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ABSTRACT

Musical improvisation is driven mainly by the unconscious
mind, engaging the dialogic imagination to reference the
entire cultural heritage of an improvisor in a single flash.
This paper introduces a case study of evolutionary compu-
tation techniques, in particular genetic co-evolution, as ap-
plied to the frequency domain using MPEG7 techniques,
in order to create an artificial agent that mediates between
an improvisor and her unconscious mind, to probe and un-
block improvisatory action in live music performance or
practice.

1. DEMONS VERSUS BOUNDED RATIONALITY

“Composing is a slowed-down improvi-
sation; often one cannot write fast enough
to keep up with the stream of ideas.”Arnold
Schoenberg, “Brahms the Progressive”, 1933,
in Style and idea, 1950, as quoted in Nach-
manovich, 1990.

We believe that the processes behind musical impro-
visation, and therefore to a great extent those of compo-
sition, are not the result of an unbounded rationality at
work, empowered solely by reasoning power, experience
and musical training (Demons), but are more intrinsic, fru-
gal and driven by a bounded rationality (5), influenced and
sometimes entirely driven by the unconscious.

We see successful free improvisors (Jarrett, Parker, Bai-
ley, etc.) as performing an impossible feat : creating mu-
sic compositions out of thin air, and on the spot. Free
improvisation is about listening and what Gladwell (6)
calls ‘thin-slicing‘’, in that an expert improvisor is able
to actively listen to her environment (other musicians, the
room, the echoes in her memory) and ‘thin-slice‘ the con-
tent for clues she recognises as departure and arrival points,
dialogic references and surprises, and then respond ac-
cording to how her unconscious is directing her. Listening
is a skill that can be acquired through training and matured
through experience; and so might thin-slicing, if one were
able to control the environment in which an improvisation
happens, and involve learning agents built specifically to
unblock the unconscious.

We propose to build such an agent, using methods in-
spired by Todd and Werner’s work on genetic co-evolution
algorithms (14) and the ABC group’s theories on fast and
frugal heuristics (5), as well as Michael Casey’s MPEG7
feature recognition techniques (? ? ) as implemented in
his Soundspotter framework. Our work, needless to say,
stands on the shoulder of giants. As well as Todd, Werner,
Gigerenzer and Casey, we have benefited from the amaz-
ing vision of Thomas Grill, whose C++ framework for
the Puredata environment allowed us to quickly prototype
and think our way through our ideas with minimal pro-
gramming pain, and from the amazing leaps of progress
made by others, from Lewis‘ ‘Voyager’ (10) to Miranda‘s
mimetic agents (11) and cellular automata systems.

Our criteria for this agent are: It must take input from
live music improvisation as its main body of data and
primary control device, and it must enable the player to
navigate a map of unconscious musical gestures (musical
phrases and their timbral, rhythmic interrelationships) by
providing an evolving ‘mirror‘ to her playing.

Many artificial agents have been built to provide inde-
pendent and collaborative music improvisors, and we will
outline a few that have influenced our research below; we
will however firstly examine some of the further issues
that have influenced the design of ours, whom we will call
Frank, in honour of Todd and Werner’s Frankensteinian
Methods.
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1.1. Remembering the Future

Improvisation happens in an environment full of snap judg-
ments, where previous experience, cultural heritage and
current information acquired through listening all help en-
able the improvisor to make decisions quickly.

Snap judgments can be made in a snap because they are
light in processing expense and frugal in nature (6; 5), and
successful decision making in improvisation relies on a
carefully nurtured balanced between bounded (deliberate)
and unbounded (instinctive, unconscious) rationalities. In
instinctive behavior, thin slices of experience are captured
and processed by the unconscious to give us ready an-
swers to questions which need an immediate answer, such
as ‘If I don’t put my hand forward, will that door slam into
me¿, or ‘Do I like this person enough to trust them with
my child for 5 minutes?’, or ‘Is the violin player about to
reference the motif I introduced 3 minutes ago, and should
I join in¿.

In the work of the improvisor, in her practice, there
is an inescapable need to unblock unconscious action, so
that these snap judgments can occur and meaningful mu-
sical material emerge. Improvisors such as Evan Parker
rarely practice from a notated score, and choose instead
to focus on gestural devices that have developed in their
playing during decades of practice and live performance
with others. His is then a self-contained ecology, where
Lewis’ dialogic imagination (10) can work unencumbered
by the (sometimes essential) constraints of the score, com-
poser, player cycle; but, it relies heavily on an almost com-
pletely exploratory process and ecological reality, which
takes decades to evolve to the mature point where the pro-
cess is almost solely E-creative (4; 2).

In trying to unblock, we need the agent to be free from
the traditional bounds of composition. As George Lewis
points out (10):

“If we do not need to define improvised ways
of producing knowledge as a subset of com-
position, then we can simply speak of an im-
provising machine as one that incorporates a
dialogic imagination.”

Frank tries to activate the dialogic processes of the im-
provisor’s mind, in particular the quicksilver heuristics in-
volved in finding improvisational pathways within musi-
cal material through instrumental practice. Our aim is
to enable a state of flow in the player, in which her di-
alogic imagination can be receptive to the kind of mo-
tivic/harmonic play mature Jazz musicians experience.

Behind any unconscious action, there is encyclopedic
knowledge that we cannot necessarily access through willed
action, and this points at an important issue: really skilled
improvisors are able not just to recall on demand past
events and current motivic/harmonic changes; they are also
able to ‘remember‘ the future: they can project their imag-
ination into future events. The essential process behind
this kind of projection into time is typical prefrontal cor-
tex activity: humans and some animals use it to predict

whether a gap is too long to jump over, a challenger too
fierce to fight, or a crossing to dangerous to attempt. We
use our previous experience, and play the possible event
(successful crossing or getting run over) in our minds.
The combination of prefrontal simulation and experien-
tial memory could be called an unconscious remembering
or replay of an event which may (fight) or may not (flight)
happen: this is why we call it remembering the future.

Unconscious remembering, or noetic (8; 9) (to know
that an event occurred without remembering) memory, is,
we propose, at the heart of dialogic interplay in musi-
cal improvisation, and the design of our system will at-
tempt to prod the human improvisor to better understand
the temporal connections underlying this process.

1.1.1. Creating a door to the unconscious

Goldstein, Gigerenzer and Todd’s work (7; 5) on the recog-
nition heuristic, the simplest of their fast and frugal heuris-
tics, which proves that efficient decision-making does not
need very large amounts of information and can also rely
on lack of knowledge, can be linked to Jacoby’s uncon-
scious recollection (noetic) as explained above. It is clear
that in an environment where we are forced to act on un-
conscious data to make a decision, we will make links that
simply are not, and have never been there; when pushed,
we invent.

We propose that simply giving a musician an ongoing
evolutive stream of mirrored (feeding back and forth from
human to agent) sound gestures could potentially trigger
a frugal process of recognition, and the E-creative pro-
cesses. These could in turn help to navigate her uncon-
scious to focus and direct (deliberate thinking) improvi-
sational and compositional processes. Through the same
process (thin-slicing) that we follow when selecting fruit
at a market or choosing a mate, she could select from in-
coming streams of music gestures, as though ‘shoppping‘
for her own bits of unconscious dialogic metadata (links
to other music gestures, by same player or someone else).

This paradigm, where we propose Frank fits, is meant
to activate the dialogic imagination of an improvisor through
live practice.

Our objective is to lead the player to unfound links be-
tween motivic/harmonic material, such as the links Schon-
berg mentioned when writing about his Chamber Sym-
phony, which Gartland-Jones and Copley quote when il-
lustrating the possible uses of a goal-directed GA agent
(4). Schoenberg saw two completely disconnected themes,
and would have erased theme b, but opted to wait:

‘About twenty years later, I saw the true re-
lationship. It is of such a complicated na-
ture that I doubt whether any composer would
have cared deliberately to construct a theme
in this way; but our subconscious does it in-
voluntarily.‘ (13)

As with the recognition heuristic, we want the impro-
visor to ‘benefit from their own ignorance‘ (5) p.57 and to
discover the hidden relationships between themes.



1.2. Previous Methodologies

Evolutionary computing has, by now, a long record of ap-
plication in musical research; to date, it remains generally
focused on either computer music or musical cognition
concerns (? ). We will not address the whole background
of this work here, but instead will focus on the technniques
that inspired our work.

Two excellent surveys and general inquiries into the
use and general application of genetic algorithms in mu-
sic (out of many others) are Gartland-Jones and Copley’s
‘The Suitability of Genetic Algorithms for Musical Com-
position‘ (4) and Burton and Vladimirova’s ‘Generation
of Musical Sequences with Genetic Techniques‘ (3), both
of which focus on methodologies (theirs and others) that
attempt to use genetic algorithms to generate musical ma-
terial. Some, such as Biles’ ‘GenJam‘ (1), work within
premises such as 8th-note derivation within strict Jazz time-
lines, others, such as the IndagoSonus system, attempt
to bypass the fitness bottleneck through GUI-driven evo-
lutionary targets. In the case of Todd and Werner’s co-
evolution principle, the generation of musical material is
based on populations of hopeful singers and critics co-
evolving at the same time. In the case of Lewis‘ ‘Voy-
ager‘, with its legacy of Forth programming, and rule-
based structure, we see a competent improvisor, but one
that is necessarily fixed within the numerical MIDI do-
main (as are most others), and not as able to capture the
gestural nuances embedded in timbre variation that can
occur within musical improvisation.

We do not here have the space to outline each in turn.
Todd and Werner’s genetic co-evolution algorithm became
our choice of implementation for Frank, due to its em-
phasis on evolving criticism, an essential part of the thin-
slicing machine (Frank) we wanted to build, and of cul-
tural heritage as a phenomenon. However, as pointed out
by Miranda, Todd, and Kirby (12), within Todd’s co-evolution,
which evolves hopeful male singers and female critics in
parallel, there is a ‘puzzling fundamental question‘ which
is left unaddressed: where do the expectations of the fe-
male critics come from? We will address this question in
our system in a brute, fundamental way: by allowing the
human improvisor to determine the scale of expectancy
as a variable. Since the improvisor’s live input has a di-
rect effect on the female genotype, this gets around the
expectancy provenance.

2. TECHNICAL IMPLEMENTATION

For the rest of this paper, we will refer to one particular use
case of Frank, for consistency purposes. In this case, one
human player at any instrument (in this case, piano) will
be the live input, through normal analog to digital conver-
sion feeding into the Puredata environment, within which
we host the objects (written in C++, using Flext) that con-
stitute our agent, Frank. The player is given a Puredata
patch to control some of the facets of Frank, such as ini-
tial lexical database creation and starting the GA process.
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Figure 1. Frank : a high-level overview of the framework.

The Frank framework consists of the following ele-
ments, which feed into each other in sequence as the live
sound input comes into Puredata:

• MPEG7 feature extraction

• Acoustic Lexemes database creation from clustered
MPEG7 frames

• Co-evolution GA, taking live sound, and two other
variables as input

• Audio repository, which can be static or built from
live sound

A high-level overview of Frank’s design and data flow
can be seen in figure 1, which outlines the four steps above
and shows where human input and reception happen.

2.1. Co-evolving strings of MPEG7 vectors

In our implementation of Todd’s co-evolution (14), we
decided to address what Todd calls the structure versus
novelty trade-off by focusing on novelty or creativity, and
isolating structure to the functions of the matching algo-
rithms using Casey’s methods. In this way, navigating
the musical solution space would be a question of find-
ing structure within evolved solutions, and not before it
(thus avoiding setting a priori knowledge of the musical
space, as rules).

We should here point out the difference between our
implementation of co-evolution, and Todd and Werner‘s;
in section 4.2 of their Frankensteinian paper (14), ‘Co-
evolving hopeful singers and music critics‘, from which
we took most of our inspiration, they outline their third
scoring method (or fitness/expectation system), the ‘sur-
prise preference scoring‘ method. Briefly, every female
builds an expectation matrix while listening to a male’s
song. We have not, at this stage, implemented this scor-
ing method, and have focused solely on similarity, so that
we could more easily manage the progression from bare
Soundspotter methods to co-evolving features. We aim to



implement suprise preference in a coming version, so to
allow for internal gene movement.

We give our system a division of tasks: the male pop-
ulation in our genetic algorithm produces many answers
to the musical space question (an incoming query by way
of real-time audio, such as a piano chord). The female
population criticises those answers, isolates winners, and
breeds with them. Just as in Todd and Werner’s idea, this
process is about generating answers, testing those against
some criteria and repeating the process. Our objective was
for those criteria to evolve in real-time, and not be set
by the system maker. We saw that using MPEG7 vectors
(provided by Casey’s Soundspotter methods), essentially
frames in the musical spectra of ongoing real-time audio
derived from FFT analysis, could provide us both with an
ongoing influence and set of criteria, but also with a geno-
typical unit with which we could start the process of evo-
lution. For example we could assign a number of incom-
ing concatenated MPEG7 frames to be our female geno-
type, which would trigger imitation, and let co-evolution
take over from there.

The ability of co-evolution to generate synchronic di-
versity (? ) through the process of sexual selection (spe-
ciation) would then save our system from eradicating di-
versity and reaching a ‘perfect‘ solution, which would be
musically uninteresting.

2.2. Creation of the Lexemes Database

It would have been unfeasible to simply take the MPEG7
floating point vector numbers, as they are too large (64 of
them per frame); we needed to take the MPEG7 matches
to incoming audio and simplify them for our genotype.
The k-means algorithm offers a simple clustering method,
which we chose to apply to Frank’s design. Hashing might
be needed for very large datasets, but we were confident
k-means would perform well for smaller (up to 2 hours)
of music.

We then decided to cluster MPEG7 frames using k-
means, labeling them ‘lexemes‘, following the Casey con-
vention. Every MPEG7 frame consists of both audio data
and MPEG7 features data. We kept the features data only,
and thus reduced the dataset we would have to deal with
even further. These clusters form our working genotype:
a musical gesture. Figure 2 outlines the lexemes creation
process in the context of the whole system.

The essential process is: after MPEG7 feature extrac-
tion has concluded, features are stored in a database. At
this point, the k-means algorithm is used to cluster the
features stored in this database; we use the Euclidean dis-
tance between features to derive these clusters, and once
the k-means algorithm has produced an optimised set of
clusters, the center of each cluster becomes a lexeme. These
then become our lexemes database.

Creating a database of lexemes by feeding Frank an ex-
isting static audio file, and then analysing and tagging in-
coming, live audio as lexemes, gives us a working frame-
work, with the potential for a common dialogic lexicon
to emerge over time. We tested this using the use case
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Figure 2. Figure 2 : lexemes creation.

above, and gave Frank its first bit of music: Luciano Be-
rio’s ‘Omaggio a Joyce‘. We were at this point able to
query by matching live input, with a much reduced data
set, and could query whole musical gestures by forcing
Frank to look at particular lexemes (giving it the lexeme
ID) and navigating the cluster around it.

Once we arrived at a system design that would allow
us to breed populations of lexemes, by applying the ge-
netic co-evolution algorithm on top of Soundspotter exist-
ing C++ methods, the need arose to find a navigational
space for our data: we choose 2 dimensional matrices,
which would allow us to compute the Ecludiean distance
between lexemes, to allow our system to consider issues
of musical form over time. In the next section, we ex-
plore the lexeme database creation and issues surrouding
it further.

2.3. Witness the Fitness : Frank’s core job

Having achieved a lightweight and simple enough cluster-
ing method, we had a working framework for our geno-
type, and set out to implement our version of the co-evolution
algorithm, to breed populations of individuals with se-
quences of these lexemes as their genotype.

We have 2 populations: males and females. Every gen-
eration each female will choose a male and breed. Every
male can breed more than once but can also not breed at all
if no female choses him. The fitness function implements
how a female will chose her male.

Let us clarify, at this point, how the female genotype
is constructed, as it represents the essential input from the
lexemes database into the general population: after feature
extraction is put into a data array, the use of the k-means
algorithm gives us a clustered centers; these become the
lexemes, and are stored in their own array. When this ar-
ray is full, a new genotype is created, and this becomes
the female genotype and is inserted into the population as
a new individual.

When a male and a female breed they create a new
string randomly taking part of the genotype from the mother



and part from the father (the crossover), and the new indi-
vidual can be both male or female (randomly). Mutations
then occur, and this produces new musical material in the
form of phenotypes, or winning individuals. The GA pro-
cess runs many times per second, since we want to our
solutions to evolve over time, and to produce fluent musi-
cal production.

Winning individuals are then given back as queries by
ID to Soundspotter, which can then point to the right se-
quence of MPEG7 frames. At this point, winners are pro-
posed to the human player in the form of live sound.

2.3.1. The fitness function in detail

Our fitness function matches the male lexeme string (geno-
type) against the female one. A first step involves creating
a matrix expressing the probability of finding a particu-
lar lexeme in a particular position, so we have as many
columns as the lexemes in a string and as many rows as
the number of lexemes in our database.

This is one of the reasons why we need to cluster lex-
emes, so that we just need a row for each group of lexemes
instead of a row for each lexeme, lowering memory and
cpu usage.

We fill this matrix with statistical data taken from the
female’s genotype: we make several copies of it, starting
from different positions (close to each other in the matrix)
and we use them as a statistical source. Here is an exam-
ple. Let us say we have an original string: 1 2 3 3 3. If we
derive from this string starting at a different position, we
could get 2 3 3 3 1, and if we do it again, 3 1 2 3 3.

Figure 3 shows two tables with the statistical data we
gain from this process, the second one with the normalised
data.
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0.3
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000.30.3Lex2 0.3
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1Lex3 11 11
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Figure 3. Figure 3 : Female genotype statistical data.

After normalisation of the data, we can compare the
male’s genotype using this matrix, to see how close it is to
the female’s. If we take an example male genotype of 2 2
3 3 2, compare it to 2 2 3 3 3, we know it will score 1 +
1 + 1 + 1 + 0 = 0.8 (4 out of 5 = 0.8). For comparison, a
random string would statistically score 0.66, and a perfect
copy of the genotype would score 1. If we take another
male with 2 1 2 3 3, scoring 0.9, the female would prefer
this one over the former. This latter one is in fact very
close to a simple translation of the female genotype, at
this point.

To implement this fitness function, and the matrix statis-
tics shown above, we used two important techniques: im-

precise pattern matching, and weight matrices, to give us
recognition of similar as opposed to just identical strings
in the case of the former, and to achieve this similarity
recognition in a fuzzy way, in the latter.

In order to achieve the computations above, we used
the Euclidean distance between lexemes, storing these in
our matrices, in order to derive degrees of similarity.

3. OVERVIEW AND CONCLUSIONS

3.1. Overview of Frank in practice

When our improvisor starts working with Frank, she has
several things to do: she will first have to either load previ-
ously recorded sound, or start live recording, into a Pure-
data table. Then, giving Frank an ‘extract‘ message will
begin the initial lexical database creation. At this point
Frank works to minimise the average distance between
frames and lexemes. The improvisor can then start the co-
evolution process by sending a ‘startGA‘ message, which
will initiate a thread running the GA up to 10 times a sec-
ond. After this, she can send a further ‘ga‘ message, which
will prompt Frank to start listening to her playing, feed-
ing her output into the population as new genotypes (lex-
emes), choosing winners from the population and playing
those back to her. At this point, she can affect the direction
of evolution through two important variables: Surprise,
the degree of similarity the females expect from the males
(this is our brute force answer to co-evolution‘s ‘puzzling
question‘), and Breeding Frequency, which controls the
maximum number of generations Frank will deal with in
one second. The latter allows the improvisor some control
over the speed of general change in the populations.

3.2. Conclusions

We believe Frank is successful in enacting what the ABC
group call the recognition heuristic is hard at work: a
thin-slicing environment where each musical gesture pro-
duced by the live improvisor is answered by many possi-
ble solutions by Frank, so that the hidden motivic and har-
monic relationship we want the improvisor to discover be-
comes the Criterion of the heuristic. Frank then becomes
the Mediator, and in its Surrogate Correlation through the
suprise/similarity and breed frequency functions, influences
the probability of recognition in the improvisor, whose
mind in turn uses the recognition heuristic to infer the Cri-
terion (the hidden relationship).

However, in preliminary evaluation of Frank in live
performance, we have found that it doesn’t at this point
allow for deep insight of a complex performer’s own mu-
sical language. It is a complete prototype; all its com-
ponents are finished and working in their present state, it
is able to create unexpected and non-obvious solutions to
musical behaviour and its created materials are coherent
with the given musical context. However, its hypothesis is
in very early stages of testing. In the next stages of investi-
gation, we intend to monitor ventromedial prefrontal cor-
tex activity testing using functional MRIs, to show blood
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flow levels to that region of the brain during improvisatory
interaction with Frank. We estimate that an initial group of
ten to fifteen test cases will give us a reliable body of data,
from which to begin formulating the actual effectiveness
of Frank as capable of stimulating the recognition heuris-
tic we outline, and of ultimately unblocking unconscious
action in improvisation successfully. The addition of vari-
able length lexemes, and the implementation of surprise in
the female population’s fitness evaluation, is being consid-
ered as essential progress for the eventual completeness of
the algorithm.
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