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4.1  Introduction  

There are different definitions of big data, and among them, the most common definition refers 

to three or five characteristics, called volume, velocity, variety, value, and veracity from  (Laney 

(2001)). Volume could include Tera Byte, Peta Byte, Exa Byte, and Zetta Byte. Velocity 

describes how fast the data are retrieved and processed ‘‘Batch or streaming”. Variety describes 

structured, semi-structured, and unstructured data (Laney, 2001, Zikopoulos and Eaton, 2011). 

Veracity explains the integrity and disorderliness of data, while value refers to how good is the 

“value” we derive from analyzing data? (Zicari et al., 2016). 

Electrical power systems are networks of components arrayed to supply, transfer, and use 

electric power. In power system since models are used to predict and characterize operations.  

However, there is a necessity for powerful optimization algorithms for information processing to 

learn models as the size increase of data is becoming a global problem to solve large-scale 

optimization problems.  Any optimization problem includes a real function to be maximized or 

minimized by systematically determination of input values from an allowed set of values. 

Richness and quantity of large data sets provide the potential to enhance statistical learning 

performance but require smart models that use the latent low-dimensional structure for effective 
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data separation.  

This chapter reviews the most recent scientific articles related to large and big data optimization 

in power systems. Optimization issues such as logistics in power systems and techniques 

including nonsmooth, nonconvex, and unconstrained large-scale optimization are presented. 

After a brief review of big data, scientometric analysis has been applied using keywords of “big 

data” and “power system.” Besides, keywords analysis, network visualization, journal map, and 

bibliographic coupling analysis have been done to draw a path on big data works in power 

system problems. Also, the most common useful techniques in large-scale optimization in power 

system have been reviewed. At the end of this chapter, metaheuristic techniques in big data 

optimization are reviewed to show that many efforts have been involved in big data optimization 

in power system and systematically highlight some perspectives on big data optimization. 

4.2  Background  

Before starting the discussion about big data optimization, this section reviews the importance of 

big data projects. Analyzing the big data could release valuable information. Setting up a big 

data task is a challenge that requires many tasks and processes to be done alongside with data 

store. 

To support a big data-based project, one first needs to analyze the data. There are specific data 

management tools for storing and analyzing large-scale data. Even in a simple project, there are 

several steps that must be performed. Figure 4.1 shows these steps that include data preparation, 

analysis, validation, collaboration, reporting, and access. They are briefed as follows: 

• Data preparation is the process of collecting, cleaning, and consolidating data into one 
file or data table to be used in the analysis.  

• Data analysis is the process of inspecting, cleansing, transforming, and modeling data to 

https://en.wikipedia.org/wiki/Data_transformation
https://en.wikipedia.org/wiki/Data
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discover the useful information, draw conclusions, and support decision-making.  
• Data validation is the process of ensuring that data have undergone a kind of cleansing to 

ensure they have acceptable quality and are correct and useful.  
• Data collaboration means data visualization from all available different data sources 

while getting the data from the right people, in the right format, to be used in making 
effective decisions.  

• Data reporting is the process of collecting and submitting data to authorities augmented 
with statistics.  

• Data access typically refers to software and activities related to store, retrieve, or act 
on data housed in a database or other repository. 

 

 

 

Figure 4.1: Process of data analysis 

 

Big data analysis provides valuable opportunities to support decision-making in several areas, 

including education, and manufacturing, healthcare. For instance, big data analytics have helped 

yield healthcare improvements by providing personalized medicine and prescriptive analytics, 

while in manufacturing big data analysis provides an infrastructure for transparency in the 

manufacturing industry, which is the ability to unravel uncertainties such as inconsistent 

component performance and availability. An example of big data in science is the NASA Center 

for Climate Simulation (NCCS) that stores 32 petabytes of climate observations and simulations 
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on a discover supercomputing cluster. Amazon, eBay, Facebook, and Google are some examples 

of the application of big data in today’s technology. Also, McKinsey Global Institute is known as 

an entity that applies big data in educational aspects. Table 4.1 presents some areas of big data 

applications in different fields, additional examples can be found in (Bihl et al., 2016). 

 

 

 

 

 

 

Table 4.1: Application of big data 
Area Scholars 

Healthcare (Huser and Cimino (2016), O’donoghue and Herbert 
(2012), Mirkes et al. (2016), Murdoch and Detsky 

(2013)) 
Manufacturing (Lee et al. (2014b), Li et al. (2015), Lee et al. 

(2015)) 
Science (Guide (2013), Brumfiel (2011), Francis (2012), 

Swan (2013)) 
Technology (Tay (2010), Johnson (2010), Sullivan (2015), 

Layton (2013)) 
Education (Manyika et al. (2011), Picciano (2012), West 

(2012)) 
Media (Smith et al. (2012), Xu et al. (2016), Couldry and 

Turow (2014), Burgess and Bruns (2012)) 

 

4.3  Scientometric analysis of big data  

Every activity in the 21st century such as financial transactions, research, sales and purchase, 

security, transport, automobile sectors, internet, and others, requires data. With the advances in 

technology and fast development of the internet, people observe the extent of data and 
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information that enable access to vast amounts of data in a simple manner. However, this also 

needs a large amount of data with suitable storage capacity to host them. Nowadays, data 

manipulation techniques and computational capacities are some of the issues arising from big 

data, in which the classic technologies are not able to deal with them. Many researchers are 

working to resolve these problems in various areas such as health, economic, business, physics, 

and social sectors.  

To highlight and show the importance of big data in today's power systems, scientometric 

technique and social network analysis (SNA) are used in the literature review. Recently, these 

techniques have become widespread because they facilitate understanding of some dynamical 

features such as collaboration among scholars (Emrouznejad and Marra (2016), De Stefano et al. 

(2011), Lee et al. (2014a)). Simply, they are known as strategic intelligence tools for the control 

of an emerging technology Rotolo et al. (2014). 

Scientometric, is a key enabler that observes scientific publications to explore the structure and 

growth of a specific science using some quantitative measures of scientific information, as the 

number of scientific articles published in a given period, their citation impact, etc (Rajendran et 

al., 2011).  The main idea is to visualize data on behalf of a principal subject area to signify the 

whole activities in scientific output. The scientometric mapping technique is used to find the 

most common keywords that were used in recent research articles. For this aim, the title ‘large-

scale power system’ is searched in SCOPUS database which recalled about 1107 scientific 

articles. Figure 4.2 presents the distribution of these papers from the 1970s. 
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Figure 4.2: A number of publications on ‘Large-scale power system. 

 

Figure 4.3 presents a cognitive map where the size of the node is the equivalent number of 

publications on the considered term. Links among disciplines are shown by a lie whose density is 

proportional to the level of which two topics were being used in one article. The color of an item 

is managed by the cluster to which it belongs. 
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Figure 4.3: Cognitive map (keyword search based on co-occurrences) 

 

 

The most commonly used keywords (ten keywords) and their number of occurrences have been 

given in Table 4.2. The objective of keyword analysis is to analyze the terms in a 

good accuracy. The process mainly depends on brainstorming to find the keywords which still 

have a high number of searches.  

Table 4.2: The most commonly used keywords in big data optimization literature  
No.  Keyword Occurrences  
1 Large-scale power system 399 
2 Algorithm 248 
3 Grid 211 
4 Technique 166 
5 Impact 152 

https://en.wikipedia.org/wiki/Precision_and_recall
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6 Wind power 119 
7 Cost 116 
8 
9 

Integration 
Capacity 

114 
110 

10 Development 107 
 

Figure 4.4 presents a different visualization of a country map that indicates collaboration among 

authors from different countries by lines. Authors from around 101 countries have collaborated 

in developing articles in big data and power systems. Figure 4.4 shows that China is the most 

active country in the power system field, then, the USA and Japan are at the second and third 

stages, respectively. Table 4.3 presents rank of the top five organizations, which have been 

addressed in affiliations of authors, with respect to the number of documents and citations.  

Table 4.3: Rank of the top 5 organizations by number of documents 
No.  Organization Number of documents Number of 

citations 
1 China Electric Power Research Institute 9 110 
2 North China Electric Power University 7 247 
3 Tsinghua University 4 36 
4 University of Queensland 4 40 
5 Brunel University 4 6 
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Figure 4.4: Network visualization (collaboration between countries) 

 

Also, collaboration among authors has been analyzed. Figure 4.5 presents co-author 

collaborations to display the robust and fruitful connections among collaborating researchers. 

The links across the networks in Figure 4.5 shows the scientific communities involved in 

research on power systems and large-scale problems.  
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Figure 4.5: Scientific community (co-author) working on the large-scale power system 

 

Figures 4.6 and 4.7 show network visualization and density map of the active journals in power 

system and large-scale problems based on citation analysis. Figure 4.6 presents the journals 

aggregated by density. The color shows the density, where the red color indicates a high density 

of a journal, while the blue color indicates the low-density journals. The right side of Figure 4.7 

shows the densest area, occupied by journals dealing with the power system.  The most frequent 

hosting sites are IEEE Transaction on Power System, Applied Mechanics and Material, Power 

System Protection and Control, Automation of Electric Power System, IEEE Power and Energy 

Society General Meeting, International Journal of Electrical Power and Energy Systems, and 

Proceedings of the Chinese Society of Electrical Engineering. 
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Figure 4.6: Journal map (title) based on citation analysis 

 

 
Figure 4.7: Density map (Journal title) based on citation analysis 
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Figure 4.8 shows different analysis (co-citation) of cited journals which possesses a minimum of 

ten citations for each source, and this leads to 152 sources with co-citation links.  

 
Figure 4.8: Network visualization (co-citation analysis) 

 

 

 

4.4  Big data and power systems 

There are many large-scale optimization problems in power system, especially in the cases which 

consider the uncertainty of input parameters (Charwand et al., 2015b, Esmaeel Nezhad et al., 

2015, Ahmadi et al., 2013, Charwand et al., 2015a, Ahmadi et al., 2016, Mavalizadeh and 

Ahmadi, 2014, Sharafi Masouleh et al., 2016). Various researchers, c.f. (Charwand et al., 2015b, 
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Esmaeel Nezhad et al., 2015, Ahmadi et al., 2013, Charwand et al., 2015a), consider the optimal 

operation of an electrical energy retailers. Ahmadi et al. (2016) proposes a stochastic programing 

for the optimal operation for a distribution company. Mavalizadeh and Ahmadi (2014) considers 

emission and security for generation and transmission expansion planning. (Sharafi Masouleh et 

al., 2016, Ahmadi et al., 2011) use a mixed integer linear model for the optimal operation of 

hydro generation units. (Moghimi et al., 2013, Ghadikolaei et al., 2012) investigate the effects of 

distributed energy resources in the short term optimal operation of power systems. (Esmaeily et 

al., 2017, Aghaei et al., 2015b, Karami et al., 2013, Aghaei et al., 2015a) suggest using a 

Roulette wheel mechanism and lattice Monte Carlo simulation methods for modeling of 

uncertainties in hydrothermal scheduling problem. (Charwand et al., 2015b, Esmaeel Nezhad et 

al., 2015, Ahmadi et al., 2013, Charwand et al., 2015a, Ahmadi et al., 2016, Mavalizadeh and 

Ahmadi, 2014, Sharafi Masouleh et al., 2016) have many integer variables, for example (Aghaei 

et al., 2015a) report that the last case study has 3,841,392 variables, 1,610,808 discrete variables, 

and 4,712,112 equations. This example shows that the number of variables and equations are 

high.  In the following sections, the background of big data in power systems is presented along 

with applications and the most common approaches in big data optimization in power systems. 

 4.4.1  Big data optimization 

Big data optimization is one of the important issues in big data areas that have been widely 

arisen with many challenges such as privacy, size of data, and data management (Zicari et al., 

2016). Social network science, Machine learning, and biology are instances of many noticeable 

application fields where it is easy to formulate optimization problems with millions of variables. 

However, there is a necessity for powerful optimization algorithms for information processing to 
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learn models as the size increase of data is becoming a global problem to solve large-scale 

optimization problems. Classical optimization algorithms are not planned to measure to cases of 

this size; new methods are required. Some examples of mathematical optimization in big data 

include logistics and supply chain issues (Gunasekaran et al., 2017, Papadopoulos et al., 2017, 

Wu et al., 2017, Kache et al., 2017, Zhao et al., 2017, Brouer et al., 2016), nonconvex 

optimization (Gong et al., 2016), unconstrained optimization (Babaie-Kafaki, 2016), and 

nonsmooth optimization (Karmitsa, 2016). Big data optimization is usually taken into account in 

power systems research like management and scheduling, power dispatch, and energy demand. 

 4.4.2  Application of big data in power system studies 

The use of big data has increased in several ways so that private companies and governments are 

investing billions of dollars in data management and analysis (Cukier, 2010)). In power systems, 

data could be gathered from different sources such as renewables like solar and wind energies or 

other portions of energy technologies such as gas and fuel. In this regard, there are several 

applications of big data in energy domain that could be surveyed as renewables data use in 

biomass energy (Paro and Fadigas, 2011), marine energy (MacGillivray et al., 2014), (Wood et 

al., 2010), and wind energy (Billinton and Gao, 2008), (Kaldellis, 2002), energy consumption 

(Kung and Wang, 2015), or may consider energy demand response such as power demand (Liu 

et al. (2013), and storage capacity (Goyena et al. (2009), or could be analyzed as electric vehicles 

(EVs) (Jiang et al., 2016) such as driving pattern (Wu et al. (2010), energy management (Su and 

Chow (2012), energy efficiency (Midlam-Mohler et al. (2009), driving range (Rahimi-Eichi et 

al., 2015), (Lee and Wu, 2015), battery capacity (Shor, 1994), data quality (Zhang et al., 2015), 

and EVs state (Soares et al., 2015).  
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Also, there are other challenges in storage and analysis of data, visualization, sharing, etc, (Boyd 

and Crawford, 2011). It is common to identify trends, spots of problems, and predictive analysis 

to gain useful information from data. However, it is a big challenge when the problem is faced 

with big data. So a feature that is necessary for a successful big data analytics system is the need 

to make the data “over-the-counter” for understanding and using the data satisfactorily. This is 

especially vital for “high-stakes data” used to make better decisions. Firms which are making 

plans for big data tend to propose methods that consume less expensive storage, and processing 

alternatives, as well as tools to enhance data management. However, some of the significant 

challenges respondents cited to big data implementation, are finding a staff to work in this 

domain and then training them while adjusting new methodologies for analytics and 

optimization. 

4.5  Optimization techniques used in the big data analysis 

Traditional optimization methods could not be used to scale the large data size correctly; thus, 

new methods are critically needed. Optimization techniques in big data include several issues 

such as optimization big images, intelligent reduction, optimization based on Hadoop, and 

mathematical and metaheuristic optimization (Emrouznejad 2016). There are numerous 

optimization methods that have been applied to power system operations. They are introduced, 

as follows:                                  

 4.5.1  Computational method for large-scale unconstrained optimization 

In some big data optimization programming, there are many variables resulting in a need for high 

memory. One of these applications is called unconstrained optimization which has broad 

application in engineering, industry, economic, and other fields. Unconstrained optimization also 
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emerges from rewriting of constrained optimization by replacing some penalty terms in objective 

functions with some constraints. In this way, there is some application of unconstrained 

optimization method in power system problems (Zhu, 2015). While there are several approaches 

to dealing with unconstrained optimization, a conjugate gradient method is a useful method to 

solve large-scale cases (Babaie-Kafaki, 2016). Conjugate gradient techniques were suggested by 

(Hestenes and Stiefel, 1952) that were used for solving the linear system. Required parameters 

for Hestenes-Stiefel (HS) Method are introduced as follows: 

1
T

HS k
k T

k k

g
d y

+=β
 

K=0,1,…                                           (4.1) 

where kd  is the search direction which is computed by inner products. This direction should be 

descent direction which means 0T
k kg d < , and ( )= ∇k kg OF x  where OF is a smooth nonlinear 

function that needs to be minimized, where 1k k ky g g+= − .  

Regarding the mean value- theorem (0,1)ζ∃ ∈ ,  thus  

2
1 1 1 1( ) ( )+ + + += − = ∇ +T T T

k k k k k k k k k k kd y d g g d F x d dα ζα  (4.2) 

kα is a step length that is determined by the line search, and the condition 1 0+ =T
k kd y  can be 

considered as a conjugacy condition. Conjugate gradient methods include algorithms that are 

between Newton and steepest descent methods. Steepest descent method (Cauchy, 1847), 

Newton method (Sun and Yuan, 2006, Watkins, 2004), conjugate direction method (Babaie-

Kafaki, 2016), quasi-newton method (Sun and Yuan, 2006), are also applied for unconstrained 

optimization problems. Using the Hessian information; the techniques affect the direction of 

steepest descent. One of the weaknesses of the steepest descent technique was the slow 

convergence of the algorithm. In this regard, the method only needs the first-order derivatives 
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while the Newton method needs second-order derivative. These methods are broadly used for 

solving large-scale optimization problems. 

 4.5.2  Numerical approach for non-smooth large-scale optimization 

Definition of smooth functions arises from the first derivative (slope or gradient) at every point. 

In a graphical view, there is no abrupt in a smooth function of a single variable and also can be 

plotted as a single continuous, for example, the logistic loss ( )( )( ) log 1 exp= + −f x x  is a smooth 

function. In contrast, non-differentiable and discontinuous functions are classified as non-smooth 

functions. Moreover, some functions with first derivatives also called non-differentiable. Graphs 

of non-differentiable functions may have abrupt bends, e.g. ( ) =f x x . These types of 

optimization are introduced as minimizing or maximizing which are broad in many applications 

such as economic (Outrata et al., 2013), engineering (Mistakidis and Stavroulakis, 2013), data 

analysis (Astorino and Fuduli, 2007, Astorino et al., 2008, Äyrämö, 2006), and control problem 

(Clarke et al., 2008). These problems are mostly large-scale. However, small-scale are also 

difficult to be solved (Karmitsa, 2016). The Boudle method is one of the techniques which could 

tackle large-scale non-smooth optimization problem. There are two kinds of the bundle method 

called, limit memory bundle method (LMBM) and diagonal bundle method (D-bundle). Bundle 

method has also applied in different power system applications such as uncertainty (Bacaud et 

al., 2001), scheduling (Zhang et al., 1999, Mezger and de Almeida, 2007), decomposition 

algorithms (Borghetti et al., 2003, Belloni et al., 2003). Some scholars have presented some 

works for nonsmooth functions  (Attaviriyanupap et al. (2002), (Liu and Cai, 2005), Dotta et al. 

(2009), Roy et al. (2010)). 
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 4.5.3 Big data in logistics optimization  

Logistics refers to actions which occur within the boundaries of single firms and supply chain 

mentions to networks of organizations which work together and coordinate their activities to 

deliver a product to market. Levels of the decision in the supply chain as illustrated in Figure 4.9, 

and include three levels (Schmidt and Wilhelm, 2000). Decisions which determine the fleet size 

in marine logistics, for example, and facility location and layout belong to the strategic level. The 

logistics network may be possible to serve vast size of customers up to thousands of customers 

for or a particular network. Operational level involves vehicle routing through transportation 

network, loading products, the landing of vessels, while tactical level production schedule and 

individual services (Brouer et al., 2016). However Seaborn constitutes in the logistics network, 

around 80% of transportation. In this case, network design problem is a primary planning 

problem in the logistics network. Regarding the demands which should be transported and 

selecting ports for servicing to supply chain decision makers wish to draw routes for their career 

to satisfy requirements of customers. 
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Figure 4.9:  Different logistics decisions (Schmidt and Wilhelm, 2000) 

 

Sheu (2008) proposed a novel multi-objective optimization programming model to optimize 

operations in nuclear power generation (Taiwan nuclear power generation firm) and reduce 

waste logistics. The author has considered risk reduction in the formulation. The result depicts 

the improvement of performance from 7.41% to 18.37%, and risks were also reduced by 37.75%.  

 4.5.4  Big data analytics based on convex and nonconvex optimization 

Mathematically, a single objective minimizing (maximizing) optimization could be presented as 

follows:  

min(max) ( )
. . ( ) 0, 1,...,≤ =
∈

i

OF x
s t g x i m
x D  

(4.3) 

where x is called a decision vector and D is the feasible region. OF is an objective function, and 

g is constrained to function. Convexity condition for f, given D, holds: 

1 2 1 2( (1 ) ) ( ) (1 ) ( ) 1 2 , [0,1]+ − ≤ + − ∀ ≠ ∈ ∀ ∈OF x x OF x OF x x x Dλ λ λ λ λ  (4.4) 
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Moreover, OF is strictly convex if the following condition holds: 

1 2 1 2( (1 ) ) ( ) (1 ) ( ) 1 2 , [0,1]+ − < + − ∀ ≠ ∈ ∀ ∈OF x x OF x OF x x x Dλ λ λ λ λ  (4.5) 

Equation (4.3) is called convex optimization problem if both functions OF and g are convex. 

There is a possibility to find a global solution for equation (4.3) if OF was convex. However, 

many real cases face the nonconvex optimization problem. In these cases, researchers try to find 

the local or global solution (Grossmann, 2013, Mistakidis and Stavroulakis, 2013). One of the 

relevant optimization problems in power system is known as the economic dispatch (ED). In the 

ED, the objective is defined allocating power demand among power plants in the most economic 

situation such that all operational constraints are satisfied. The cost function represents the 

quadratic fuel cost, and the valve-point effects cost which makes the objective function 

discontinuous, nonconvex. Selvakumar and Thanushkodi (2007) have applied a new particle 

swarm optimization (PSO) approach for nonconvex ED problem and suggested a new method in 

PSO based on the worst position of the particle and integrated it with local random search (LRS) 

and validated the proposed solution methodology with three economic dispatch tests. Their 

proposed algorithm shows significant improvement in convergence to the solution. Chaturvedi et 

al. (2009) used the PSO with time-varying acceleration coefficient in such a way that controls 

global and local search to achieve the global solution.  

In many real applications, there are several objectives to be optimized. Multi-objective 

optimization usually includes conflict functions, in which improving one function lead to 

deterioration of the other one, so there is no single solution that can optimize all the functions 

together. In this case, researchers are looking for Pareto optimal solutions which are good 

compromising solutions. Equation (4.6) shows a multi-objective problem: 
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1 2( ) { ( ), ( ),..., ( )},
. .

=

∈

nMin Max OF OF x OF x OF x
s t
x D

 
(4.6) 

Vector x D∈ is called Pareto solution to the problem (4.6) if there is no *x  such that 

*( ) ( )≤i iOF x OF x for any i=1,…,n and *(1 ) : ( ) ( )∃ ≤ ≤ <j jj j n OF x OF x . If *( ) ( )≤OF x OF x , it is 

said that *x is a non-dominated solution. Guo et al. (2016) applied distributed optimization for a 

large scale non-convex transmission network. The authors applied spectral partitioning approach 

alongside the distributed optimization method, known as alternating direction method of 

multipliers (ADMM) to solve a nonconvex problem. In their work, they have shown that the 

solution found by ADMM is almost close to a local optimum.  

 4.5.5  Metaheuristic algorithms for big data optimization  

Several new challenges have brought with the age of big data. Regarding optimization, 

researchers may face large-scale size problems, including hundreds, thousands, and even 

millions of variables. Several techniques have introduced and developed for tackling high 

dimensional optimization problems. Among them, metaheuristic algorithms are known as 

efficient algorithms with high computing performance. Several scholars have used metaheuristic 

algorithms in power system (Chiang, 2016, Camillo et al., 2016, Rajesh et al., 2016, Chen and 

Chang, 1995, Lee and Yang, 1998). There are significant open research fields and issues for 

improvement. Among metaheuristic algorithms, evolutionary algorithms are known as a great 

powerful technique for continuous global optimization. However, increasing the number of 

variables resulting in deteriorating performance of the algorithm. There is a need for suitable 

approaches for dealing large scale size problem to find global solutions to the optimization 

problems. Many scholars have attempted to face this difficulty (Wang et al., 2010, Yan et al., 
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2004, Chiou, 2007, Lin et al., 2017, Beigvand et al., 2017). An ED is a significant tool in power 

system operations, which schedules committed generating to meet demand in a point at a 

minimum cost (Beigvand et al., 2017). Beigvand et al. (2017) proposed hybridization of PSO and 

the Gravitational Search Algorithm (GSA) for a large-scale, non-convex, non-smooth, nonlinear, 

and non-continuous combined heat and power dispatch. Summary of (Beigvand et al., 2017) 

proposed algorithm is presented in Figure 4.10. 

 

 
Figure 4.10: Phase classification for Hybrid algorithm 

The authors have compared results with several optimization algorithms such as culture PSO 

(CPSO), modified PSO (MPSO), orthogonal teaching learning-based optimization (OTLBO), 

and teaching learning-based optimization (TLBO), GSA. Regarding robustness, the suggested 

method has better performance than other solution optimization methods. Moreover, the results 

show hybrid algorithm has saved computational time significantly. Quality solution and the 

convergence speed of the hybrid algorithm possess superior performance than other optimization 

algorithms. Using of renewable energy has attracted the attention of power system planners 

across the world. Rajesh et al. (2016) applied differential evolution algorithm in a model of a 

solar plant to minimize both emission and cost. In the model, the data were gathered from 
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demand and plants, then the model is generated based on assumption. After several studies, the 

model is developed, and a solution methodology has been selected for the proposed model. A 

sensitivity analysis was applied to the proposed model, and finally, the future power system 

model is generated with characteristics such as total cost, capacity additions, emission level. 

Naderi et al. (2017) proposed a fuzzy adaptive, comprehensive -learning particle swarm 

optimization known as FAHCLPSO for the large-scale power dispatch optimization problem. 

Objective functions for the proposed algorithm include minimizing the active power 

transmission losses and improving the voltage profile of the system. The authors have validated 

the performance of their suggested algorithm with three different tests, including IEEE 30-bus, 

IEEE 118-bus, and IEEE 354-bus test systems. The authors have claimed that the proposed 

algorithm (FAHCLPSO) was the first applied for optimal reactive power dispatch. They have 

used fuzzy logic to enhance the searchability of the algorithm.  

Table 4.4 and Table 4.5 review classification of metaheuristic methods which have been carried 

out by scholars. Population-based approaches introduce most techniques and classified by 

evolutionary computations such as PSO, genetic algorithm (GA), Tabu search (TS), AND ant 

colony optimization (ACO). 
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 Table 4.4: Literature of metaheuristic classification for power system problems 

 

Metaheuristic 

Population Trajectory Implicit Local search 

Naturally inspired No memory 

  Implicit Explicit Direct  

Genetic 
algorithm 

Ant colony  Evolutionary 
programming 

Differential evolution Simulated 
annealing 

PSO Tabu search Scatter 
search 

Stochastic local 
search 

Chiang (2005) 

Gerbex et al. 
(2001)  

Walters and 
Sheble (1993) 

Hou et al. (2002) 

Hou et al. (2003) 

Niu et al. (2010) 

Khatod et al. 
(2013) 

Tsai and Hsu 
(2010) 

Chung et al. 
(2010)  

(Yang et al., 1996) 

Lakshminarasimman 
and Subramanian (2006) 

Liang et al. (2007) 

Su and Lee (2003) 

Sayah and Zehar (2008) 

 

Abido (2000) 

Zhuang and 
Galiana (1990) 

Basu (2005) 

Surendra and 
Parthasarathy 
(2014) 

Syahputra and 
Soesanti (2015) 

Pan and Das 
(2016) 

Lin et al. (2002) 

Abido (1999) 

Mori and Goto 
(2000) 

de Silva et 
al. (2013) 

Mori and 
Shimomugi 
(2007) 

Mizutani et 
al. (2005) 

Das and Patvardhan 
(1998) 

Das and Patvardhan 
(2002)  

Hoos and Stützle 
(2004) 
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Table 4.5: Literature of metaheuristic classification for power system problems (continued) 

 

Metaheuristic 

Population Trajectory Implicit Local search 

Naturally inspired No memory 

  Implicit Explicit Direct  

Genetic 
algorithm 

Ant colony  Evolutionary 
programming 

Differential 
evolution 

Simulated 
annealing 

PSO Tabu search Scatter search Stochastic local 
search 

Panda and 
Yegireddy 
(2013) 

Apribowo and 
Hadi (2016) 

Kaur et al. 
(2017) 

Pothiya et al. 
(2010) 

Fetanat and 
Shafipour (2011) 

Besheer and 
Adly (2012) 

Wu and Ma (1995) 

Yuryevich and 
Wong (1999)  

Lai (1998) 

Cai et al. (2008) 

Shaheen et al. 
(2011) 

Wang et al. (2009) 

Abido (2000) 

Romero et al. 
(1995)  

Lyden and Haque 
(2016)  

Ahila et al. (2015)  

Abderrezek et al., 
(2016) 

Rouhi and 
Effatnejad (2015)  

Park et al. (2005) 

Niknam (2010) 

(Park et al., 2003) 

Ramírez-Rosado and 
Domínguez-Navarro 
(2006) 

Katsigiannis et al. 
(2016) 

Asadpour et al. 
(2015) 

Habibi et al. 
(2014)  

Castillo et al. 
(2007) 

de Padua et al., 
(2015)  

Hoos (1998) 

Newton et al. 
(2013) 

(Fukuta and Ito 
(2011)) 



26 

 

  

4.6  Conclusion                                                                                                                   

The chapter overviewed big data optimization issues in electric power systems. The scientific 

communities, distribution of publications, and collaboration among researchers around the world 

have been analyzed. The different types of big data optimization in power system have been 

discussed. Different types of complicated optimization problems in power systems were 

discussed. For this aim, factors such as nonlinearity of objective functions, number of variables, 

Nonsmooth functions were reviewed. One of the most difficulties dealing with these kinds of big 

data problems relates to the solution approach as addressed.  

Because of the ongoing efforts in organizing smart grid infrastructure, the utility business is 

facing new challenges in dealing with big data and using them to improve decision-making. Big 

data in the electric power industry can be described in terms of volume, velocity, variety, 

veracity, value, or all the five terms. Usually, utilities do not handle data using an individual, 

consistent data management structure which makes ad hoc use of the new decision-making 

packages needlessly complex. Although analysis of data is accessed through different data, if the 

data are not timed and spatial, unless they have a common data syntax and semantics for ease of 

use and if it is not fit for the uniform and common combination of the power system model, such 

analysis is perhaps not easy to implement. Moreover, one of the most challenging issues in 

power systems for decision makers arise from optimization problems.  

In addition, the chapter shows a significant effort involved in large-scale handling optimization 

which led to several algorithms, including mathematical optimization and metaheuristic 

optimizations, which metaheuristic optimizations that have proven to be more accurate, more 

efficient, and faster than earlier algorithms. Issues such as logistics optimization as well as 
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Nonsmooth, nonconvex, and unconstrained large-scale optimization are presented. Finally, some 

metaheuristic methods in large-scale power system optimization are reviewed. 
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