume flow rate in the
duct or stack.

The velocity in the output vector is the individual velocity at
the position(z; �, andr), corresponding to the volume flow rate,
flowrate, in the duct or stack.

The model is used to generate the velocity profiles in each
sampling plane based upon the individual velocities. The best
sensor location is then determined according to the uniformity
of the velocity profile.

C. Experiment

The neural network model was validated using experimental
data from a case-study plant [5], as shown in Fig. 2, where the
duct presents the following geometry: the gas inlets occur at an
angle of 90� along two pipes measuring 5.5 m in diameter and

Fig. 3. Sampling plane.

7 m in length. The flue gas flow is along a horizontal pipe of a
diameter of 7.1 m for a distance of 31 m at the centerline. From
this point there is a horizontal elbow of 39�540 measuring a total
13 m in length. Downstream from this elbow, another 52 m long
duct of a diameter of 7.1 m leads directly into the stack.

There arefive sampling planes (#1–#5) selected along the
duct. In each sampling plane, four diameters were measured,
with six sampling points on each radius (Fig. 3).

D. Training and Testing of the Neural Network

The model is based upon a three-layered feed-forward neural
network, using the Levenberg-Marquardt training [6]. First, the
data from all sampling planes were collected, and half of them
were then randomly selected to train the neural network. Two
kinds of tests were performed after the training:

Test 1—Using the trained data set;

i.e., those used in training

Test 2—Using the testing data set;

i.e., those not used in training

with the test results shown in Table I.
Two examples of Test 2 are given in Figs. 4 and 5, corre-

sponding to sampling planes #1 and #4, respectively. In Fig. 5,
the predicted velocity (dashed line) follows the measured ve-
locity (solid line) quite well, even if these samples have never
been met by the network before. It can be seen from the above
testing results that:

1) There is not much difference in the Test 1 results, as
the data have been used for the training of the neural
network. Test 2 gives a better indication of the gener-
alization ability of the neural network.

2) As the sampling planes #1 and #2 are near the gas
inlets, the flue gas flows in these two planes are not
stable enough, and the prediction errors are quite large
(Fig. 4). In the sampling planes #3, #4, and #5, on
the other hand, the gas condition is more stable, with
smaller prediction errors (Fig. 5).

3) The test results have proved that this model can predict
the individual velocity accurately if the flue gas flow
is stable enough. This is necessary for this model to be
used for optimizing the sensor locations.
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TABLE I
TEST RESULTS WITH

THE NEURAL NETWORK MODEL

Fig. 4. Test 2 results in sampling plane #1.

Fig. 5. Test 2 results in sampling plane #4.

III. OPTIMIZATION OF SENSORLOCATIONS

A. Preliminary Consideration

According to the ISO 10780, sampling shall take place in a
length of a straight duct with constant shape and cross-sectional
area, and, as far as possible, downstream from any obstruction
which may cause a disturbance and produce a change in the di-
rection of flow. The section of straight duct should be at least
7 hydraulic diameters long. Over the length of the straight sec-

TABLE II
MAXIMUM DIFFERENCEBETWEEN THE AVERAGE VELOCITIES ACROSS

EACH DIAMETER AND THE MEAN FOR ALL THE DIAMETERS IN
EACH SAMPLING PLANE (#3–#5)

tion, locate the sampling plane at a distance of 5 hydraulic di-
ameters from the inlet. If the sampling plane is to be located in
a duct near the gas stream exit there should also be 5 hydraulic
diameters (making a straight length of 10 hydraulic diameters).
The suitable sensor locations can be determined based upon the
above requirements. As there are two inlet points and one elbow
in this case, the sensors should be located between the sampling
planes #3 and #5.

B. Criterion

The optimization criterion may be derived from the
ISO10780, that is, the difference between the average velocities
across each diameter should not exceed 5% of the mean value
for all the diameters in the sampling plane. If the difference
exceeds 5%, additional sampling points shall be taken or a new
sampling location should be selected.

C. Optimization

As the individual velocity and hence the velocity profile on
each diameter in a sampling plane can be obtained from the
above model, the best location can be determined by comparing
the velocity profiles in the different sampling planes according
to the above criterion.

With the velocity profile on each diameter in the sampling
plane first calculated using the model, the maximum difference
between the average velocities across each diameter and the
mean for all the diameters in the sampling planes #3, #4, and
#5 are presented in Table II. The predicted velocity profiles for
these diameters, together with the experimental ones, are shown
in Figs. 6–8.

As the difference between the average velocities across each
diameter should not exceed 5% of the mean for all the diameters
in each sampling plane, the sampling plane #3 is not suitable as
a sampling plane. The best sensor location should be between
the sampling planes #4 and #5.

To determine the optimum location further between the sam-
pling planes #4 and #5, three additional sampling planes were
selected in between, that is, planes A1 (30 m downstream from
the last elbow), A2 (35 m downstream from the last elbow) and
A3 (40 m downstream from the last elbow), as shown in Fig. 9.

As there was no experimental data in these additional sam-
pling planes (A1, A2, and A3), the velocity profiles on each
diameter in these additional planes can be predicted using the
above neural network model. Again the maximum differences
between the average velocities across each diameter and the
mean for all the diameters in these sampling planes are calcu-
lated, as given in Table III.

The results in Table III indicated that the maximum differ-
ences between the average velocities across each diameter and
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Fig. 6. Velocity profile on diameter B-F in sampling plane #3.

Fig. 7. Velocity profile on diameter D-H in sampling plane #4.

Fig. 8. Velocity profile on diameter B-F in sampling plane #5.

Fig. 9. Additional sampling planes between #4 and #5.

the mean for all the diameters in sampling planes A1 and A2 are
much less than those in other sampling planes. This is because
the gas flow between these two sampling planes was well devel-
oped and the velocity profiles had a better distribution (Figs. 10
and 11). The segment between A1 and A2 (that is, 30–35 m

TABLE III
MAXIMUM DIFFERENCEBETWEEN THEAVERAGE VELOCITIES ACROSS

EACH DIAMETER AND THE MEAN FOR ALL THE DIAMETERS IN
EACH SAMPLING PLANE (A1–A3)

downstream from the last elbow), therefore, should be the best
sensor location for flue gas flow measurement.

IV. DISCUSSIONS ANDCONCLUSIONS

A novel application of neural network modeling to the opti-
mization of sensor locations in the industrial ducts and stacks
has been discussed. With the method validated by experiment
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Fig. 10. Velocity contour 30 meters downstream from last elbow.

Fig. 11. Velocity contour 35 meters downstream from last elbow.

conducted at a case-study power plant, the following conclu-
sions can be drawn from the above discussions:

1) The velocity profile of the flue gas flow in each sam-
pling plane can be predicted using the proposed neural
network model. According to a criterion derived from
the international standard ISO 10780, the optimum
sampling plane has been determined.

2) The relationship between the individual velocity and
the volume flow rate modeled by the neural network
is essentially based upon the experimental data from
the real world. In order to achieve good predictions,
it is necessary to have reliable and representative data
which cover typical conditions of the system.

3) In the optimized sampling location in the case-study
plant, the maximum difference between average veloc-
ities across each diameter is only 0.22%, much less
than 5% as required in the above criterion. This means
that a number of locations may be used as a sampling
plane. It also implies that a smaller number of sampling
diameters or points may be adequate, resulting in a re-
duced manual measurement operation.
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