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Abstract: Rare-earth metal (Eu) doped aluminum nitride has potential application as 

luminescence materials due to its unusual mechanical and physical properties, as well as high 

chemical stability. Here we investigate the energetics, local structure and optical and 

electronic properties by means of a combination of experimental observations (XDR, SEM, 

HR-TEM and XANES) and first-principles simulations. Present study has revealed that Eu 

ions are likely to be co-doped with O in the form of Eu-O pairs. Eu ions or Eu-O pairs favor 

participation at the surfaces of the AlN crystallites. Our analyses show dependences of the Eu 

valence and electronic/optical properties on the local chemical composition and structure. 

The obtained information helps us to realize tuning of the optical properties of the 

luminescent materials via composition and site occupation modification. 

Keywords: AlN, Eu site, phosphor, first-principle calculation. 

I. Introduction 

Light-emitting-diodes (LEDs) are replacing conventional lighting sources due to their 

multiple advantages, such as high light conversion ratios, long lifetime, low energy 

consumption, high reliability, and environmental-friendliness 1,2. (Oxy)nitrides phosphors 

have a strong absorption in the UV-blue band, adjustable emission color and good thermal 

quenching and therefore, at present are developed increasingly 3,4. Among them, aluminum 

nitride (AlN) has been of particular interest due to its high electrical insulation (energy gap of 
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6.2 eV), high thermal conductivity, low thermal expansion coefficients as well as high 

chemical stability 5,6, and is considered as a potential host for photoluminescence and 

electroluminescence devices and for LED and FED devices 7.  

There have been experimental efforts to understand the luminescent properties of AlN 

based phosphors 8-14. It was demonstrated that Eu, Si co-doped AlN phosphor shows a strong 

blue luminescence by UV or electron excitation 13,15. This co-doping which remains the 

chemical valence balance, promotes Eu incorporation into the AlN lattice and the obtained 

phosphor remains the wurtzite structure. In our previous study, we prepared Eu solely doped 

AlN samples by different synthesis methods (solid-state reaction (SSR), carbothermal 

reduction (CR) and gas-reduction nitridation (GRN)). The experimental observations showed 

that the luminescence properties are highly dependent on the oxygen content in the final 

samples 16-18. Structural analysis showed that the AlN: Eu phosphor with a low oxygen 

content is dominated by the AlN wurtzite structure via the CR and GRN methods. In general, 

the large radius mismatches between the Al3+ (0.39 Å, 4CN) and Eu2+ (1.17 Å, 6CN) or Eu3+ 

(0.95 Å, 6CN) ions 19 indicate high energy costs for the replacements of Al3+ by Eu ions in 

the doped samples. Up to now, knowledge about these materials, e.g. the site occupations of 

Eu ions in the wurtzite AlN lattice is still limited. In this aspect, theoretical methods, especially 

parameters-free first-principles approaches are helpful. First-principles calculations have been 

applied successfully to analyze the electronic structure of aluminum nitride 20 and to 

investigate the structural models of aluminum oxynitride 21. Pentaleri and co-workers studied 

substitutional impurities in zinc-blende aluminum nitride 22. Recently ab initio density 

functional theory was applied successfully in study of the doping of Eu in scintillation and 
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luminescent materials 23
-

25. In the current paper, we prepared the high-pure AlN: Eu phosphors 

by gas-reduction-nitridation (GRN) method and investigated the preferred sites of Eu ions in 

the AlN samples by a combination of multiple experimental techniques (SEM, 

EXAFS/XANES, STEM) and first-principles calculations. The ab initio simulations were 

performed for Eu doped in (wurtzite) AlN bulk and at its (110) and (0001) surfaces. The 

influence of oxygen on the Eu doping was addressed, considering the fact that oxygen is 

always unavoidable in the sample preparations. The obtained information here is helpful/useful 

to understand the mechanism of the luminescence properties, to obtain inspiration for AlN 

based phosphors doped with other large (rare-earth) ions and further to search new 

luminescence materials of desirable properties. 

II. Experimental Sections and First-Principle Simulations 

2.1. Synthesis. Phosphors with a chemical composition of AlN: 0.5mol% Eu were prepared 

by the gas-reduction-nitridation method. The powder mixture of γ-Al2O3 and Eu2O3 were 

fired in a horizontal alumina tube furnace at 1400 oC for 3 h under a flowing gas mixture of 1 

l/min NH3 and 15 ml/min CH4. The as-prepared products were post-annealed at 1900 oC for 2 

h in a carbon furnace under flowing nitrogen gas, to further improve its crystallinity. 

2.2 Characterization. The phase was analyzed by an X-ray diffractometer (Model PW1700, 

Philips Research Laboratories, Eindhoven, the Netherlands) using Cu Kα radiation. Powder 

morphologies were observed by scanning electron microscopy (SEM) (Model JSM-6390LA, 

JEOL, Tokyo, Japan). The nitrogen/oxygen content was determined using a nitrogen/oxygen 

Analyzer (ModelTC-436, LECO, Tokyo, Japan. Elemental analysis was carried out using 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Induced Couple Plasma Optical Emission Spectroscopy (ICP-OES, PerkinElmer Optima 

5300, USA). Cathodoluminescence spectra (CL) were recorded in the Scanning Electron 

Microscope (SEM) equipped with a CL accessory (Sirion200, FEI, USA). The X-ray 

absorption near edge structure (XANES) of Eu L3-edge was measured at the beamline of 

BL14W1 at Shanghai Synchrotron Radiation Facility with an electron beam energy of 3.5 

GeV. Z-contrast Scanning transmission electron microscopy (STEM) was performed using 

high angle annular-dark field scanning electron microscopy (HAADF-STEM, JEM-ARM 

200F). HAADF simulations were performed using Dr. Probe software. 

2.3 Super cell method for first-principle simulations: To describe the effect of dilute Eu 

atoms/ions and Eu-O pairs in bulk AlN, we employed a supercell with dimensions of 

4a0×4a0×2c0 (a0, c0 are the lattice parameters of a pristine unit cell of hexagonal AlN). This 

hexagonal supercell has axis lengths of about a= 12.51 and c=10.03 Å and contains 128 atoms 

(64 Al and 64 N). For the AlN (110) surface, we build a supercell which has in plane axis 

lengths of a= 4a0 and b=2c0. This cell has 12 atomic layers (AL) and contains in total 192 atoms 

(96 Al and 96 N). A thick slab of vacuum (>17 Å) was used to avoid interface interactions. A 

single Eu atom replaced an Al a) in the center, b) at the surface and c) second layer of the 

surface (subsurface). Similarly, Eu and O co-doping replaced an Al-N pair a) at the center and 

at the surface of the slab. Test calculations for the polar AlN (0001) surfaces were performed 

for a supercell of a hexagonal lattice with a = b = 2a0 in plane. There are 16 Al of atoms or 64 

atoms (32 Al and 32 N) in total. The vacuum has a length of about 20 Å. One Eu atom replaces 

one Al in the center and at the two terminal surfaces to get some conceptual results about the 

preference of Eu occupation.   
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2.4 Computational technique and settings: We employed the first-principles code VASP 

(Vienna Ab initio Simulation Program) 26, 27, which is based on the density functional theory 

(DFT) within the Projector Augmented-Wave (PAW) method 28, 29. The Generalized Gradient 

Approximation (GGA) was used for the exchange and correlation energy terms.30 The cut-off 

energy of the wave functions was 550.0 eV. The cut-off energy of the augmentation wave 

functions was 700.0 eV. Such high cut-off energies provided reliability to describe the rather 

localized O/N 2s, 2p and Eu 4f orbitals. The energy differences were converged within 10-5 eV. 

The forces were converged within 10-3 eV/Å. The electronic wave functions were sampled on 

dense grids e.g. a 4×6×1 grid with 6 to 12 irreducible k-points depending on the symmetry, for 

the super cells of AlN(110) surface systems with Eu or Eu-O doping in the Brillouin zone (BZ) 

of the crystals using the Monkhorst and Pack method 31. The localized Eu 4f states were 

described using the Hubbard U (U=2.5 eV) approach 24, 25. Tests of k-mesh density and cut-off 

energies showed a good convergence (~ 1 meV/atom). 

III. Results and Discussions 

3.1 Experimental observations 

3.1A. Phase, composition and morphology. As seen in Fig. S1 of the supporting 

information, our Rietveld refinement parameters (RP=7.37%, RWP=9.93%) confirm the phase 

purity of AlN: Eu powders. By using the induction coupled plasma method and the 

oxygen-nitrogen analysis, the actual chemical composition of AlN: Eu phosphor is 

determined as Eu0.0033Al0.9962O0.0156N0.9840. The particle size of the AlN: Eu sample is 

reflected by the SEM images seen in Fig. S2 of the supporting information. The size 

distribution is non-uniform and covers the range of 1-10um.  
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3.1B. Optical properties. Instead of photoluminescence, cathodoluminescence measurement 

owns a powerful excitation source and can motivate the phosphor to exhibit plentiful 

emission. Fig. 1 shows the CL spectra of the AlN: Eu powder. As seen, AlN: Eu phosphors 

show broad green emission band at about 530 nm under electron irradiation, which is 

undoubtedly ascribed to the 4f65d→4f7 transition of Eu2+. The full width at half maximum 

(FWHM) of the band is quite broad (~92 nm), which greatly exceeds the value in AlN: Eu, Si 

(55 nm) 13. As shown in Fig. 1, the brightness of AlN: Eu increase as the anode voltage 

increases from of 5 kV to 20 KV. This enhanced intensity as a function of anode voltage is 

ascribed to the increased number of excited Eu2+ ions resulting from an increase in the 

penetration depths of the electron beam as the applied voltage is increased. 

In Fig. 1, there are two red emissions around 630 and 660 nm in the CL spectrum. These 

emissions can be assigned to Eu3+ and Eu2+ intra-4f transitions. Unlike the absence of Eu3+ in 

AlN with Eu, Si co-doping samples 32, our results indicate that there are Eu3+ ions 

companying Eu2+ in the crystal lattice. The coexistence of Eu2+ and Eu3+ is clearly identified 

by the XANES analysis as shown in Fig. 2, where two peaks can be clearly seen at about 

6977 and 6984eV due to the divalent and trivalent oxidation states of Eu, respectively 33 as 

well as the coexistence of Eu2+ and Eu3+ in the Eu doped polycrystalline c-BN specimens 34. 

The simultaneous presence of Eu2+ and Eu3+ results in the overlapping green/red emission 

spectra. 
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3.1C. Direct observation of Eu sites. 

For a low doping crystal (0.5% Eu), the exact doping structure could only be resolved via 

direct viewing in the atomic scale. By taking advantage of the atom-resolved Cs-corrected 

STEM, we are able to observe individual heavy atoms, such as the rare-earth atoms in the 

crystal lattice which can be highlighted in the Z-contrast HAADF (High-angle annular 

dark-field) images. Fig. 3 (a) shows a typical atomic-resolution STEM image of AlN: Eu. 

The scattering strength of nitrogen is relatively weak but along the (010) plane, the atomic 

dumbbell consisting of Al and N atoms is still clearly recognized. Thus, we can directly 

determine the atomic site of the Eu dopants from the images. The atomic columns containing 

Eu dopants are observed as the brighter spots, and one can see that the Eu dopants are 

dispersed along the boundary. In the high-magnification atomic resolution STEM image of 

Fig. 3 (b), the single Eu dopant evidently substitutes the Al site in edge of the AlN crystallites. 

As shown in Fig. 3 (c), the arrangement of atoms in AlN: Eu matches with the intensity file 

from the box in Fig. 3 (b). This bright feature at the Al site is quantitatively reproduced in the 

simulated image (Fig. 2 (d)), where a single Eu atom has been substituted for an Al atomic 

site. In addition to the Eu sites along the boundary, Eu ions can also replace Al ions close to 

the boundary, as seen in Fig. 3 (e, f). This may origin from the easily released crystal strain 

near the boundary.  

Overall, our experiments have shown that there are simultaneous presence of Eu2+ and 

Eu3+ in the AlN: Eu sample. To get insight into the phenomenon, we performed 

first-principles simulations.  
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3.2 Theoretical simulations 

3.2A. Bulk AlN, EuO and EuN. Our calculation results for the bulk properties of the related 

compounds, AlN, EuO and EuN are shown in Table I.  

(Some references are present in Table 1 23, 24, 25, 35, 36). 

As shown in Table I, the obtained lattice parameters for the bulk AlN, EuO and EuN are 

close to the experimental values within 1% error. The present calculations show that wurtzite 

AlN is more stable than the cubic phase with an energy difference of about 0.45 eV/AlN. The 

calculations also show that EuO with table salt structure has a local magnetic moment of s=7, 

whereas the spin state is s=6 for the EuN. In order to have a good understanding about the spin 

states of Eu in EuO and EuN, we performed spin-polarization calculations using the fixed spin 

approach for both EuO and EuN with table salt structure. The calculated relationship between 

the cohesive energy and local magnetic moment is shown in Fig. 4. Clearly, the most stable 

spin state is s =7/2 for EuO, whereas, it is s=6/2 for EuN. These results agree with the ionic 

model: Eu2+ with 4f7 configuration in EuO and Eu3+ with 4f6 configuration in EuN.  

3.2B. Dilute Eu doping and Eu-O co-doping in bulk AlN. We first address the calculations, 

where a single Eu atom doping and an Eu-O pair co-doping in AlN bulk are discussed, 

respectively. The calculated results are shown in Table II. Fig. 5 shows the calculated total 

density of states (tDOS) for the related systems, and the partial density of the related Eu 4f 

states. The tDOS of wurtzite AlN is included for comparison.  

As shown in Table II, the calculations show that replacing one Al by Eu costs about 2.6 eV 

with respect to the parent binaries AlN and EuN. A Eu-O co-doping costs about 4.5 eV when 

Eu and O are set far-away and about 3.6 eV when Eu and O is nearby in AlN.  
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As shown in Fig. 5 (top row), AlN is calculated to be a wide gap insulator with the calculated 

energy gap being about 4.2 eV, which is smaller than the experimental value. This is not 

unusual for the density functional theory.37 The N 2s states form a broad band in the energy 

range between -13.1 eV to -10.5 eV (Fermi level is set to be zero eV). The valence band which 

is dominated by N 2p states is in the energy range between -5.1 eV to zero eV, whereas the 

conduction band is about 4.2 eV above the valence band. The present results agree with the 

former theoretical calculations 21,22.  

The tDOS curves of the Eu and Eu-O doped systems are very similar to that of AlN bulk. For 

EuO co-doped system (Eu-O is close), there is a sharp peak at about 2.1 eV above the valence 

band. This peak is occupied by electrons. Eigencharacter analysis shows that this peak belongs 

to the Eu 4f7 states for the majority electrons. Meanwhile, the unoccupied Eu 4f states are at 

upper energy (about 10 eV) above the Fermi level (not shown). This result corresponds well to 

the Eu2+ configuration (Table II). The partial density of the Eu 4f states for the Eu doping 

system (Fig. 5) is more complicated and showed disperse nature. The pDOS of the Eu 4f states 

for the majority electrons (black lines in third row) consists mainly of two parts. The lower part 

is in the valence band, ranging from about -2.5 eV to -0.5 eV, whereas the upper part is 

unoccupied and positioned at 0.4 eV above the valence band. There are also some small Eu 4f 

contributions just below the Fermi level. These disperse nature of the Eu 4f states indicates 

strongly interaction between Eu 4f and N 2p states, in contrast to the case with Eu-O co-doping 

where the Eu 4f states are strongly localized. 
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3.2C. Eu at the AlN surfaces. As mentioned before, the ground state of AlN has the wurtzite 

structure (Fig. S3a) with a hexagonal lattice with a0 =3.11 Å, c0 =4.98 Å 38. In this structure 

each Al is in a tetragonal coordination by four N. It is possible to obtain non-polar surfaces by 

cleaving the crystal along (110) orientation (Fig. S3b) 38. A smooth cleavage of AlN along its 

(0001) orientation produces one Al-terminated and one N-terminated surface. Therefore, a 

smooth AlN (0001) surface is polar. Both experimental and theoretical studies showed 

reconstruction of the Al (0001) surfaces 38-41. Our goal here is for understanding the Eu 

preference in the bulk or at the surfaces of AlN. We first chose the non-polar AlN (110) 

surface as the example. Furthermore, we also investigate the Eu preferred sites using a slab 

containing smooth AlN (0001) surfaces considering the fact that the surfaces are composed of 

Al-N or N-Al double atomic layer and, therefore, are weak/moderate in polarity. 

Figure 6 shows the single Eu replacements of Al and Eu:O co-doping at different site. The 

calculated energetics for one Eu atom/ion and one Eu-O pair at different positions at/in AlN 

(0001) surfaces and (110) are shown in Table III. 

First we discuss the calculations for the non-polar AlN (110) surface. As shown in Table III, 

the total energy calculations show that Eu prefers the surfaces site. The energy difference is 

about 3.05 eV for one Eu doping at the AlN surface, which is notably larger than that of one Eu 

doping at the subsurface. Moreover, Eu-O co-doping at the AlN (110) surface is much favored 

with an energy difference as 3.2 eV. This type of Eu preferential behavior at the surface is 

understandable considering the large Eu ionic size as compared with an Al ion. Meanwhile, the 

Eu in the center of the slab is connected to four N with Eu-N bond-length 2.24 (×2), 2.27 and 

2.30 Å which are just slightly different from those (Eu-N: 2.22 (×3), 2.26 Å) for the Eu in AlN 
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bulk, which comes from the broken symmetry and the surface influence. The calculations show 

that the local magnetic moments or spin states of the Eu in the center, at the second layer and at 

the surface of the AlN slab. The Eu at the center of the AlN slab has its spin state s = 6.26/2, 

which is slightly larger than that in Eu in AlN bulk (6.04/2). 

Structural optimization and electronic structure calculations show that for a Eu-O pair in the 

center or at the surface of AlN, the spin state for Eu is s=7/2, corresponding to the Eu2+ model.  

Fig. 7 shows the calculated total density of states for Eu (first row) and Eu-O (third row) at 

AlN surface. The related partial densities of the Eu 4f states are also included. Clearly, in the 

Eu-O pair co-doped case, the Eu 4f states are fully spin-polarized. The occupied Eu 4f7 states 

for majority electrons form a sharp peak at about 2 eV above the valence band, whereas the 

unoccupied Eu 4f states also form a sharp peak at about 4.5 eV above the occupied 4f states. 

There are surface states in the range between about 2.3 eV to above the valence band to the 

bottom of the conduction band of the bulk AlN.  

 

3.3 Discussions and summary 

Our study by means of a combination of multiple experimental observation and 

first-principles simulation has shown that Eu ions or Eu-O pairs favor at the surface of the 

grain boundary of the AlN particles. O bonded to Eu is a key point to determine the valence 

and electronic/optical properties of Eu. Single Eu substitution is 3+ valent while Eu ions 

exhibit a 2+ valence for Eu-O pairs which was confirmed by the analysis of the oxygen 

content that 0.60 wt % of oxygen amount is present in AlN: Eu phosphor.  
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Overall, single Eu doping exhibits a 3+ valence, which is responsible for the sharp red 

emission in AlN: Eu phosphor. Eu ions are likely to get bounded to form Eu-O pair. With the 

help of Eu-O codoping, Eu2+ is stable as it has a full filled 4f orbitals (4f7), which results in the 

broad green emission band of 4f-5d electron transitions. Based on the crystal field theory, the 

split of 5d orbitals of Eu2+ is affected by the type of ligands and the arrangement of the ligands 

around the Eu2+. Owing to the higher formal charge of N3- compared with O2- and the lower 

electronegativity of nitrogen (3.04) compared with oxygen (3.44), some Eu2+ doped pure 

nitride phosphors show emission peaks situated in the red region, such as 610 nm for Eu doped 

SrAlSiN3(Sr-N: ～2.7 Å, C.N. = 10) and 620 nm for Eu doped Sr2Si5N8 (Sr-N: ～2.8 Å, C.N. 

= 8-9) 42, 43. Regarding to the preferable Eu-O co-doping at the boundary of AlN: Eu phosphor, 

low coordination number, asymmetry coordination and O defects would possibly result in a 

weaker crystal-field splitting and consequently a green emission. Note that it cannot be 

concluded that Eu stay in the center or subsurface of AlN crystal due to possible local defects 

around Eu2+, as seen in Fig. 3 (e). Here we briefly summarize our investigations into a 

schematic diagram of Fig. 8. 

 

IV. Conclusions 

Our findings indicate that even dopant atoms with extremely large size mismatch can be 

incorporated into host crystal lattice through Eu substitution Al at or near the surface. Single 

Eu prefers to remain 3+ valent due to its large ionic size while Eu owns a 2+ valence when 

Eu-O co-doping is achieved as Eu2+ has fully filled 4f orbitals (4f7). Expectedly, we may be 
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able to control unique functionalities in largely mismatched systems by tuning the Eu2+/Eu3+ 

ratios in the lattice via manipulating samples’ particle size distribution, chemical composition 

and site occupation modification.  
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Figure captions: 

Figure 1. Cathodoluminescence spectra of the AlN: Eu phosphor. 

Figure 2. Eu LIII-edge XANES spectrum of the AlN: Eu sample. 

Figure 3. (a) HAADF image along [010] zones showing Eu sites along the boundary. (b) 

Enlarged HAADF image. (c) Intensity profile corresponding to the box in (c). (d) Simulated 

HAADF image showing that the intensity difference between different atoms. (e, f) another 

region showing Eu sites close to the boundary. 

Figure 4. Relationships between the calculated energies of EuX (X=O, N) crystals on the 

magnetic moment per Eu. The energies for moment =7 are used as the references. Clearly, for 

X = O, the state with s=7/2 is most stable while for X=N, s=6/2 is the ground state. That 

corresponds well to the ionic model: Eu3+N3- and Eu2+O2-. 

Figure 5. Total density of states (tDOS) for bulk AlN with wurtzite structure (a), for Eu doped 

system (b) and for Eu-O co-doped AlN system (d). The partial density of Eu 4f for Eu in AlN (c) 

and for Eu (f) and O (e) in the co-doped Eu-O (pair) system. The Fermi levels are indicated by 

the dotted lines respectively. The present study shows the Eu3+ (4f6 configuration) in the single 

doping system and Eu2+ (4f7 configuration) for the Eu-O coped system. 

Figure 6. Schematic structure of Eu at the center (a), subsurface (b) and at surface (c) of the 

AlN slab, and one Eu-O pair replacing an Al-N pair near the surface (d). The small silvery 

spheres for Al, small yellow for N, large oranges for Eu, and middle blue for O. 

Figure 7. The calculated total density of states (tDOS) for Eu at AlN(110) surface (a) and the 

related Eu 4f states (b); total density of states (tDOS)for Eu-O at AlN(110) surface (c) and the 

related Eu 4f states (d). The dotted redline means Fermi level. The positive values means for 

spin-up (majority) electrons and the negative values for the spin-down (minority electrons). 

Clearly, the Eu at AlN (110) surface has Eu3+ valence and corresponding to spin states ~6.1/2, 

whereas at the surface Eu2+ with spin state s = 7/2 for the Eu-O pair. 
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Figure 8. A schematic diagram showing the origin of the observed green and red emissions in 

AlN: Eu phosphor.  

Table 1. Calculated results for binary AlN, related EuO and EuN phases using the PBE / 
PBE+U (U=2.5 eV for Eu 4f) method 23, 24, 25. The experimental values of AlN, EuN and EuO 

from literature are included in parentheses. SG in column 2nd represents for space group, Mag 
in 5th column for magnetic moment in the Eu sphere. 

Phases 
Lattice 
(SG) 

Parameter Bonds/charges Local moment 

Hex_AlN 
P63mc  

(nr. 194) 

a=3.128 (3.112) 35 

c=5.017 (4.982) 35 
Al-N:1.90(×3),1.91 0 

EuN* 
Fm-3m 
(nr.225) 

a=5.131 (5.144) 36 Eu-N: 2.56(×6) Mmag=6μB/Eu 

EuO* 
Fm-3m 
(nr.225) 

a=5.130 (5.141) 36 Eu-O: 2.55(×4) Mmag=7μB/Eu 

 

 

Table 2. The calculated results (formation energy, ΔE= E(Al64-xEuxN64-yOy) 
–[E(Al64-xEuxN64-yOy) + xE(EuN)+y E(EuO)], and local chemical bonding and local spin state). 

Column 1 of rows 3 and 4, the symbol f-/c- represents the co-doped O and Eu being far 
away/being close (Eu-O pair). 

Configuration Eu bonds ΔE(eV/Eu) spin per Eu 

Al63EuN64 Eu-N:2.22(×3), 2.26 
+2.646 eV/EuN 

s=6.04/2 

f-Al63EuN63O Eu-N:2.28(×3), 2.33 
+4.510 eV/EuO 

s=7/2 

c-Al63EuN63O Eu-N:2.26(×3),O:2.33 
+3.635 eV/EuO 

s=7/2 
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Table 3. The calculated energetics for one Eu atom/ion and one Eu-O pair at different positions 
at/in AlN (0001) surfaces and (110). 

Position of Eu 
Spin state s= (Bohr 

unit) 
Bond (Å) ΔE(eV) * 

AlN(110) (non-polar) 

Eu at center 6.26/2 / 7/2* Eu-N:2.24(×2),2.27,2.30 0.000 / + 0.49** 

Eu at 2nd layer 6.29/2 / 7/2* Eu-N: 2.26(×2),2.31,2.40 -0.52 / -0.31** 

Eu at surface 5.92/2 / 7/2 * Eu-N: 2.33,2.366(×2) -3.05 / -3.02** 

EuO at surface 7/2 
Eu-N:2.26,2.29 

-O: 2.59 
-3.22/(EuO)** 

EuO at center 7/2 
Eu-N:2.27,2.29,2.31 

-O: 2.31 
0.0 

AlN(0001) (polar) 

Eu at center / 7/2* Eu-N:2.16(×3), 2.37 0.0 

Eu at Al_surf / 7/2* Eu-N: 2.41(×3) -4.72** 

Eu at N_surf / 7/2* Eu-N: 2.16(×3) -1.91** 

* indicates the spin is fixed to s = 7/2 and **is the related energy differences with respect to the 
ones of zero eV. 
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