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Abstract

A history-dependent cohesive zone model approach is used to study the crack
behaviour in elastic and visco-elasto materials. The cohesive (yield) stress at
the cohesive zone points is related to the nonlinear normalised equivalent stress
functional over the stress history at these points, and is expressed in the form of
an Abel-type (fractional) integral. We analyse the cohesive zone length evolu-
tion in time and the crack tip opening during the stationary crack stage as well
as during the propagating crack stage. We consider the external load increasing
linearly with time and compare the solution with the case of the constant load.
We obtain the solution numerically and analyse the influence of the viscoelas-
ticity by comparing with the case of purely elastic behaviour of the bulk of the
material.

Keywords: Cohesive zone, Time-dependent load, Abel-type integral equation,
Viscoelasticity

1. Introduction

An important assumption needed in order to use linear elastic fracture me-
chanics is that the inelastic region at the crack tip must be negligible in com-
parison to the size of the whole crack itself. However, in many situations this
assumption does not hold. In such cases, elasto-plastic fracture mechanics is
considered instead, which particularly includes cohesive zone models. They al-
low modelling of short crack growth as well as crack nucleation and initiation.
In such models, it is assumed that there exists a cohesive zone, CZ, which is
the area between two separating but still sufficiently close surfaces ahead of the
crack tip, see the shaded region in Fig. 1.
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Figure 1: Cohesive zone

At this cohesive zone, cohesive tractions pull the cohesive faces together. The
external loads applied to a body cause the crack to propagate and could also
cause the crack faces to move further away from each other. By implementing
a cohesive zone model, we would like to find out the size of this cohesive zones,
and more importantly, when the crack will start to propagate and how fast will
it propagate thereafter. When the crack propagates, the cohesive forces vanish
at the points where the cohesive zone opening reaches a critical value and these
points become the crack surface points, while the new material points, where
the history-dependent normalised equivalent stress reaches a critical value, join
the cohesive zone. So, the CZ is practically attached to the crack tip ahead of
the crack and moves with the crack, keeping the normalised equivalent stress
finite in the body.

There have been many cohesive zone models (employing different traction-
separation laws) introduced in the literature. The simplest model, introduced by
Leonov-Panasyuk-Dugdale (LPD) (1959-1960), see [3], [8], is when the cohesive
stress, that can be associated with the yield stress, σy, is constant, while the
bulk of the material is elastic. This model is one of the most popular cohesive
zone models and many modifications of this model have been made and widely
used in nonlinear fracture mechanics.

The 3 main compounds of a cohesive zone model are:

• the constitutive equations in the bulk of the material;

• the constitutive equations in the cohesive zone;

• the criterion for the cohesive zone to break, i.e., the crack to propagate.

The model presented in this paper is an extension of the LPD model to
linear visco-elastic behaviour of the bulk of materials with non-linear history-
dependent constitutive equations in the cohesive zone. Our aim is to find the
time evolution of the CZ before the crack starts propagating, the delay time, af-
ter which the crack will start to propagate, and model further the time evolution
of the crack and the CZ. In all these stages we assume the quasi-static evolution
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of crack and cohesive zones, i.e., the dynamic effects are not considered. The
case of a constant external load was considered in [6], with some preliminary
results published in [7]. The focus of this paper is to show that the suggested
model and methods for solving the corresponding crack problems are equally
applicable to the external external load variable in time.

2. Problem Formulation

Let the problem geometry be as in Fig. 1, i.e, the crack occupies the inter-
val [−â(t̂), â(t̂)] and the cohesive zone occupies the intervals [−ĉ(t̂),−â(t̂)] and
[â(t̂), ĉ(t̂)] in an infinite linearly elastic or viscoelastic body under plane strain
or plain stress conditions. The body is loaded at infinity by traction q̂(t̂) in the
direction normal to the crack, applied at the time t̂ = 0 and is constant in the
coordinate x̂. The crack is traction-free, i.e., σ̂ŷŷ(x̂, 0, t̂) = 0 for |x̂| < â(t̂). To
simplify the notations, we denote the normal stress ahead of the crack as σ̂, i.e.,
σ̂(x̂, t̂) = σ̂ŷŷ(x̂, 0, t̂). The initial CZ tip coordinate and crack tip coordinates
are prescribed, ĉ(0) = â(0) = â0, while the functions ĉ(t̂) and â(t̂) for time t̂ > 0
are to be found.

We will now formulate and normalise the principal equations while consid-
ering two cases: a constant external load q̂ and an external load q̂(t) varying in
time.

2.1. Natural Form of the Cohesive Zone Condition
First, we will replace the LPD cohesive zone stress condition, σ = σy, with

the history-dependent condition

Λ(σ̂; t̂) = 1, (1)

where

Λ(σ̂; t̂) =

(
β

bσβ0

∫ t̂

0

|σ̂(τ̂)|β(t̂− τ̂)
β
b−1dτ̂

) 1
β

(2)

is the normalised history-dependent equivalent stress, |σ̂| is the maximum of
the principal stresses, and t̂ denotes time.

The parameters σ0 and b are material constants in the assumed power-type
relation

t̂∞(σ̂) =

(
σ̂

σ0

)−b
(3)

between the physical rupture time t̂∞ and the constant uniaxial tensile stress
σ̂ applied to a sample without cracks. These parameters can be obtained by
fitting the creep durability experimental data on macro-samples. Here, b is
dimensionless, t̂∞ has units of time, e.g., seconds, s, and if the stress σ̂ is
in Pascals, Pa, then σ̂0 has units Pa·s1/b. For many structural materials the
parameter b is in the range between 5 and 20, cf. e.g. [10] and references
therein. The dimensionless parameter β is a material constant in the nonlinear

3



accumulation rule for durability under variable load, see [10]. Further details of
this model can be found in [6] and [4].

Note that relations (1)-(2) were implemented in [11] and [5] to solve a sim-
ilar crack propagation problem without a cohesive zone; i.e. it was assumed
that when condition (1) is reached at a point, the crack spreads to this point.
However, such approach appeared to be inapplicable for b ≥ 2. In this paper, a
cohesive zone approach is developed instead, in order to cover the larger range
of b values relevant to structural materials. In the CZ approach, when condition
(1) is reached at a point, the cohesive zone spreads to this point.

As proved in [6, Section 3.2], the CZ model is applicable only if material
parameters, b and β, of the history dependent yield condition, are such that
b > 0, 0 < β < b. This implies that the CZ model is not applicable for
the Robinson-type history-dependent yield condition, based on the power-type
durability diagram, for which β = b.

The cohesive zone condition (1)-(2) at a point x̂ on the cohesive zone can be
rewritten as∫ t̂

t̂c(x̂)

σ̂β(x̂, τ̂)(t̂− τ̂)
β
b−1dτ̂ =

bσβ0
β
−
∫ t̂c(x̂)

0

σ̂β(x̂, τ̂)(t̂− τ̂)
β
b−1dτ̂ , (4)

for t̂ ≥ t̂c(x̂) and â(t̂) ≤ |x̂| ≤ ĉ(t̂). Here, t̂c(x̂) denotes the time when the
cohesive zone spreads to the point x̂. Equation (4) is an inhomogeneous non-
linear Volterra integral equation of the Abel type (nonlinear fractional integral
equation) with unknown function σ̂(x̂, t̂) for t̂ ≥ t̂c(x̂).

2.2. Normalised Form of the Cohesive Zone Condition
To simplify condition (4), and other equations further on, we normalise the

variables, which will make them dimensionless and reduce the number of sig-
nificant parameters. This also make the comparison of the results for constant
and variable load cases more illustrative.

For the constant loading case, q̂(t̂) = q̂0 is independent of time, and using
equation (3) we obtain

t̂∞ =

(
q̂0
σ0

)−b
.

Then we can introduce the normalised time, coordinate variable, crack tip co-
ordinate, cohesive zone tip coordinate, and stress as follows,

t =
t̂

t̂∞
, x =

x̂

â0
, a(t) =

â(t t̂∞)

â0
, c(t) =

ĉ(t t̂∞)

â0
, σ(x, t) =

σ̂(x â0, t t̂∞)

q̂0
,

(5)
and the normalised external load becomes q(t) = q̂(t̂)/q̂0 = 1.

The situation is a bit more complicated when the load is time-dependent,
particularly, when it is given by a linear function, i.e., q̂(t̂) = q̇ t̂, with q̇ = const.
Let us denote by t•∞ the corresponding rupture time, i.e., the time when the
cohesive zone spreads over the infinite plane without crack, under the variable
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load. To obtain t̂•∞, we consider equation (4) for t̂ = t̂c and σ̂(x̂, τ̂) = q̂(τ̂) = q̇ τ̂ ,
which reduces to

q̇β
∫ t̂

0

τ̂β(t̂− τ̂)
β
b−1dτ̂ =

bσβ0
β
. (6)

Expressing the integral in (6) in terms of the Beta-function and solving the
equation for t̂ = t̂•∞ gives

t̂•∞ =

(
σ0
q̇α

) b
1+b

, (7)

where

α :=

 b

β B
[
β
b , 1 + β

]
−1/β ,

and B is the Beta-function.
For the load linearly increasing in time, the load maximum, reached before

rupture in the infinite plane without crack, is evidently q̂(t̂•∞) = q̇t̂•∞. Let us
also introduce the reference constant load q̂0 = σ0t̂

−1/b
•∞ under which such plane

ruptures at the same time t̂•∞. Expressing q̇ and t̂•∞ in terms of q̂(t̂•∞) and
q̂0 from these two equations and substituting them in equation (7), we obtain

q̂0 = αq̂(t̂•∞).

Now, similarly to the case of constant load, we can introduce the normalised
time, coordinate variable, crack tip coordinate, cohesive zone tip coordinate,
and stress as follows,

t =
t̂

t̂•∞
, tc =

t̂c

t̂•∞
, x =

x̂

â0
,

a(t) =
â(t t̂•∞)

â0
, c(t) =

ĉ(t t̂•∞)

â0
, σ(x, t) =

σ̂(x â0, t t̂•∞)

q̂0
, (8)

and the normalised external load becomes

q(t) =
q̂(t̂)

q̂0
=
t̂q̇

q̂0
=
t t̂•∞q̇

q̂0
=

t

α

.
Hence, after the normalisation, we arrive at the following form of the cohesive

zone condition (4) for both the constant and variable load∫ t

tc(x)

σβ(x, τ)(t− τ)
β
b−1dτ =

b

β
−
∫ tc(x)

0

σβ(x, τ)(t− τ)
β
b−1dτ (9)

for a(t) ≤ |x| ≤ c(t).
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2.3. Stress Ahead of the Cohesive Zone
Let us first consider the case of linear elastic constitutive equations for the

bulk of the material. Applying the results by Muskhelishvili (see [12], Section
120), we have for the stresses ahead of the cohesive zone in the elastic material,

σ̂(x̂, t̂) =
x̂√

x̂2 − ĉ2(t̂)

q̂(t̂)− 2

π

∫ ĉ(t̂)

â(t̂)

√
ĉ2(t̂)− ξ̂2

x̂2 − ξ̂2
σ̂(ξ̂, t̂)dξ̂

 , (10)

for t̂ ≤ t̂c(x̂) and |x̂| > ĉ(t̂). As one can see from equation (10), σ̂(x̂, t̂) has
generally a square root singularity as x̂ tends to ĉ.

Normalising time, space and stress using equations (5) for the constant load
case and (8) for the variable load case, we arrive at the following equation for
the normalised stress ahead of the crack tip

σ(x, t) =
x√

x2 − c2(t)

(
q(t)− 2

π

∫ c(t)

a(t)

√
c2(t)− ξ2
x2 − ξ2

σ(ξ, t)dξ

)
for |x| > c(t)

(11)
where

q(t) =

1 for a constant load
t

α
for a variable load.

(12)

2.4. The Stress Intensity Factor
A sufficient condition for the normalised equivalent stress, Λ, to be bounded

at the cohesive zone tip is that the stress σ̂ is bounded, while the necessary
condition for the latter is that the stress intensity factor, K̂, is zero there.

Multiplying the stress in equation (10) by
√
x̂− ĉ(t̂) and taking the limit as x̂

tends to ĉ(t̂) yields

K̂(ĉ(t̂), t̂) =

√
ĉ(t̂)

2

q̂(t̂)− 2

π

∫ ĉ(t̂)

â(t̂)

σ̂(ξ̂, t̂)√
ĉ2(t̂)− ξ̂2

dξ̂

 .

In the constant loading case, we will use normalisation relations (5) as well as
the following normalisation for the stress intensity factor

K(c, t) =
K̂(c â0, t t̂∞)

q̂0
√
â0

,

while, in the variable loading case, we will use normalisation relations (8) as
well as the following normalisation for the stress intensity factor

K(c, t) =
K̂(c â0, t t̂•∞)

q̂0(t̂)
√
â0

.
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Finally, this leads to the following normalised equation for the stress intensity
factor

K(c(t), t) =

√
c(t)

2

(
q(t)− 2

π

∫ c(t)

a(t)

σ(ξ, t)√
c2(t)− ξ2

dξ

)
. (13)

where q(t) is given by (12).

2.5. Objectives
Further on we will study the evolution of the cohesive zone length with

time during two stages: (i) stationary crack stage; and (ii) propagating crack
stage. In each of these two stages, we will consider two models for the bulk
of the material: (a) linear elasticity and (b) linear viscoelasticity. The main
parameters involved in the CZM equations are b and β.

We will compare the results for the external load varying in time and for the
constant one. The suitability of the numerical method used in these problems
has been analysed in [6] and [4], where mesh-refinements and the numerical
convergence rates were considered.

3. Cohesive Zone Growth for a Stationary Crack

In this section we will consider the stationary crack stage, before the crack
starts propagating, i.e., a(t) = a(0) = 1, and thus only the cohesive zone grows
with time.

The details of the algorithm used to find the cohesive zone length with
respect to time can be found in Section 4.1 in [6]. Briefly, we introduce a time
mesh with time steps ti. At each time step ti, we solve equation K(ci, ti) = 0
to obtain c(ti).

In order to evaluate the integral in (13), we need to find the stress in the
cohesive zone as well as the cohesive zone tip coordinate. To that end, we solve
integral equation (9) for σβ(x, ti) when x = c(tk), k = 0, 1, 2, 3, ..., i − 1, where
tc(x) = tk, employing analytical solution of the generalised Abel-type integral
equation. As the right hand side of equation (9) depends on the stresses ahead
of the cohesive zone tip, we use equation (11) to obtain σβ(x, t) for x > c(t),
when t ≤ tk.

All programming in this section and further on was implemented in MAT-
LAB. The integrals were evaluated in terms of the Gauss hypergeometric func-
tion 2F1. We were solving the problem for several different b and for β = b/2,
β = b/3, β = b/4, β = b/6 or β = b/8 (for such choices of β the Gauss hy-
pergeometric functions can be represented in a simple analytical form). Note
that this limitation on β choices is not essential and can be avoided if an ap-
propriate general numerical integration scheme is used for approximating the
weakly-singular Abel-type integrals.

Using the outlined numerical scheme, we obtained the evolution of the co-
hesive zone tip position as well as the stress distribution on the cohesive zone.
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Figure 2: CZ tip coordinate vs. time for b = 4, β = 2
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The curves in Fig. 2 show that the cohesive zone length ahead of the sta-
tionary crack is monotonically and continuously increasing with time. We can
also conclude that the CZ tip coordinate grows more rapidly with time in the
constant loading case than in the variable loading case. From Fig. 3 we can
see that the stress at a material point ahead of the cohesive zone is growing
monotonically in time t, peaking at the time t∗ when the point becomes the CZ
tip, and then monotonically decreasing inside the CZ.

Note that on the stationary crack stage, the cohesive zone evolution and
stress distribution are the same for the elastic and visco-elastic models and do
not depend on the elastic constants or visco-elastic operators in the considered
problem.

4. Crack Tip Opening

We will first consider the case when the bulk of the material is linearly
elastic and then convert the obtained solution to the case of linear visco-elastic
materials using the so-called Volterra principle.

4.1. Linear Elastic Material
The crack opening is calculated similar to the classical LPD model in [8, 3]

and is presented as

[ûe](x̂, t̂) = [û(q̂)e ](x̂, t̂) + [û(σ̂)e ](x̂, t̂)],

where

[û(q̂)e ](x̂, t̂) = −κ + 1

2πµ
q̂(t̂)

∫ ĉ(t̂)

−ĉ(t̂)
Γ̃(x̂, ξ̂; ĉ(t̂))dξ̂ (14)

and

[û(σ̂)e ](x̂, t̂) =
κ + 1

2πµ

(∫ −â(t̂)
−ĉ(t̂)

σ̂(ξ̂, t̂)Γ̃(x̂, ξ̂; ĉ(t̂))dξ̂ +

∫ ĉ(t̂)

â(t̂)

σ̂(ξ̂, t̂)Γ̃(x̂, ξ̂; ĉ(t̂))dξ̂

)
.

(15)
In the above expressions, µ = E/[2(1 + ν)] is the shear modulus, E is Young’s
modulus of elasticity and ν is Poisson’s ratio, κ = 3− 4ν under the plain strain
conditions, while κ = (3 − ν)/(1 + ν) under the plain stress conditions, and
finally,

Γ̃(x̂, ξ̂; ĉ(t̂)) = ln

 ĉ2(t̂)− x̂ξ̂ −
√

(ĉ2(t̂)− x̂2)(ĉ2(t̂)− ξ̂2)

ĉ2(t̂)− x̂ξ̂ +

√
(ĉ2(t̂)− x̂2)(ĉ2(t̂)− ξ̂2)

. (16)

After integrating (14) and combining the integrals ranging from −ĉ(t̂) to −â(t̂)
and â(t̂) to ĉ(t̂) in (15), we obtain

[û(q̂)e ](x̂, t̂) =
q̂(t̂)(1 + κ)

2µ

√
ĉ2(t̂)− x̂2,
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[û(σ̂)e ](x̂, t̂) =
κ + 1

2πµ

(∫ ĉ(t̂)

â(t̂)

σ̂(ξ̂, t̂)Γ(x̂, ξ̂; ĉ(t̂))dξ̂

)
,

where

Γ(x̂, ξ̂; ĉ(t̂)) = ln

2ĉ2(t̂)− ξ̂2 − x̂2 − 2

√
(ĉ2(t̂)− x̂2)(ĉ2(t̂)− ξ̂2)

2ĉ2(t̂)− ξ̂2 − x̂2 + 2

√
(ĉ2(t̂)− x̂2)(ĉ2(t̂)− ξ̂2)

.
We can remark that Γ(x̂, ξ̂; ĉ(t̂)) < 0 when x̂2, ξ̂2 < ĉ2(t̂).

The crack tip opening occurs at x = a(t) and therefore is

δ̂e(t̂) := [ûe](â(t̂), t̂) =
1 + κ

2µ

(
q̂

√
ĉ2(t̂)− â2(t̂) +

1

π

∫ ĉ(t̂)

â(t̂)

σ̂(ξ̂, t̂)Γ(â(t̂), ξ̂; ĉ(t̂))dξ̂

)
.

(17)
Using the space, time, and stress normalisation given previously, we will apply
the normalisations

δe(t) =
8µ δ̂e(t t̂∞)

q̂0â0(1 + κ)
and δe(t) =

8µ δ̂e(t t̂•∞)

q̂0â0(1 + κ)
, (18)

for the constant and varying load cases, respectively. Consequently, we have the
following formula for the normalised crack tip opening

δe(t) =
4

π

(
q(t)π

√
c(t)2 − a(t)2 +

∫ c(t)

a(t)

σ(ξ, t)Γ(a(t), ξ; c(t))dξ

)
. (19)

where, as before, q(t) is given by (12).

4.2. Linear Viscoelastic Material
To obtain the crack tip opening in the viscoelastic case, we will implement

the so-called Volterra principle, according to which we have to replace the elas-
tic constants µ and ν in the elastic solution by the corresponding viscoelastic
operators, to arrive at the viscoelastic solution. Although this approach is not
always applicable to viscoelastic problems with moving boundaries, it is possible
to show, see [14], that this approach leads to a viscoelastic solution for the plane
symmetric problem with a straight propagating crack. This particularly means
that the stress representation ahead of the CZ tip following from the results by
Muskhelishvili, see [12], and given by equation (11), which does not include the
elastic constants at all, is valid also for the considered viscoelastic problem.

For simplicity, we will consider the viscoelastic material with constant (purely
elastic) Poisson’s ratio ν (and thus the parameter κ will also remain constant).
Then, to obtain the crack opening in the viscoelastic case, we have to replace
1

µ
in (17) by the second kind Volterra integral operator µ−1 defined by

(
µ−1σ̂

) (
t̂
)

=
σ̂
(
t̂
)

µ
+

∫ t̂

0

J̇
(
t̂− τ̂

)
σ̂ (τ̂) dτ̂ ,
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µ is the instant shear modulus J is the creep function. To this end, the crack
opening in the viscoelastic case can be presented as

δ̂v
(
t̂
)

=
(
µ−1µδ̂e

) (
t̂
)

= δ̂e
(
t̂
)

+ µ

∫ t̂

0

J̇
(
t̂− τ̂

)
δ̂e (τ̂) dτ̂ . (20)

We will further use the creep function of a standard linear solid,

J
(
t̂− τ̂

)
=

1

µ
+
θ̂

η

(
1− e−

1
θ̂
(t̂−τ̂)

)
,

and so
J̇
(
t̂− τ̂

)
=

1

η
e−

1
θ̂
(t̂−τ̂),

where θ̂ denotes the relaxation time and η the viscosity. So, equation (20)
becomes

δ̂v
(
t̂
)

= δ̂e
(
t̂
)

+
µ

η

∫ t̂

0

e−
1
θ (t̂−τ̂)δ̂e (τ̂) dτ̂ . (21)

We further use the same normalisations as before to normalise space, time,
stress. Furthermore, for the elastic crack tip opening we use normalisation (18),
the similar formulas to normalise the viscoelastic crack tip opening as follows,

δv(t) =
8µ δ̂v(t t̂∞)

q̂0â0(1 + κ)
and δv(t) =

8µ δ̂v(t t̂•∞)

q̂0â0(1 + κ)
, (22)

for the constant and varying load cases, respectively. Consequently, the nor-
malised crack tip opening for the viscoelastic case is given by

δv(t) = δe(t) +m

∫ t

0

e−
(t−τ)
θ δe(τ)dτ (23)

where m =
µt̂∞
η

, θ =
θ̂

t̂∞
for the constant load and m =

µt̂•∞
η

, θ =
θ̂

t̂•∞
for

the variable load, and these parameters are dimensionless.
Implementing the integration procedure described in [6], we obtained numer-

ical results for the crack tip opening in a viscoelastic material with parameters

θ = 1, m = 5, (24)

that can be attributed to PMMA (cf. Appendix A in [6]), and compared them
with the elastic material case, see Fig. 4.
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Figure 4: Crack opening vs. time for viscoelastic and elastic materials with b = 4,
β = 2, m = 5, θ = 1.

5. Cohesive Zone Growth for a Propagating Crack

5.1. Crack Growth Criterion
As in the LPD model, we assume that the crack starts to propagate when the

crack tip opening δ̂ reaches a critical value δ̂c. For example, the experimentally
determined value for PMMA is δ̂c = 0.0016mm, see [2, Section 10.3.2]. Using
the normalisations given in equation (18) and parameters

µ/q̂0 = 23, κ = 1.6, â0 = 0.1mm, (25)

the normalised critical crack tip opening becomes

δc ≈ 1.13. (26)

The time instant, when the crack tip opening reaches a critical value, will be
referred to as the fracture delay time and denoted by t̂d, where td corresponds
to the normalised delay time.

In terms of the normalised crack tip openings, the crack begins to grow when
δ(t) reaches the critical value δc. During the crack propagation stage, the crack
tip opening satisfies equation

δe(t) = δc, t ≥ td (27)

12



for the purely elastic case; and

δv(t) = δc, t ≥ td (28)

for the viscoelastic case. In the crack propagation stage, the crack length a(t)
varies with time and is no longer a constant value. The next section will explain
the algorithm used to study how the crack length and CZ length evolve with
time.

5.2. Numerical Algorithm
The crack length a is equal to 1 for all steps t < td, and at t = td the crack

length begins to grow. The first aim in the crack propagation stage is to find the
delay time, td. This is done by solving equations (27) or (28) using the secant
method, while a(td) = 1; the corresponding value of c(td) is obtained by setting
the stress intensity factor at the CZ tip to zero.

To calculate the crack length and the CZ length at t > td, we use a uniform
time mesh with time steps ti = td + i · h, where h is the same step size used
during the stationary crack stage. We then implement an iterative method to
solve equation (27) (in the elastic case) or (28) (in the visco-elastic case) for
a(ti). To this end, we need c(ti) at each iteration, and this is obtained by
setting the stress intensity factor at the CZ to zero. Thus we have the following
equations to be solved. q(t)

(a) The condition Λ(σ(x), t) = 1, i.e.,∫ t

tc(x)

σβ(x, τ)(t− τ)
β
b−1dτ =

b

β
−
∫ tc(x)

0

σβ(x, τ)(t− τ)
β
b−1dτ, (29)

for a(t) ≤ |x| ≤ c(t), t > tc(x).

(b) The stress ahead of the CZ tip,

σ(x, t) =
x√

x2 − c2(t)

(
q(t)− 2

π

∫ c(t)

a(t)

√
c2(t)− ξ2
x2 − ξ2

σ(ξ, t)dξ

)
, (30)

for |x| > c(t).

(c) The zero stress intensity factor at the CZ tip,

K(t, a(t), c(t)) =

√
c(t)

2

(
q(t)− 2

π

∫ c(t)

a(t)

σ(ξ, t)√
c2(t)− ξ2

dξ

)
. (31)

(d) Setting the crack tip opening to the critical value

U(t, a(t), c(t)) = δe(t)− δc = 0 for the elastic case
U(t, a(t), c(t)) = δv(t)− δc = 0 for the viscoelastic case.

The details of the algorithm used for finding the length of the crack with respect
to time, and the corresponding CZ length at that time, can be found in Section
6.1 in [6].
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5.3. Numerical results
We will look at the elastic as well as the viscoelastic bulk of the material

under constant and variable external loads, with some material parameters given
in (24)-(26), while the values of b and β are presented in figure legends and
captions.

Graphs for the dependence of the delay time and corresponding rupture time
on the material model parameters b and β are given in Figs. 5 and 6, for the
case of variable loading. Figs. 5 shows the results for fixed b = 4 and β = b/8,
β = b/6, β = b/4, β = b/3, β = b/2. Fig. 6 illustrates the results for fixed
β = 1/2 and for b = 8β, b = 6β, b = 4β, b = 3β, b = 2β.
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Figure 5: Delay time and rupture time vs. β for b = 4 (variable load)
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Figure 6: Delay time and rupture time vs. b for β = 1/2 (variable load).

Figs. 7-10 show the evolution of the crack length in time.
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Figure 7: Crack length vs. time for b = 4, constant load.
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Figure 8: Crack length vs. time for b = 1.5, constant load.
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Figure 9: Crack length vs. time for b = 4, variable load.
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Figure 10: Crack length vs. time for b = 1.5, variable load.
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Figs. 11-14 show the evolution of the cohesive zone length, l(t) = c(t)−a(t),
in time. If the crack propagates faster than the cohesive zone, then eventually
the cohesive zone will vanish.
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Figure 11: CZ length vs. time for b = 4 (elastic case).
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Figure 12: CZ length vs. time for b = 1.5 (elastic case).
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Figure 13: CZ length vs. time for b = 4 (viscoelastic case).
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Figure 14: CZ length vs. time for b = 1.5 (viscoelastic case).

The results for the propagating crack stage show significant differences while
comparing the case of a constant load with that of a variable load. In the variable
loading case, the crack begins to grow at a much later time than in the constant
loading case, as expected.

For the variable loading case, Figs. 15 and 16 illustrate the CZ and crack
evolution for b = 18, which is of the same order as for PMMA, see ([6], Appendix
A), and β = b/2 = 9. It is evident from these figures that, when b is large, the
crack grows very rapidly, so that the delay time, td, is rather close to the the
rupture time, tr, cf. also Fig. 6.
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Figure 15: a(t) and c(t) for b = 18, β = 9 (variable loading, elastic case).

0 0.1 0.2 0.3 0.4 0.5

t

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

l

t
r

Figure 16: CZ length l = c(t) − a(t) vs. time for b = 18, β = 9 (variable loading,
elastic case).
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In [6], a detailed inspection of the onset of crack growth was given under
constant external load. It has been observed that for some parameter sets, the
crack growth starts by an instant crack length jump followed by a continuous
growth. Fig. 17, where we present the graph of the crack length at the onset
of crack growth in more details, shows that this effect holds also in the variable
load case.
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Figure 17: Crack length vs. time, near the delay time, for b = 18, β = 9, (variable
loading, elastic case).

6. Conclusions

We can draw the following conclusions from the obtained results for constant
and variable external load.

• A novel non-linear history-dependent generalisation of the Leonov-Panasyuk-
Dugdale cohesive zone model of crack propagation in linearly elastic and
visco-elastic materials was presented in the paper, extending to the vari-
able external load the results of [6] for the constant external load case.
The obtained results show that the CZ model with the history-dependent
yield condition (1)-(2) on the cohesive zone can be used for numerical
simulation of the crack propagation under both, constant and variable
loads.
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• After the crack starts, the crack growth rate increases, while the CZ length
decreases with time.

• The time, when the CZ length decreases to zero seems to coincide with
the time, when the crack length becomes infinite and can be associated
with the complete rupture of the body.

• In the elastic case for some material parameters, there is an unstable crack
growth (a jump) at the onset of crack propagation, followed by a stable
crack growth.

• Employing a similar approach, the problem described in this article can be
generalised in several directions. First, the external loading with a more
general time-dependence, e.g., periodic or polynomial in time, can be anal-
ysed. Second, the history-dependent CZ model with time-variable loading
can be implemented in three-dimensional problems with a penny-shaped
crack with a 2D cohesive zone attached to the crack front, geometrically
similar to the setting in [15]. For bodies and cracks having more general
shapes, when there is no analytic solution for the bulk of material, the
history-dependent CZM can be still used if some general numerical meth-
ods like Boundary Element Method, Finite Element Method, Mesh Free
Methods, etc. are implemented, cf. [1, 13]. Third, the transient dynamic
crack propagation can be also considered, e.g., similar to [9] but without
the assumption of infinite cohesive zone.
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