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ABSTRACT

Discontinuous Galerkin methods form a class of numerical methods to find a solution

of partial differential equations by combining features of finite element and finite volume

methods. Methods are defined using a weak form of a particular model problem, allowing

for discontinuities in the discrete trial and test spaces. Using a discontinuous discrete space

mesh provides proper flexibility and a compact discretisation pattern, allowing a multi-

domain and multiphysics simulation.

Discontinuous Galerkin methods with a higher approximation polynomial order, the so-

called p-version, performs better in terms of convergence rate, compared with the low order

h-version with smaller element sizes and bigger mesh. However, the condition number

of the Galerkin system grows subsequently. This causes surge in the amount of required

storage, computational complexity and in the time required for computation. We use the

following three approaches to keep the advantages and eliminate the disadvantages.

The first approach will be a specific choice of basis functions which we call C1 poly-

nomials. These ensure that the majority of integrals over the edge of the mesh elements

disappears. This reduces the total number of non-zero elements in the resulting system.

This decreases the computational complexity without loss in precision. This approach does

not affect the number of iterations required by chosen Conjugate Gradients method when

compared to the other choice of basis functions. It actually decreases the total number of

algebraic operations performed.

The second approach is the introduction of suitable preconditioners. In our case, the

Additive two-layer Schwarz method, developed in [4], for the iterative Conjugate Gra-

dients method is considered. This directly affects the spectral condition number of the

system matrix and decreases the number of iterations required for the computation. This

approach, however, increases the total number of algebraic operations and might require

more operational time.

To tackle the rise in the number of algebraic operations, we introduced a modified

Additive two-layer non-overlapping Schwarz method with a Multigrid process. This us-

ing a fixed low-order approximation polynomial degree on a coarse grid. We show that

this approach is spectrally equivalent to the first preconditioner, and requires less time for

computation.

The third approach is a development of an efficient mathematical framework for dis-

tributed data structure. This allows a high performance, massively parallel, implementa-

tion of the discontinuous Galerkin method. We demonstrate that it is possible to exploit

properties of the system matrix and C1 polynomials as basis functions to optimize the par-

allel structures. The previously mentioned parallel data structure allows us to parallelize

at the same time both the matrix-vector multiplication routines for the Conjugate Gradi-

ents method, as well as the preconditioner routines on the solver level. This minimizes the

transfer ratio amongst the distributed system. Finally, we combined all three approaches

and created a framework, which allowed us to successfully implement all of the above.
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Chapter 1

Introduction

1.1 Overview

Solutions of partial differential equations (PDEs) are required in a wide area of applications

from engineering to finance. Analytical methods of solutions for PDEs are often compli-

cated, complex to implement. Exact solutions are not always available for testing purposes,

and moreover, sometimes exact solutions are not required to study real-world problems.

Numerical methods provide a way to find approximate solutions of required accuracy of

the PDEs. Numerical methods are approximate in the sense that solutions of PDEs depend

on the size of the discretization of the domain coordinates in continuous space setting,

although the numerical solutions depend on a finite number of degrees of freedom.

Three well-known classes of the finite discretization methods are finite difference meth-

ods (FDM), finite volume methods (FVM) and finite element methods (FEM). FVM and FEM

are especially well suited for computations in complicated domains consisting of irregular

or unstructured meshes. A mesh divides the domain of validity into a finite number of el-

ements. On each element, the discretization aims to reduce each variable of the PDE such

that it depends only on a finite number of degrees of freedom. In many cases FEMs might

appear to be more difficult to understand, however they offer more flexibility and superior

accuracy in domains with complex boundaries and boundary conditions. Furthermore, the

mathematical theory of FEMs is well-developed.

The most widely used cost-effective implementation of FEM, in terms of machine com-

putation and high performance computing, is the (space) discontinuous Galerkin (dG)

FEM. In this method a piecewise linear discretization needs to be found on each element

and the limit or trace values approaching the nodes (or faces) from the element left or right

of a node (or face) are not assumed to be continuous. Hence this discretization is contin-

uous in each element, but discontinuous across elements. While more degrees of freedom

are required in the discontinuous discretization, it (generally) offers more flexibility and

more accuracy.

Both continuous Galerkin (cG) and dG FEMs have been well studied, and according

to the MathSciNet there has been approximately 4500 and 2700 works, respectively, pub-

lished in the last fifty years. Most of the work on a dG FEM, around 1200 of them are for

so-called the h method, 300 so-called the p method, and "just" under a hundred for the

1



CHAPTER 1. INTRODUCTION 2

hp dG FEM. The high performance and parallelisation techniques for hp dG FEM are stud-

ied in only ten projects, with only four of those for higher polynomial degree dG FEM. In

[11],[43],[36],[47] and [8] authors use conventional parallelization approach applied on

a linear Galerkin system, without accounting for discontinuity, choice of basis functions or

actual analysis of the computational implementation. Additionally in those works, authors

don’t give any analysis on higher order dG FEMs, concentrating mainly on mesh structure

and size analysis.

The main aim of this research is analysing the algorithmic implications of using the dG

FEMs for higher order polynomials on a distributed memory machine with a relatively high

communication cost. In this work, we are going to analyse the computational complexity of

the existing method of Conjugate Gradients applied to a linear problem. We also analyse the

two-level additive Schwarz method and show that the Multigrid method can be employed

as the coarse level approximate local solver for successful preconditioning. We consider

and present a special choice of polynomials, which, when used as the local basis functions,

allows to successfully reduce computational complexity for higher polynomial degree dG

FEM, without impacting convergence.

This work is organised in the following order. In the first chapter, Section 1.2 gives

the definition of the Galerkin FEMs. In Section 1.3 we introduce the model problem for

the Poison Equation, along with all the necessary mathematical tools and notation for the

Symmetric Interior Penalty Galerkin (SIPG) and Local dG (LDG) FEMs. Additionally we

are going to show how the LDG FEM can be reduced to any of the currently developed

symmetric dG FEMs.

In the next chapter, Chapter 2, we analyse the SIPG and LDG, provide the associated

variational formulation, and bilinear and penalty forms which arise from the formulation.

In Section 2.2 we introduce a basis for the chosen finite dimensional Sobolev spaces. We

analyse the choice of the Antiderivative of Legendre polynomials (further ADLP) and C1

(b)-spline polynomials (further C1) as the global and local basis functions. We provide

analysis of the global and local basis functions for different spatial dimensions, and high-

light the properties of the chosen basis functions, and discuss the impact of such a choice

on the overall computational complexity. In Section 2.3 we show the matrix setup and ma-

trix formulation of the model problem. We are performing the complexity analysis, for the

SIPG and LDG methods, and show how different approach to implementation can heav-

ily impact the computational complexity of both the system matrix itself, and the solver.

We analyse the matrix setup for integrals, which arise from the model problem’s primal

formulation, such as the volume integral, edge restricted integral and the computation of

the integrals for lifting operators. In Section 2.4 we show the computation of the right

hand side of the model problem, and give an estimate of the computational complexity.

Section 2.5 is dedicated to the global matrix formulation. Error estimates in approximated

solutions, obtained from different solvers, are given in Section 2.6. Section 2.7 describes

the Lanczos process. In this work we use fact that Lanczos process is built-in in the chosen

solver. This allows computation of the spectral condition number for larger problems.

Chapter 3 is dedicated to the in-depth analysis of the iterative solvers, that solve the

system of equations, given by the SIPG and LDG FEMs. In Section 3.1 we analyse the
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Conjugate Gradient method as a solver, as well as analyse the complexity and the impli-

cations of the parallel implementation. We provide the parallelization techniques, best fit

for higher order polynomial degree basis functions, and explain how the distribution of the

data for computation is stored. We also analyse the effect of the basis function choice on

the most cost-demanding operation in CG method - matrix-vector multiplication. We also

provide an operation count analysis for the cases with Antiderivative of Legendre polyno-

mial and C1 (b)-spline basis functions. Additionally we give the iteration number estimate

in terms of the size of the chosen discretisation mesh and polynomial degree for the dif-

ferent choice of basis functions. Preconditioning of the CG method is briefly shown in the

same section. In Section 3.2 we apply the Additive two-level non-overlapping Schwarz

method as a preconditioner for the Conjugate Gradient method. In that section we show

the complexity of the method, implications on a data-structure for parallel implementation

and the specific ways of avoiding the surge in complexity arising from the preconditioner’s

use of the inverse of the system matrix. Further, in that section we describe in detail how

the parallel implementation is constructed. We also discuss, how the parallel split can be

optimised with proper analysis of the mesh elements, instead of a direct split of the system

matrix. In Section 3.3 we describe the Multigrid method, and show that it can be used as

the coarse level solver for the Additive two-level non-overlapping Schwarz method. Later

in section 3.4 we analyse the abstract convergence of the Multigrid method and compare

it with direct inverse solver for Additive Schwarz method. We will also prove the conver-

gence of the developed method. In Section 3.5 we analyse the total complexity, and give a

time estimate for the methods from the first to the last step.

Chapter 4 is dedicated to the numerical results for serial and parallel executions of

the implementation. In Sections 4.1,4.2 we define test problems in two and three spatial

dimensions. Parallel solvers are described in section 4.3. To set up a common ground for

repeatability of the problems, and to be able to compare them with one another, we describe

the hardware and software specification in Section 4.4. This allows to scale the results

obtained on machines with different hardware and software specifications. To validate the

results of the test problems, in section 4.5 we present error estimation techniques, as well

as the error in the approximated solution. Condition number estimates are presented in

the same section. We also analyse the speed-up effect in Section 4.6, gained by the use

of a specific choice of basis functions. We show, that C1-basis functions provide significant

reduction of time spent on solving the test problems, while keeping the error and iteration

number at the same order as for the ADLP basis functions. Additionally we present a

comparison of the different solvers described in this work. This is done in Section 4.7. In

Section 4.8 we present and discuss the effect of parallelization for 2d and 3d test problems.

Chapter 5 completes this work with a conclusion. We provide a detailed discussion of

the results of this work. We also suggest ideas for further research in that chapter.

1.2 De�nition of the problem

Continuous and discontinuous Galerkin finite element discretization usually contains the

following steps [12]:
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I. Derive the weak formulation: Each side of the partial differential equation is multi-

plied by its own arbitrary test function, integrated over the domain of validity entirely

or as a sum of integrals over all elements, and integrated by parts.

II. Form the discretized weak formulation system: The variables are expanded in the

domain or in each element in a series in terms of a finite number of basis functions.

Each basis function has compact support over neighbouring elements (for continuous

finite elements) or within each element (for discontinuous finite elements). These

expansions are then substituted into the weak formulation, and a test function is

chosen alternately to coincide with a basis function. The resulting system is a linear

or non-linear algebraic system.

III. Evaluation of integrals in a local coordinate system: A local or reference coordinate

system is used to evaluate the integrals. Global matrices and vectors are assembled

in the assembly routine.

IV. Solve the algebraic system: The resulting algebraic system is solved generally itera-

tively. In the case of non-linear algebraic system, such an iterative solution method

is chosen, which essentially solves a linear system at each iteration step. For the

linear algebraic system, which we are going to concentrate on in this work, a broad

development was accomplished in recent decades to create methods that compute

effective and accurate solutions.

Compact support means that the test functions only take non-zero values over one or

a few neighbouring elements. In the continuous setting, the basis functions are taken to

be zero at the edge of their domain of influence, while in the discontinuous case the basis

function is (generally) non-zero within the element boundary and zero elsewhere.

In this work, we are going to present a framework, required to approximate the solution

of linear algebraic systems, defined on a distributed memory machine with communication

costs, dominating the execution time.

Finally, the careful definition of function spaces for the test and basis functions is com-

mon practice in finite element methods. This is often perceived to be very complicated,

especially in the case of higher polynomial degrees in each variable on each element.

1.3 The Discontinuous Galerkin Finite Elements method

In the last ten years there has been a vigorous development in the study of the discontinu-

ous Galerkin methods, and solvers for both linear and non-linear problems. Nine different

discontinuous Galerkin methods were introduced and examined from the invention of the

method. We start by introducing the discontinuous Galerkin method. For the sake of sim-

plicity we choose the Poisson Equation. We note that the Poisson equation can be extended

for different real life problems by introducing different non-zero factors. The model prob-
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lem is then given by:

−∆u = f in Ω (1.1)

u = 0 on ∂Ω,

where f is a given function in suitable space L2(Ω). Here we need to define our domain.

Let Ω ⊂ Rd , d ≥ 2 be a polygonal domain, in some dimension d. Ω is an open bounded

connected subset, such that Ω̄ is the union of a finite number of polyhedra. We also denote

the boundary of the domain Ω by ∂Ω.

We rewrite our problem as a first-order problem. This allows us to introduce the flux

and average formulations. Additionally, it clears out the impact which choice of a domain

partitioning and discontinuity have on the Galerkin method. The first-order formulation

allows reduction of the problem to all existing Discontinuous Galerkin Methods [7].

% = ∇u in Ω (1.2)

−∇ ·% = f in Ω

u = 0 on ∂Ω.

We will now show how to derive the discontinuous Galerkin formulation of the (1.2). Only

the discontinuous Galerkin method will later be investigated.

To be able to perform the next step of the Galerkin FEM, we need to multiply the

resulting system (1.2) with the test function in the suitable spaces and integrate the result.

To be able to do that, we first need to consider a finite decomposition

Ω̄=
⋃

Ki∈Th

Ki , (1.3)

where:

1. each K is a polyhedron with non-empty interior:
o
K 6= ;

2.
o

K1 ∩
o

K2= ; for each distinct K1, K2 ∈ Th

3. if e = K1 ∩ K2 6= ; (K1 and K2 are distinct elements of Th) then e is a common face,

side, edge, or vertex of K1 and K2

4. diam(K)® h for each K ∈ Th.

Here we use the notation x ® y to state that there exists a generic constant C > 0, so

that x ≤ C y. We note, that C is not the same for different occurrences. The nature of the

constants in use is mentioned prior to occurrence.

For simplicity we use an arbitrary suitable invertible affine mapping TK , such that each

element K of Th can be obtained from reference polyhedron K̂ (or K re f ), where K = TK(K̂).

Next, we define the spaces L2(Ω) and H1(Ω) as suitable infinite-dimensional spaces in Ω.

To define integration on the edges (faces) of the elements, we reserve Γ as a so-called

"skeleton" of the domain Ω - set of all edges e (faces in higher dimensions) on elements K

of the domain decomposition Th, and Γ 0 as an "interior skeleton" without edges on ∂Ω as

Γ 0 := Γ\∂Ω. In short Γ is the set of all edges, Γ 0 is the set of only internal edges.
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Additionally the employed common space decomposition techniques are triangulation

and/or rectangulation (further, for both - partitioning)

Th = {K} (1.4)

of the domain Ω, where we assumed that elements K are to be shape-regular without

extreme acute angles. For simplicity of the notation, we will not restrict ourselves to equi-

lateral shapes of the elements, for two main cases:

d-simplex The reference polyhedron K̂ (or K re f ) is the unit d-simplex, e.g. 4ABC with

the coordinates A(0;0), B(0;1), C(1;0), for d = 2; and the tetrahedron ABC D with

the coordinates A(0;0; 0), B(0;1; 0), C(1;0; 0), D(0;0; 1), for d = 3 etc.

d-cube The reference polyhedron K̂ (or K re f ) is the d-cube [−1,1]d .

A second aspect to be noted, is a determination of a finite-dimensional space Vhp. Such

a necessity arises for a suitable approximation of the chosen spaces L2(Ω) and H1(Ω) in

Ω.To be more precise, we use

Pp, p ≥ 0, (1.5)

to denote the space of polynomials of degree at most p in the variables x1, . . . , xd . We use

Qp, p ≥ 0, (1.6)

to denote the space of polynomials that are of degree at most p with respect to each variable

x1, . . . , xd .

To employ hierarchical polynomials as the basis functions, the following inclusion should

hold [44]

Pp ⊂Qp ⊂ Pd·p

To handle the mixed problems, where we often have to deal with vector-valued functions,

we introduce the space of vector polynomials:

Dp := (Pp−1)
d ⊕ xPp−1, p ≥ 1,

where x ∈ Rd is the independent variable of interest. The space of vector polynomials Dp

was first introduced by Raviart and Thomas in [45] and normally denoted as RTp. Here,

the next inclusion holds [44]

(Pp−1)
d ⊂ Dp ⊂ (Pp)

d

Finally, we set the space of the rectangular space decomposition:

Vhp := {vh ∈ L2(Ω) : v |K ◦TK ∈Qp ∀K ∈ Th}. (1.7)

We also introduce the space of triangular finite elements

Vhp := {vh ∈ L2(Ω) : v | o
K
∈ Pp ∀K ∈ Th}, (1.8)

for the sake of completeness, but we will not use it later.
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For the case of vector-valued functions, we introduce the space which covers both de-

composition cases for the chosen reference elements [7]:

Whp := {qh ∈ [L2(Ω)]d : qh |K∈ [RTp]
d ∀K ∈ Th}}, (1.9)

with an appropriate choice of the space of polynomial functions for the rectangular decom-

position. Here we can immediately see the following relation:

∇hVhp ⊂Whp Whp = [Vhp]d . (1.10)

The term ∇h in (1.10) is applied to all functions in Vhp and for the test functions v ∈ Vhp

and q ∈ Whp is defined to be such, that functions ∇hv and ∇h · q are the functions whose

restrictions to each element K ∈ Th are equal to ∇v and ∇ · q, respectively.

Now, we multiply by the test functions v ∈ Vhp and q ∈ Whp. Integrating over all

elements K ∈ Th of domain Ω partitioning, we arrive at a weak formulation of the problem:

∫

K∈Th

% · qd x = −
∫

K∈Th

u∇ · qd x +

∫

∂ K∈Th

unK · qds,

∫

K∈Th

% · ∇vd x =

∫

K∈Th

f vd x +

∫

∂ K∈Th

% · nK vds

where nK is the outward normal unit vector to ∂ K .

Now, the general formulation is:

Find uh ∈ Vhp and %h ∈Whp, such that, ∀K ∈ Th:

∫

K
%h · qd x = −

∫

K
uh∇ · qd x +

∫

∂ K
ûK nK · qds, q ∈Whp (1.11)

∫

K
%h · ∇vd x =

∫

K
f vd x +

∫

∂ K
%̂K · nK vds, v ∈ Vhp

where the numerical fluxes, %̂K is an approximation to % = ∇u and ûK is an approxima-

tion to u on the boundary of K . Numerical flux is introduced by defining an appropriate

functional setting. We use H l(Th) to denote the space of functions on Ω whose restriction

to each element K belongs to the Sobolev space H l(K), i.e. H l(Th) = {u ∈ L2(Ω) : u |K∈
H l(K)}}. Then, the finite-dimensional space Vhp is the subset of H l(Th), for any l, l = 1/2

for dG. And Whp is the subset of [H l(Th)]d , for any l and d ≥ 2. Traces of a function in

H1(Th) belong to T (Γ ) :=
∏

K∈Th
L2(∂ K), where

Γ =
⋃

K∈Th

∂ K (1.12)

is the union of the edges of the elements K of Th. Functions in T (Γ ) are thus vector-valued

on

Γ 0 := Γ \ ∂Ω (1.13)

and single-valued on ∂Ω. The space L2(Γ ) is then the subspace of T (Γ ) consisting of

functions for which the values are the same on all internal edges. Then, numerical flux



CHAPTER 1. INTRODUCTION 8

û = (ûK)K∈Th
is scalar valued and %̂ = (%̂K)K∈Th

is vector valued. Both numerical fluxes

are linear functions and according to Arnold et al. [7] only their normal components con-

tribute to the DG method. In other words numerical flux ûK is a trace of a function u on

element K .

We can now sum over all elements K ∈ Th in (1.11):

∫

Ω

%h · qd x = −
∫

Ω

uh∇h · qd x +
∑

K∈Th

∫

∂ K
ûK nK · qds, q ∈Whp (1.14)

∫

Ω

%h · ∇hvd x =

∫

Ω

f vd x +
∑

K∈Th

∫

∂ K
%̂K · nK vds, v ∈ Vhp.

The aforementioned system (1.14) uses the explicit sum on the right hand side, which

can be simplified with the use of the jump and average functions. As one of the common

components of any DG method we define the jump and the average of the test functions.

To denote them we first introduce the sets of interior and boundary faces respectively F I
h

and F B
h [5] and set Fh =F I

h

⋃

F B
h . We then have:

For a mixed formulation of a model problem, we have scalar and vector valued test

functions v ∈ T (Γ ) and q ∈ [T (Γ )]d . For the scalar functions we define the weighted

average {v}σ (just {v} for whenever σ = 1/2), and the jump ¹vº of v on Γ 0 across the edge

(face) e shared by two elements K1 and K2 with unit normal vectors n1 and n2 (n1, n2 ∈ Rd)

on that edge pointing exterior to K1 and K2, respectively. Then for vi := v |∂ Ki

{v}σ = σ1v1 + (1−σ2)v2, {·} : T (Γ )→ R

¹vº = v1n1 + v2n2, ¹·º : T (Γ )→ Rd ,

on e ∈ F I
h . And by applying the same scheme towards q ∈ [T (Γ )]d

{q}σ = σ1q1 + (1−σ2)q2, {·} : [T (Γ )]d → Rd ,

¹qº = q1 · n1 + q2 · n2, ¹·º : [T (Γ )]d → R,

on e ∈ F I
h . Note that on the boundary faces e ∈ F B

h :

{q}σ|∂Ω = q, {·} : [T (Γ )]d → Rd ,

and

¹vº|∂Ω = v · n, ¹·º : T (Γ )→ Rd .

The mapping of the jump and average operator gives:

{·}σ : T (Γ )→ L2(Γ 0), ¹·º : T (Γ )→ [L2(Γ )]d

{·}σ : [T (Γ )]d → [L2(Γ )]d , ¹·º : [T (Γ )]d → L2(Γ 0)

Now, as defined by Arnold et. al. [7], we introduce the identity:

∑

K∈Th

∫

∂ K
vKqK ds =

∫

Γ

¹vº · {q}ds+

∫

Γ 0

{v}¹qºds (1.15)
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Applying (1.15) to (1.14) yields:

∫

Ω

%h · qd x = −
∫

Ω

uh∇h · qd x +

∫

Γ

¹ûº · {q}ds+

∫

Γ 0

{û}¹qºds, q ∈Whp (1.16)

∫

Ω

%h · ∇hvd x −
∫

Γ

¹%̂º · {v}ds−
∫

Γ 0

{%̂}¹vºds =

∫

Ω

f vd x +
∑

K∈Th

∫

∂ K
%̂K · nK vds, v ∈ Vhp,

Now to write %h only in terms of uh, we should use (1.15) and restrict the functions to their

traces. We obtain, ∀τ ∈ [H1(Th)]2 and v ∈ H1(Th), the integration by parts formula:

∫

Ω

∇h ·τvd x =

∫

Ω

τ · ∇hvd x −
∫

Γ

{τ}¹vºds−
∫

Γ 0

¹τº{v}ds (1.17)

Choosing such v = uh in (1.17), then substituting the resulting right hand side into (1.16),

and, for every τ ∈Whp:

∫

Ω

%h ·τd x =

∫

Ω

∇huh ·τd x +

∫

Γ

¹û− uhº · {τ}ds+

∫

Γ 0

{û− uh}¹τºds (1.18)

We can now define the lifting operators, to simplify the numerical flux and jump and

average notation. We are giving the definitions of lifting operators for the scalar- and vector

valued test functions, v ∈ T (Γ ) and q ∈ [T (Γ )]d respectively. Recalling (1.10) we use the

defition by [7] as:

the right lifting operator:

r : [L2(Γ )]d → [Whp]
d ,

∫

Ω

r(q) ·τd x = −
∫

Γ

q · {τ}ds, ∀τ ∈ [Whp]
d , (1.19)

the left lifting operator:

l : L2(Γ 0)→ [Whp]
d ,

∫

Ω

l(v) ·τd x = −
∫

Γ 0

v · ¹τºds, ∀τ ∈ [Whp]
d . (1.20)

Noting, that ∇hVhp ⊂Whp, we can substitute (1.19,1.20) into the (1.18):

%h = %h(uh) :=∇huh − r(¹û(uh)− uhº)− l({û(uh)− uh}) (1.21)

Choosing τ=∇hv in (1.18), we rewrite (1.16) as:

Bh(uh, v) =

∫

Ω

f vd x , ∀v ∈ Vhp, (1.22)

where:

Bh(uh, v) :=

∫

Ω

∇huh · ∇hvd x +

∫

Γ

¹û− uhº · {∇hv} − {%̂} · ¹vºds

+

∫

Γ 0

{û− uh}¹∇hvº− ¹%̂º{v}ds. (1.23)

For any functions uh, v ∈ H2(Th), the setting above defines Bh(uh, v), with û = û(uh) and
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%̂ = %̂(uh,%h(uh)), where the mapping uh 7→ %h(uh) is given by (1.21). The form Bh :

H2(Th)× H2(Th)→ R is bilinear [7] and is symmetric for the numerical fluxes presented

later in the table 1.2. We call (1.22) the primal formulation of the method. The bilinear

form Bh(·, ·) the primal form.

If (uh,%h) ∈ Vhp ×Whp solves (1.2), then uh solves (1.22).

At this point, the defined primal formulation can be used to yield the Interior Penalty

and Local Discontinuous Galerkin FEMs.

We start with the Interior Penalty method. The method was originally proposed as a

primal formulation [6], with:

Bh(uh, v) =

∫

Ω

∇huh · ∇hvd x −
∫

Γ

(¹uhº · {∇hv}+ {∇huh} · ¹vº)ds

+ α j(uh, v), (1.24)

where

α j(uh, v) =

∫

Γ

α¹uhº · ¹vºds (1.25)

is the interior penalty, stabilization term with the penalty weighting function α : Γ → R,

given by

α= γep2
e h−1

e

on each e ∈ Fh, with γe > 1. The numerical fluxes, are chosen as

û = {uh} on Γ 0,

û = 0 on ∂Ω,

%̂ = {{∇huh} −α j(¹uhº) on Γ , . (1.26)

With this choice for the numerical fluxes (1.21) yields:

%h =∇huh + r(¹uhº) (1.27)

and:
∫

Γ

{%̂} · ¹vºds =

∫

Γ

{∇huh} · ¹vºds

−
∫

Γ

α j(¹uhº) · ¹vºds. (1.28)

And (1.24) follows by substituting (1.28) into (1.23).

Note that the alternative formulation can be derived through the use of the lifting

operator, re : [L1(e)]2→Whp, given by:

∫

Ω

re(φ) ·τd x = −
∫

e
φ · {τ}ds, ∀τ ∈Whp,φ ∈ [L1(e)]d (1.29)

And defining αr(φ) := −ηe{re(φ)} on e. re(φ) vanishes outside of the union of one or two

elements of the partition containing e as a common, and that r(φ) =
∑

e∈Fh
re(φ), for all
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φ ∈ [L1(e)]2. Keeping the choice for the numerical flux û similar to the one in (1.26), but

using the αr instead of α j in the %̂, yields the method of Bassi et al [9], with the primal:

Bh(uh, v) =

∫

Ω

∇huh · ∇hvd x −
∫

Γ

(¹uhº · {∇hv}+ {∇huh} · ¹vº)ds

+ αr(uh, v), (1.30)

with stabilization term αr modified as:

αr(uh, v) =

∫

Γ

αr(uh) · ¹vºds

=
∑

e∈Fh

∫

Ω

ηere(¹uhº) · re(¹vº)ds (1.31)

At this point we should note, that both stabilization terms αr and α j are used in most

contemporary discontinuous Galerkin FEMs.

Now we present the definition of the Local Discontinuous Galerkin FEM, first intro-

duced in [21]. The choice of the numerical fluxes is given

û = {uh} − β · ¹uhº on Γ 0

û = 0 on ∂Ω (1.32)

and

%̂ = {%h}+ β¹%hº−α j(¹uhº) on Γ 0

%̂ = {%h} −α j(¹uhº) on ∂Ω,

where β ∈ [L2(Γ 0)]d is a vector-valued function, constant on each edge(face). From the

scalar flux choice (1.32) we have {û− uh}= −β · ¹uhº on Γ 0, and ¹û− uhº= −¹uhº on Γ ,

so that (1.18) yields

%h =∇huh +τ, (1.33)

with τ := r(¹uhº) + l(β · ¹uhº) ∈Whp. Then the vector flux choice (1.33) gives

%̂ = {∇huh}+ {τ}+ β¹∇huhº+ β¹τº−α j(¹uhº)

Using the right and left lifting operators (1.19,1.20), we get

∫

Γ

{%̂} · ¹vºds =

∫

Γ

{∇huh} · ¹vºds+

∫

Γ 0

¹∇huhºβ · ¹vºds

−
∫

Ω

[r(¹vº) + (β · ¹vº)] ·τd x −α j(uh, v)
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Substituting into (1.23), we obtain the following bilinear form for the LDG method:

Bh(uh, v) =

∫

Ω

∇uh · ∇vd x −
∫

Γ

(¹uhº · {∇v}+ {∇uh} · ¹vº)ds

+

∫

Γ 0

(β · ¹uhº¹∇vº+ ¹∇uhºβ · ¹vº)ds

+

∫

Ω

�

r(¹uhº) + l(β · ¹uhº)
�

·
�

r(¹vº) + l(β · ¹vº)
�

d x

+ α j(uh, v)

We would use the Local discontinuous Galerkin method, as our main choice, as this method

can be reduced to any other Discontinuous Galerkin FEM. Prior to demonstrating this we

give the definitions of the used tools.

The inner product (·, ·) : Vhp × Vhp→ R is defined in the following way:

(w, v)Ω :=

∫

Ω

w · vd x

(w, v) ≡ (w, v)Γ :=

∫

Γ

w · vds

〈w, v〉 ≡ (w, v)Γ 0 :=

∫

Γ 0

w · vds

∀w, v ∈ Vhp

We define a bilinear form a(·, ·) : Vhp × Vhp→ R :

a(w, v)Ω :=

∫

Ω

∇hw · ∇hvd x

Additionally, we are going to define the norm on Ω in terms of an inner product, then the

L2(Ω) norm is

‖v‖2L2(Ω) := (v, v)L2(Ω) =

∫

Ω

v · vds.

This also allows to define the H1(Ω) norm as follows

‖v‖2H1(Ω) := ‖v‖2L2(Ω) + ‖∇v‖2L2(Ω).

At last we note that the bilinear form Bh(·, ·) is endowed with the mesh dependent norm

‖ · ‖DG defined by:

‖v‖2DG := ‖∇hv‖2L2(Ω) +
∑

e∈Fh

‖α1/2
¹vº‖2L2(e)

Now, we show the primal forms of other discontinuous Galerkins in the following Table

1.1, by Arnold [7]
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Table 1.1: Primal forms for the DG methods

Method Bh(w, v)
Bassi-Rebay a(w, v)− ({∇hw},¹vº)− (¹wº, {∇hv}) + (r(¹wº), r(¹vº))Ω
Brezzi et al. a(w, v)− ({∇hw},¹vº)− (¹wº, {∇hv}) + (r(¹wº), r(¹vº)Ω +αr(w, v)
LDG a(w, v)− ({∇hw},¹vº)− (¹wº, {∇hv})

+〈β · ¹wº,¹∇vº〉+ 〈¹∇wº,β · ¹vº〉
+(r(¹wº), r(¹vº))Ω + (r(¹wº), l(β · ¹vº))Ω
+(l(β · ¹wº), r(¹vº))Ω + (l(β · ¹wº), l(β¹vº))Ω +α j(w, v)

IP a(w, v)− ({∇hw},¹vº)− (¹wº, {∇hv}) +α j(w, v)
Bassi et al. a(w, v)− ({∇hw},¹vº)− (¹wº, {∇hv}) +αr(w, v)
Baumann-Oden a(w, v)− ({∇hw},¹vº) + (¹wº, {∇hv})
NIPG a(w, v)− ({∇hw},¹vº) + (¹wº, {∇hv}) +α j(w, v)
Babuška-Zlámal a(w, v) +α j(w, v)
Brezzi et al. a(w, v) +αr(w, v)

with the following choice of the numerical fluxes shown in table 1.2

Table 1.2: Numerical fluxes for the DG methods

Method ûK %̂K

Bassi-Rebay {uh} {%h}
Brezzi er al. {uh} {%h} −αr(¹uhº)
LDG {uh} − β · ¹uhº {%h}+ β¹%hº−α j(¹uhº)
IP {uh} {∇huh} −α j(¹uhº)
Bassi et al. {uh} {∇huh} −αr(¹uhº)
Baumann-Oden {uh}+ nK · ¹uhº {∇huh}
NIPG {uh}+ nK · ¹uhº {∇huh} −α j(¹uhº)
Babuška-Zlámal (uh |K) |∂ K −α j(¹uhº)
Brezzi et al. (uh |K) |∂ K −αr(¹uhº)

In this work, we are going to concentrate on a Symmetric Interior Penalty method

(IP), as one of the well-studied and computationally stable, easy to implement, and has

only a "classical" bilinear form, jump and average operators and the penalty term. Another

method which will be covered in this work is a Local Discontinuous Galerkin method (LDG),

which has all of the aforementioned forms of the IP method, but also contains additional

β penalty terms and employs the lifting operators, which adds special interest for the code

implementation, and allows the use of additional splines. Moreover, the LDG method,

possesses bilinear forms which can be found in any other existing discontinuous Galerkin

FEMs. Implementing the LDG method would allow implementation and testing for all

existing dG methods.



Chapter 2

Model problem

2.1 Discontinuous Galerkin Method

2.1.1 Variational formulation

In order to examine and analyse the mentioned method we first give the definition of

the Local Discountinuous Galerkin method, given in the table 1.1. We start by recalling

definition of the space 1.8 for the rectangular space decomposition:

Vhp := {vh ∈ L2(Ω) : v |K ◦TK ∈Qp ∀K ∈ Th}.

Then the the Local Discontinuous Galerkin method is:

Find uh ∈ Vhp, such that

Bh(uh, v) = Fh(v), (2.1)

for an arbitrary test function v ∈ Vhp.

The bilinear form

Bh(·, ·) : Vhp × Vhp→ R,

is defined as

Bh(uh, v) =

∫

Ω

∇uh · ∇vd x −
∫

Γ

(¹uhº · {∇v}+ {∇uh} · ¹vº)ds (2.2)

+

∫

Γ 0

(β · ¹uhº¹∇vº+ ¹∇uhºβ · ¹vº)ds

+ θ

∫

Ω

�

r(¹uhº) + l(β · ¹uhº)
�

·
�

r(¹vº) + l(β · ¹vº)
�

d x

+ α j(uh, v).

The bilinear form is trivially positive definite [7]. The right hand side Fh(·) : Vhp → R, is

given as

Fh(v) =

∫

Ω

f vd x

Bilinear form (2.2) can be compacted to Symmetric Interior Penalty method (SIPG), by

setting θ = 0 and β = 0 [6]. In order to obtain the Local Discontinuous Galerkin method

14
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(LDG), we set [21] θ = 1 and allow β ∈ Rd be a uniformly bounded vector, with special

case for null vector β where we have a superconvergent LDG method. Additionally, we set

α j as in the works [41],[5], as

α j := γNpd
2
Kh−1

K ,

where hK and Npd K denote diameter and polynomial degree of element K ∈ Th, and γ≥ 1

is an arbitrary chosen scalar value. For simplicity, we restrict ourselves to uniform values

for diameter h=max(hK) and polynomial degree Npd =max(Npd K), uniform partition.

Using agreed notation, for the sake of simplicity, we can perform split of the primal

bilinear form (2.2) into shorter forms. This allows to analyse each part of the primal form

separately.

a(uh, v) = (∇uh,∇v)Ω (2.3)

auv(uh, v) = (¹uhº, {∇v})Γ (2.4)

avu(uh, v) = ({∇uh},¹vº)Γ (2.5)

abu(uh, v) = (β · ¹uhº,¹∇vº)Γ 0 (2.6)

aub(uh, v) = (¹∇uhº,β · ¹vº)Γ 0 (2.7)

as(uh, v) = α j(uh, v) = (α · ¹uhº,¹vº)Γ . (2.8)

Forms (2.4,2.5) are the same, and in matrix form represented as an original and a transpose

of one. We note the same for forms (2.6,2.7). And lifting operators, after multiplication:

ar r(uh, v) = (r(¹uhº), r(¹vº))Ω (2.9)

ar l(uh, v) = (r(¹uhº), l(β · ¹vº))Ω (2.10)

al r(uh, v) = (l(β · ¹uhº), r(¹vº))Ω (2.11)

al l(uh, v) = (l(β · ¹uhº), l(β¹vº))Ω. (2.12)

Forms (2.10,2.11) are the same, and in matrix form represented as an original and a trans-

pose of one, as in the previous case for the forms arising from the edge interaction.

To introduce the matrix formulation of the problem, we will first define how the func-

tions v ∈ Vhp can be represented as a linear combination of basis functions, introduce the

notation for the basis functions, and perform an analysis for the choice of the basis func-

tions. Later in the chapter, in Section 2.3, we provide the details of the implementation of

each of these terms.

2.2 Choice of the basis functions

We first recall the definition of the finite partitioning Th 1.3 of the domain Ω, for total

number of elements Nmesh :

Th = {Ki , i = 1, . . . , Nmesh}, (2.13)
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where each rectangular (d cube for higher dimensions) element

Ki , i = 1, . . . , Nmesh,

can be obtained applying invertible affine mapping TKi
(·) to the reference element K re f

Ki = TKi
(K re f ), i = 1, . . . , Nmesh.

We define Nloc to be the total number of basis functions on each element Ki , i =

1, . . . , Nmesh.

Now, introducing arbitrary chosen basis functions φi ∈ Vhp, i = 1, . . . , Nmesh · Nloc

cu = (cu
i )Nmesh·Nloc

, (2.14)

for

uh(x) =
Nmesh·Nloc
∑

i=1

cu
i φi(x), uh ∈ Vhp, x ∈ Ω (2.15)

over all elements, one could set a matrix system notation for a problem.

Notation in the form (·)m represents a vector with length m. Similar notation is used

for matrices (·)nm to explicitly indicate matrix with m columns and n rows.

And to represent a test function v(x) ∈ Vhp, we can use linear combination of basis

functions φi(x) ∈ Vhp, i = 1, . . . , Nmesh · Nloc , such that:

v(x) =
Nmesh·Nloc
∑

i=1

cv
i φi(x),

for a vector cv = (cv
i ), i = 1, . . . , Nmesh · Nloc .

Before defining actual basis function, we should determine properties and restrictions

for such functions. One should note that chosen basis functions should imply the following

property:

• φi(x) only has a non-zero value on one element and vanishes on all others,

We are going to use Npd as a maximal polynomial degree of a function. We also note,

that our basis functions on the d cube are the product of one-dimensional functions, and

because to compute the values of the one-dimensional hierarchical polynomial function of

given degree Npd on a chosen geometry with the dimension d, we need to compute all

Npd +1 values of lower order functions of the same kind in each variable, yielding total as

Nloc = (Npd + 1)d , (2.16)

this creates a relation for the number of basis functions Nloc on the element Ki and

polynomial degree Npd of the hierarchical basis function for spatial dimension d.

We are going to define reference basis functions for reference element K re f

φ
re f
k (t), k = 1, . . . , Nloc ,
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where t is a set of coordinates on a reference element for the chosen rectangular partition-

ing. For the reference element we have t ∈ (−1,1)d .

To obtain the local basis function for current element Ki , i = 1, . . . , Nmesh of the em-

ployed decomposition we use invertible affine mapping

x = FKi
(t),

which allows the following:

φ loc
i,k (x) =

¨

φ
re f
k (F−1

Ki
(x)), x ∈ Ki

0, x 6∈ Ki

where i = 1, . . . , Nmesh and k = 1, . . . , Ne.

We note that chosen domain Ω ⊂ Rd . For φ : Ω→ R and φ̄ : K re f → R we have

φ(x) = φ̄(F−1(x)) = φ̄ ◦ F−1(x),

which also yields:

x = F(t)⇒ d x =

�

�

�

�

∂ F
∂ t

�

�

�

�

d t.

We also perform an analysis of the chosen mapping. For the reference element K re f ⊂
Rd , transformation defined as

F :=

¨

K re f ⇒ Ω
t → x

Now to evaluate the integral of u, v ∈ Ω using ū, v̄ ∈ K re f we transform to the reference

element:
∫

Ω

uvd x =

∫

Ω

u(F−1(x))v(F−1(x))d x =

∫

K re f

ūv̄

�

�

�

�

∂ F
∂ t

�

�

�

�

d t

And to represent a gradient ∇xu(x) on the reference element with ∇t ū(t) we do the fol-

lowing:

∇xu=∇x ū(F−1(x)) = ((∂xk
F−1(x))∇t ū ◦ F−1)k = (

d
∑

i=1

∂ t i

∂ xk
∂t i

ū ◦ F−1)k,

for each spatial coordinate xk, k = 1, . . . , d. Therefore for the integral estimation we
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have:
∫

Ω

∇xu · ∇x vd x

=

∫

Ω

∇x ū(F−1(x)) · ∇x v̄(F−1(x))d x

=

∫

Ω

� d
∑

k=1

�

(∂xk
F−1(x))∇t ū ◦ F−1

�

·
�

(∂xk
F−1(x))∇t v̄ ◦ F−1

�

�

d x

=

∫

K re f

� d
∑

k=1

�

(∂xk
F−1(x)) ◦ F∇t ū

�

·
�

(∂xk
F−1(x)) ◦ F∇t v̄

�

�
�

�

�

�

∂ F
∂ t

�

�

�

�

d t

=

∫

K re f

 

d
∑

k=1

� d
∑

i=1

∂ t i

∂ xk
∂t i

ū
�

·
� d
∑

j=1

∂ t j

∂ xk
∂t j

v̄
�

!

�

�

�

�

∂ F
∂ t

�

�

�

�

d t

=

∫

K re f

d
∑

i=1

d
∑

j=1

� d
∑

k=1

∂ t i

∂ xk

∂ t j

∂ xk

�

∂t i
ū∂t j

v̄

�

�

�

�

∂ F
∂ t

�

�

�

�

d t

And due to t = F−1 ◦ F(t), for identity matrix I

I =∇t t =∇t F
−1 ◦ F(t) = ((∇x F−1) ◦ F(t))∇t F(t). (2.17)

This means

I =

�

∂ t i

∂ t j

�

i, j

=

�

∂ t i(x(t))
∂ t j

�

i, j

=

� d
∑

k=1

∂ t i

∂ xk

∂ xk

∂ t j

�

i, j

=
�

∂ t i

∂ xk

�

i,k

�

∂ xk

∂ t j

�

k, j

,

And this leads to
�

∂ t i

∂ xk

�

i,k
=

�

�

∂ xk

∂ t j

�

k, j

�−1

.

For the sake of completeness we also demonstrate the Jacobian matrix computation.

The following formulae can be implemented easily and do not depend on a choice of basis

functions. The Jacobian in two dimensions is

�

∂ t1
∂ x1

∂ t1
∂ x2

∂ t2
∂ x1

∂ t2
∂ x2

�

=

�

∂ x1
∂ t1

∂ x1
∂ t2

∂ x2
∂ t1

∂ x2
∂ t2

�−1

=
1
�

�

∂ F
∂ t

�

�

�

∂ x2
∂ t2

− ∂ x1
∂ t2

− ∂ x2
∂ t1

∂ x1
∂ t1

�

(2.18)

with �

�

�

�

∂ F
∂ t

�

�

�

�

=
∂ x1

∂ t1

∂ x2

∂ t2
−
∂ x1

∂ t2

∂ x2

∂ t1
.

In three dimensions,

∂ F
∂ t =

∂ x
∂ t1

�

∂ x
∂ t2
× ∂ x
∂ t3

�

= ∂ x1
∂ t1
( ∂ x2
∂ t2

∂ x3
∂ t3
− ∂ x3
∂ t2

∂ x2
∂ t3
)− ∂ x2

∂ t1
( ∂ x1
∂ t2

∂ x3
∂ t3
− ∂ x3
∂ t2

∂ x1
∂ t3
) + ∂ x3

∂ t1
( ∂ x1
∂ t2

∂ x2
∂ t3
− ∂ x2
∂ t2

∂ x1
∂ t3
)
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and

�

∂ t i

∂ xk

�

i,k
=

1
�

�

∂ F
∂ t

�

�







∂ x2
∂ t2

∂ x3
∂ t3
− ∂ x3
∂ t2

∂ x2
∂ t3

− ∂ x1
∂ t2

∂ x3
∂ t3
+ ∂ x3
∂ t2

∂ x1
∂ t3

∂ x1
∂ t2

∂ x2
∂ t3
− ∂ x2
∂ t2

∂ x1
∂ t3

− ∂ x2
∂ t1

∂ x3
∂ t3
+ ∂ x3
∂ t1

∂ x2
∂ t3

∂ x1
∂ t1

∂ x3
∂ t3
− ∂ x3
∂ t1

∂ x1
∂ t3

− ∂ x1
∂ t1

∂ x2
∂ t3
+ ∂ x2
∂ t1

∂ x1
∂ t3

∂ x2
∂ t1

∂ x3
∂ t2
− ∂ x3
∂ t1

∂ x2
∂ t2

− ∂ x1
∂ t1

∂ x3
∂ t2
+ ∂ x3
∂ t1

∂ x1
∂ t2

∂ x1
∂ t1

∂ x2
∂ t2
− ∂ x2
∂ t1

∂ x1
∂ t2







(2.19)

Here one should note that the global basis function for an approximation and local basis

function on an element are bounded using the mapping between them on a neighbouring

elements.

For the edge-based integral in our primal form, we can use different basis functions,

which have the necessary properties for the edge-based computations, e.g. have zero values

on all neighbouring edges, except one.

2.2.1 One dimensional functions

We now define one dimensional functions, which can be used as a basis.

2.2.1.1 Antiderivative of Legendre polynomials

Antiderivative of Legendre polynomials (ADLP) [40, p19], can be used as hierarchical re-

cursive basis functions, with arbitrary polynomial degree Npd . They are based on a Leg-

endre polynomials, which are hierarchical functions. Legendre polynomials are defined in

the following way:

L0(x) = 1,

L1(x) = x ,

Ln(x) =
2n− 1

n
x Ln−1(x)−

n− 1
n

Ln−2(x).

The first derivatives are given in recursive form:

L′0(x) = 0,

L′1(x) = 1,

(1− x2)L′n(x) = −nx Ln(x) + nLn−1(x), n≥ 1.

The ADLP are defined in the following way:

L0(x) =
1
2
(1− x),

L1(x) =
1
2
(1+ x),

Ln(x) =
1

2n− 1
(Ln(x)− Ln−2(x)) =

∫ x

−1

Ln−1(y)d y, n≥ 2. (2.20)

The important and simplifying property on the reference element � := [−1, 1]2 can be

achieved:

Ln(±1) = 0, n≥ 2
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Also, there holds:

L ′0 = −
1
2

,

L ′1 =
1
2

,

L ′n = Ln−1, n≥ 2.

2.2.1.2 C1 (b-spline) polynomials

Another hierarchical recursive set of basis functions the C1 (b-spline) polynomials [40,

p20], which we can employ, for an arbitrary polynomial degree Npd ≥ 3. This choice

restricts us to rectangular partitions. Main advantage and subsequent importance of the

C1 basis functions is discussed in Section 2.3. An effect of the C1 basis function on a solver

is discussed further in Section 3.1. C1 basis functions are based on an Anti-derivative of a

Legendre polynomial:

C0(x) =
1
4
(1− x)2(2+ x),

C1(x) =
1
4
(1+ x)2(2− x),

C2(x) =
1
4
(1+ x)(1− x)2,

C3(x) =
1
4
(1+ x)2(x − 1),

Cn(x) = (1− x2)Ln−2(x), n≥ 4 (2.21)

The desired properties, are:

C0(−1) = 1, C0(1) = 0, C ′0(−1) = 0, C ′0(1) = 0,

C1(−1) = 0, C1(1) = 1, C ′1(−1) = 0, C ′1(1) = 0,

C2(−1) = 0, C2(1) = 0, C ′2(−1) = 1, C ′2(1) = 0,

C3(−1) = 0, C3(1) = 0, C ′3(−1) = 0, C ′3(1) = 1,

Cn(±1) = C ′n(±1) = 0, n≥ 4 (2.22)

The derivatives of the C1 polynomials are:

C ′0(x) = −
3
4
(1− x2),

C ′1(x) =
3
4
(1− x2),

C ′2(x) =
1
4
(1− x)(−1− 3x),

C ′3(x) =
1
4
(1+ x)(3x − 1),

C ′n(x) = −2xLn−2(x) + (1− x2)Ln−3(x), n≥ 4
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2.2.1.3 C1 (b-spline) polynomials of the second kind

Alternatively, C1 basis function setting can be devised as:

C̄0(x) =
1
4
(1− x)2(2+ x),

C̄1(x) =
1
4
(1+ x)2(2− x),

C̄2(x) =
1
4
(1+ x)(1− x)2,

C̄3(x) =
1
4
(1+ x)2(x − 1),

C̄n(x) = (1− x2)2 Ln−4(x), n≥ 4,

with the derivative defined as:

C̄ ′0(x) = −
3
4
(1− x2),

C̄ ′1(x) =
3
4
(1− x2),

C̄ ′2(x) =
1
4
(1− x)(−1− 3x),

C̄ ′3(x) =
1
4
(1+ x)(3x − 1),

C̄ ′4(x) = 4x(x2 − 1)

C̄ ′n(x) = 4x(x2 − 1)Ln−4(x) + (1− x2)2 L′n−4(x)

= 4x(x2 − 1)Ln−4(x)

+ (1− x2)
�

−(n− 4)x Ln−4(x) + (n− 4)Ln−5(x)
�

, n≥ 5.

We note that this kind of C1 basis functions is not employed in this work, but is given for

the sake of completeness.

2.2.2 Two dimensional functions

2.2.2.1 Raviart-Thomas elements

Calculation of vector-valued global basis functions requires normal direction n, and for

two vector-valued functions ψloc
i,k and ψloc

j,l on the joint edge ek = el for corresponding

neighbouring elements Ki and K j ([39]):

ψloc
i,k (ek) · n=ψloc

j,l (el) · n.

To solve this problem, one can set weighting relation:

w(i, k) ·ψloc
i,k (ek) · n= w( j, l) ·ψloc

j,l (el) · n

setting w(i, k) := 1 for cases where element Ki does not have a neighbour on edge ek.

Otherwise, if one sets w(i, k) := 1 for element’s Ki edge ek and for the joint edge el of
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element K j , if j > i one gets:

w( j, l) =
ψloc

i,k (ek) · n

ψloc
j,l (el) · n

2.2.2.2 Extension to higher dimension

In order to use the one-dimensional polynomials f (x) on a two-dimensional mesh, we can

extend them using their tensor-product:

φ(x1, x2) := f (x1) · f (x2),

In this case, global basis functions would look like:

φ(x1, x2) :=Ln(x1) · Ln(x2),

with n= 1, . . . , Npd , for the anti-derivative of Legendre polynomials, and

φ(x1, x2) := Cn(x1) · Cn(x2),

with n = 1, . . . , Npd , for the C1 polynomials. In order to restrict local basis functions’

contributions on a matrix, one can introduce the penalty factor (not to be confused with

DG penalty term α) for the basis functions on reference elements. The penalty factor for

different shapes of the element, is chosen such that it yields zero values on the boundaries.

For the reference rectangle � := [−1, 1]2, we apply the factors (1− x2
1)(1− x2

2), and get

the following form of the basis function on the reference element:

(1− x2
1)(1− x2

2)φ(x1, x2)

which ensures that the basis function disappears on the edges of the rectangle, guarantee-

ing that we have a function with non-zero values only inside the element. This extension

reduces number of non-zero basis functions per element down to Npd . Important and de-

sirable property of the C1 polynomials is the fact, that its derivative would be zero on all

but one edges of the element. This can be shown, using the mapping:

φ loc(x) = φ re f (F−1(t))

ne · ∇xφ
loc(x) = ne · (J T∇tφ

re f (t)),

where ne is a normal to the edge (face) of the reference element.

To give the details of the previous formula first note that

ne · (J∇tφ) = nT
e J T∇tφ = (Jne)

T ∇tφ = (Jne) · ∇tφ

Knowing, that J is a Jacobian matrix, in 2-D:

�

∂ t1
∂ x1

∂ t1
∂ x2

∂ t2
∂ x1

∂ t2
∂ x2

�

=

�

∂ x1
∂ t1

∂ x1
∂ t2

∂ x2
∂ t1

∂ x2
∂ t2

�−1

=
1

| ∂ F
∂ t |

�

∂ x2
∂ t2

− ∂ x1
∂ t2

− ∂ x2
∂ t1

∂ x1
∂ t1

�
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and ne is defined as

ne = t⊥ =

�

∂ x2
∂ t2

− ∂ x1
∂ t2

�

,

where (·)⊥ denotes perpendicularity operation, and vector is written as a column-vector

for readability.

For the Jne term we have:

�

∂ x2
∂ t2

− ∂ x2
∂ t1

− ∂ x1
∂ t2

∂ x1
∂ t1

�

·

�

∂ x2
∂ t2

− ∂ x1
∂ t2

�

=

 
�

∂ x2
∂ t1

�2
+
�

∂ x1
∂ t2

�2

− ∂ x2
∂ t1

∂ x2
∂ t1
− ∂ x1
∂ t2

∂ x1
∂ t1

!

=

 
�

∂ x2
∂ t1

�2
+
�

∂ x1
∂ t2

�2

− ∂ F
∂ t1
· ∂ F
∂ t2

!

We should also note, that Jacobian J is restricted on the edge e, and, according to our

set-up, ∂t1
φ re f |e = 0. We get:

 
�

∂ x2
∂ t1

�2
+
�

∂ x1
∂ t2

�2

− ∂ F
∂ t1
· ∂ F
∂ t2

!

·

�

∂t1
φ re f

∂t2
φ re f

�

=

 
�

∂ x2
∂ t1

�2
+
�

∂ x1
∂ t2

�2

− ∂ F
∂ t1
· ∂ F
∂ t2

!

·

�

0

∂t2
φ re f

�

= −
∂ F
∂ t1
·
∂ F
∂ t2
· ∂t2

φ re f (2.23)

Using this property, we need just one computation of one reference basis function per

edge, which would reduce the computation time, taking into account the Gauss-Legendre

quadrature scheme, by N2
pd .

2.2.3 Three dimensional case

Three dimensional extension of the basis function is done similarly to the two dimensional

case. We use a tensor-product of one dimensional function f (x) to obtain a three dimen-

sional function. For simplicity, with slight abuse of notation:

φ(x1, x2, x3) := f (x1) · f (x2) · f (x3). (2.24)

For a reference cube, we are using a special set [−1,1]3 of all 3-tuples of numbers in the

interval [−1, 1]. It is easily verifiable, that to guarantee desirable properties, namely to

eliminate the basis function contribution on the face of the reference cube, we can use the

penalty factor (1− x2
1)(1− x2

2)(1− x2
3). This yields the following form:

(1− x2
1)(1− x2

2)(1− x2
3)φ(x1, x2, x3) (2.25)

Anti-derivative of Legendre polynomials, would allow to construct the following three-

dimensional basis functions:

φ(x1, x2, x3) :=Ln(x1) · Ln(x2) · Ln(x3),

with n = 1, . . . , N . Applying the penalty factor (2.25) allows us to use it as a global basis

function on a discontinuous space.
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Product of three C1 polynomials can be used as three-dimensional basis function: And

φ(x1, x2, x3) := Cn(x1) · Cn(x2) · Cn(x3),

with n= 1, . . . , N . As in the case of ADLP, applying the appropriate penalty factors, yields

the global basis functions. Major property of interest of the C1 polynomial is the fact, that

its derivative is zero on all but one face of the element. This can be shown, using the

mapping:

φ loc(x) = φ re f (F−1(t))

ne · ∇xφ
loc(x) = ne · J T∇tφ

re f (t).

Lemma 2.2.1. On a reference cube K re f = [−1,1]3 with variables given by t1, t2, t3, for any

function, restricted on a face er ∈ ∂ K re f , r = 1, . . . , 6, we have

∇xu|er
= (
∂ F
∂ t
)−T∇t ũ|er

= 0

Proof.

∇xu|er
= (
∂ F
∂ t
)−T∇t ũ|er

,

holds due to the construction.

From (2.24), for reference basis functions we have

ũk,l,m = φ
re f
k (t1)φ

re f
l (t2)φ

re f
m (t3).

Considering the lower face given by t3 = −1, (t1, t2) ∈ [−1,1]2, we have derivative being

equal to zero, as it follows from (2.22)

∂t1
ũk,l,m = ∂t1

φ
re f
k (t1)φ

re f
l (t2)φ

re f
m (t3)|t3=−1 = 0

φ re f
m (−1) = 0

∂t2
ũk,l,m = φ

re f
k (t1)∂t2

φ
re f
l (t2)φ

re f
m (t3)|t3=−1 = 0

φ re f
m (−1) = 0

∂t3
ũk,l,m = φ

re f
k (t1)φ

re f
l (t2)∂t3

φ re f
m (t3)|t3=−1 = 0

∂t3
φ re f

m (−1) = 0.

The rest follows similarly.

Now that all the necessary basis functions are defined, we can perform the matrix

analyses.

2.3 Matrix setup

Using the defined basis functions, we can now define the process of matrix computation.

We can perform analyses for each of the small forms shown in (2.3) - (2.8) and (2.9)-(2.12).
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We start with volume integral computation (2.3).

2.3.1 Volume integral

For bilinear form a(uh, v) = (∇uh,∇v)Ω, set the matrix

A := (ap,q)
Nmesh·Nloc
Nmesh·Nloc

.

Bilinear form could be calculated using the setting (2.15) and arbitrary chosen set of basis

functions:

ap,q =

∫

Ω

∇φp · ∇φqd x ,

where p, q = 1, . . . , Nmesh · Nloc . We choose local basis functions such that:

φp =
∑

p=map(i,k)

φ loc
i,k , (2.26)

where map(i, k) represents the numbering scheme of the local basis function φ loc
i,k on

Ki of polynomial degree at most Npd in relation to the numbering of the global basis

function φp, i = 1, . . . , Nmesh and k = 1, . . . , Nloc .

To explain a bit further this notation we first note, that due to the discontinuities we only

really have local basis functions and introduce the notation for global basis functions only

for completeness. Hence the map(i, k) structure is more suitable in the dG setting. With

the p =map(i, k) structure, we first go through all i-indexed elements of the mesh, then we

observe all local functions φ loc
i,k on that mesh element, which have indices k = 1, . . . , Nloc ,

and add the observed values in the φp.

Introducing the same setup for the φq on elements K j , with local basis functions φ loc
j,l ,

of polynomial degree at most Npd , j = 1, . . . , Nmesh and l = 1, . . . , Nloc , we can rewrite the

bilinear form:

ap,q =

∫

Ω

∇(
∑

p=map(i,k)

φ loc
i,k ) · ∇(

∑

q=map( j,l)

φ loc
j,l )d x

=
∑

p=map(i,k)

∑

q=map( j,l)

∫

Ω

∇φ loc
i,k · ∇φ

loc
j,l d x .

Restricting the local basis functions choice such that that they are non-zero only on the

element that they belong to, we need to compute them only on the nodes belonging to the

element:

ap,q =
∑

p=map(i,k)

∑

q=map(i,l)

∫

Ki∈Th(Ω)
∇φ loc

i,k · ∇φ
loc
i,l d x .

In order to simplify the construction of the local basis functions, we use reference element

K re f and invertible affine mapping TK both defined in section 1.3, and corresponding

affine transformation for the coordinates t of reference element to the coordinates x of the
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local element, such that t = F−1
Ki
(x), i = 1, . . . , Nmesh:

ap,q =
1
|J |

∑

p=map(i,k)

∑

q=map(i,l)

∫

K re f

J∇tφ
re f
k (F−1

Ki
(x)) · ∇tφ

re f
l (F−1

Ki
(x))d t,

with Jacobian matrix J given by (2.17).

In order to calculate the resulting integral for the polynomial degree set to, at most,

Npd , we use Gauss-Legendre quadrature rule and need

Ng = Npd (2.27)

quadrature points and weights per each function:

ap,q =
Ng
∑

r=1

Ng
∑

s=1

∑

p=map(i,k)

∑

q=map(i,l)

Jωr∇tφ
re f
k (tr , ts) ·ωs∇tφ

re f
l (tr , ts),

where tr = F−1
Ki
(xr), ts = F−1

Ki
(xs), r, s = 1, . . . , Ng are Gauss-Legendre quadrature points,

ωr ,ωs, r, s = 1, . . . , Ng are Gauss-Legendre quadrature weights. Gauss-Legendre quadra-

ture scheme is used to numerically estimate the integral. We can use precomputed list of

Gauss-Legendre weights and nodes [38]. In the algorithmic view, we are using the func-

tion (ω, t) =Gauss(Npd), which takes as input the polynomial degree, and outputs vectors

t ∈ RNg of quadrature nodes, and vector ω ∈ RNg of quadrature weights.

The use of the Gauss-Legendre rule is important for the cases when the constants

present in the original PDE are non-zero. In addition, non-linear PDEs require extra preci-

sion, so we set the Gauss-Legendre quadrature to the value discussed prior.

To be more clear and to show implication, which arise here, we split the matrix com-

putation in two parts - elementary matrix computation and the global matrix assembly.

Elementary matrix is defined as

Aelem := (aelem
i,k,l ), i = 1, . . . , Nmesh, k, l = 1, . . . , Nloc .

The elementary matrix computation follows as:

aelem
i,k,l =

Ng
∑

r=1

Ng
∑

s=1

Nmesh
∑

i=1

Nloc
∑

k,l=1

Jωr∇tφ
re f
i,k (tr , ts) ·ωs∇tφ

re f
l (tr , ts),

And the abstract, naive computation algorithm is shown in 1.
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Algorithm 1 Local matrix Aelem computation. Naive. 2D
1: for i = 1 : Nmesh do
2: (ω, t) =Gauss(Npd)
3: for r, s = 1 : Ng do
4: (x r , xs) = FKi

(t r , ts)
5: for k, l = 1 : Nloc do
6: aelem

i,k,l ← aelem
i,k,l + Jωrωs∇φ loc

i,k (x r , xs)∇φ loc
i,l (x r , xs)

7: end for
8: end for
9: end for

The Algorithm 1 immediately yields number of necessary loop repetitions as

Nmesh · Ng · Ng · Nloc · Nloc .

However, due to the nature of the employed hierarchical basis functions, one would need

at most additional Npd + 1 (2.16) operations per k, l loop, to construct each basis function

on each element, yielding the total number of necessary operations:

T naive
Aelem ≈ Nmesh · N2

g · N
2
loc · Npd · Npd .

Here, we use approximate equality, as we omit the number of operations required for by

the affine transformation, which is a constant and has very small overall impact. As we are

interested in the impact of higher polynomial degree, we define total number of necessary

operations in terms of polynomial degree Npd . Taking into account, that we need at most

Ng = Npd Gauss-Legendre data, per dimension, have Nloc = (Npd + 1)d basis functions

per d-cube. Additionally, hierarchical construction and computation of the basis function

require at most Npd operations per dimension. Hence, the naive implementation with all

hidden cost is:

T naive
Aelem (Npd) ≈ Nmesh · N d

pd · N
d
loc · N

2
pd

≈ Nmesh · N d+2
pd · (Npd − 1)d .

Further we can simplify the number of operations by neglecting coefficients given by the

constants:

T naive
Aelem (d)≈ Nmesh · N

(2d+2)
pd . (2.28)

For the case d = 2,

T naive
Aelem (2)≈ Nmesh · N6

pd .

We can optimise Algorithm 1. It is possible to calculate the whole vector of transformed

Gauss-Legendre data, and access the necessary values in-loop:

xr = FKi
(tr), R= (xr)

Ng , r = 1, . . . , Ng , i = 1, . . . , Nmesh,

and xs = FKi
(ts), S = (xs)

Ng , s = 1, . . . , Ng , i = 1, . . . , Nmesh. It is also possible to

construct the basis functions at once, compute all the values, for each basis function, as
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they are hierarchical, and store the values in the vector form:

K(1 : Nloc)←∇φ loc
i,1:Nloc

(R, S).

The optimised algorithm is shown below.

Algorithm 2 Optimised computation of the local matrix Aelem. 2D
1: for i = 1 : Nmesh do
2: (ω, t) =Gauss(Npd)
3: for r, s = 1 : Ng do
4: (x r , xs) = FKi

(t r , ts)
5: K(l)←∇φ loc

i,l (x r , xs), l = 1 : Nloc

6: aelem
i,1:Nloc ,1:Nloc

← aelem
i,1:Nloc ,1:Nloc

+ Jωr K(1 : Nloc)ωsK(1 : Nloc)
7: end for
8: end for

The optimised version of the Algorithm 2 requires the following number of operations:

T opt
Aelem(d)≈ Nmesh · N d

loc · N
d
g ,

and substituting the values defined for Nloc (2.16) and Ng (2.27):

T opt
Aelem(d)≈ Nmesh · N2d

pd ,

or, for d = 2:

T opt
Aelem(2)≈ Nmesh · N4

pd .

The difference in the implementation costs can be seen on the graph 2.1. The, so-called,

"polynomial explosion", can be seen for polynomial degrees p ≥ 6.
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Figure 2.1: Algorithms complexity in 3-d. Number of operations for one mesh
element.

To assemble the global matrix A, we use the following algorithm 3.
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Algorithm 3 Global matrix A assembly
1: for i = 1 : Nmesh do
2: [Compute values of block i of matrix Aelem]
3: for k, l = 1 : N loc do
4: p←map(i, k)
5: q←map(i, l)
6: ap,q← ap,q + aelem

i,k,l
7: end for
8: end for

In reality, we implement local matrix computation and global matrix assembly as one

algorithm, so we do not have to repeat i-loop. Global matrix assembly requires map access,

and simple summation of local matrix Aelem elements with global matrix A elements. Hence,

the total number of operations required for d = 2 is

TA(d)≈ Nmesh · (N4
pd + N4

pd). (2.29)

More generally, for d-dimensions is:

TA(Npd)≈ Nmesh · (N
(2d)
pd + N (2d)

pd ). (2.30)

2.3.2 Edge integral

Similarly as for the volume integral, in the previous subsection, for avu(uh, v) (2.5) and

auv(uh, v) (2.4), using the fact that their composite bilinear form is symmetric, set the

matrix V = (vp,q)
Nmesh·Nloc
Nmesh·Nloc

. The matrix element can be calculated:

vp,q =

∫

Γ

¹φpº · {∇φq}+ {∇φp} · ¹φqºds

substituting (2.26)

=

∫

Γ

¹

∑

p=map(i,k)

φ loc
i,k º · {∇

∑

q=map( j,l)

φ loc
j,l }+ {∇

∑

p=map(i,k)

φ loc
i,k } · ¹

∑

q=map( j,l)

φ loc
j,l ºds

restricting local basis functions on the elements

=
∑

p=map(i,k)

∑

q=map( j,l)

∫

∂ Ki∩∂ K j

¹φ loc
i,k º · {∇φ

loc
j,l }+ ¹φ

loc
j,l º · {∇φ

loc
i,k }ds

Due to construction and arbitrary choice of the local basis functions, we can concentrate

our attention only on the functions on the current element Ki . Neighbouring element’s

basis functions contributions can be handled with the local basis functions, with support

on the edge ei,r which coincide for both elements Ki , K j , i = j:

vp,q =
∑

p=map(i,k)

∑

q=map(i,l)

∫

∂ Ki∩∂ K j

¹φ loc
i,k º · {∇φ

loc
i,l }+ ¹φ

loc
i,l º · {∇φ

loc
i,k }ds

+
∑

p=map(i,k)

Ne
∑

r

∑

q=map(neigh(i,r),l)

∫

ei,r

¹φ loc
i,k º · {∇φ

loc
ir ,l}+ ¹φ

loc
ir ,lº · {∇φ

loc
i,k }ds
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where Ne is a total number of edges. The composite index ir := neigh(i, r), indicates when

the used local basis functions belong to both elements Ki and K j edge’s r, and obtained

through the table of neighbours - neigh(·, ·).
Due to the nature of the discontinuous Galerkin matrix we use local basis functions

with non-zero values only on the edges, so we would have contributions only for elements

K j = Ki , e.g. - when edge ei,r of Ki and the edge e j,s of K j are the same edge. This is due

to the fact, that we are only interested in the elements K j which are neighbours of Ki , so

we only consider cases when the edges ei,r and e j,s - are coinciding edges. To collect all

contributions only once, we use mapping table map(·, ·) which require input of index of

the current element and number(index) of a local basis function and returns index of a

corresponding global basis function.

To separate the contributions on a local level, we introduce the local matrix V elem =

(velem,[s||n]
i,k,l,r ). Upper index s corresponds to self-element contribution and index n corre-

sponds to neighbouring element contribution.

When element’s edge is at the boundary of Γ , hence, there are no neighbour,

velem,s
i,k,l,r =

∫

ei,r

φ loc
i,k · ni,r · ∇φ loc

i,l +φ
loc
i,l · ni,r · ∇φ loc

i,k ds,

where ni,r is an outward normal on the edge ei,r .

For the cases when the element K j is present. For the cases, when ei,r = e j,s - same

edge, and on the same elements, e.g. i = j:

velem,s
i,k,l,r =

∫

ei,r

φ loc
i,k · ni,r ·

1
2
∇φ loc

i,l +φ
loc
i,l · ni,r ·

1
2
∇φ loc

i,k ds

Using agreed mapping, when we have the same edge, but on different elements, e.g. i 6= j,

although it should be a neighbouring element, hence ir = neigh(i, r):

velem,n
i,k,l,r =

∫

ei,r

φ loc
i,k · ni,r

1
2
∇φ loc

ir ,l +φ
loc
ir ,l · ni,r ·

1
2
∇φ loc

i,k ds

For simplicity, we keep the integration, so the modified algorithm for the edge-based inte-

gration is 4:
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Algorithm 4 Edge-based integration local matrix computation. Naive. 2D
1: for i = 1 : Nmesh do
2: for r = 1 : Ne do
3: for k, l = 1 : Nloc do
4: ir ← neigh(i, r)
5: if ir = 0 [no neighbour] then
6: velem,s

i,k,l,r ←
∫

ei,r
φ loc

i,k · ni,r · ∇φ loc
i,l +φ

loc
i,l · ni,r · ∇φ loc

i,k

7: else
8: velem,s

i,k,l,r ←
∫

ei,r
φ loc

i,k · ni,r ·
1
2∇φ

loc
i,l +φ

loc
i,l · ni,r ·

1
2∇φ

loc
i,k

9: velem,n
i,k,l,r ←

∫

ei,r
φ loc

i,k · ni,r
1
2∇φ

loc
ir ,l +φ

loc
ir ,l · ni,r ·

1
2∇φ

loc
i,k

10: end if
11: end for
12: end for
13: end for

In the case of edge-based integration, the number of all loop repetitions can be esti-

mated as

Nmesh · Ne · N2
loc .

As in the case of the volume integral, we use hierarchical local basis functions, and should

compute at most, in the case when neighbour is present, two values, from both sides of the

edge, of the basis functions in each repetition, hence the operation count goes up to

Nmesh · Ne · N2
loc · N

2
pd .

We can use the same Gauss-Legendre data, as we are restricted on one edge, making it

one dimensional integration. Number of Gauss-Legendre quadrature points and weights

is then Ng = Npd . This totals number of operations required for naive matrix computation

to:

T naive
V elem ≈ Nmesh · Ng · Ne · N2

loc × N2
pd ,

In terms of dimension degree d, and applying the (2.16,2.27):

T naive
V elem (d)≈ Nmesh · Ne · N5

pd ,

or for the d-dimensional case:

T naive
V elem (Npd) ≈ Nmesh · Ne · (N

(d−1)
pd N2d

pd N d
pd)

≈ Nmesh · Ne · N
(2d+1)
pd .

We can optimise the naive algorithm 4, by performing the same steps as in case with volume

integral. First, we would compute all Gauss-Legendre data into the vectors. Second, we

can precompute necessary basis function values into the vectors and reuse the computed

values:
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Algorithm 5 Edge-based integration local matrix computation. Optimised. 2D
1: for i = 1 : Nmesh do
2: for r = 1 : Ne do
3: ir ← neigh(i, r)
4: (ω, t) =Gauss(Npd)
5: for s = 1 : Ng do
6: (t e

1, t e
2) = F e

Ki
(ts) [ computing the Gauss-Legendre quadrature on a ref-

erence edge]
7: (xs, ys) = FKi

(t e
1, t e

2) [ computing coordinates on edge er from the Gauss-
Legendre]

8: K(k)← φ loc
i,k (xs, ys),∀k = 1 : Nloc

9: L(l)← φ loc
i,l (xs, ys),∀l = 1 : Nloc

10: T (k)← ni,r · ∇φ loc
i,k (xs, ys),∀k = 1 : Nloc

11: S(l)← ni,r · ∇φ loc
i,l (xs, ys),∀l = 1 : Nloc

12: if ir > 0 [neighbour exists!] then
13: (t r

1, t r
2) = F r

Kir
(ts) [ computing the Gauss-Legendre quadrature on a

reference edge]
14: (xs, ys) = FKir

(t r
1, t r

2) [ computing coordinates on edge eir from the
Gauss-Legendre]

15: Lr(l)← φ loc
ir ,l (xs, ys),∀k = 1 : Nloc

16: Sr(l)←
1
2 ni,r · ∇φ loc

ir ,l (xs, ys),∀l = 1 : Nloc

17: velem,s
i,1:Nloc ,1:Nloc ,r

← velem,s
i,1:Nloc ,1:Nloc ,r

+ωsK(1 : Nloc) ·
1
2S(1 : Nloc) +ωs L(1 :

Nloc) ·
1
2 T (1 : Nloc)

18: velem,n
i,1:Nloc ,1:Nloc ,r

← velem,n
i,1:Nloc ,1:Nloc ,r

+ωsK(1 : Nloc) · Sr(1 : Nloc) +ωs Lr(1 :
Nloc) · T (1 : Nloc)

19: else
20: velem,s

i,1:Nloc ,1:Nloc ,r
← velem,s

i,1:Nloc ,1:Nloc ,r
+ ωsK(1 : Nloc) · S(1 : Nloc) + ωs L(1 :

Nloc) · T (1 : Nloc)
21: end if
22: end for
23: end for
24: end for

This considerably reduces the amount of computations to

T opt
V elem(d) ≈ Nmesh · Ne · (N (d−1)

g N d
locNpd)

≈ Nmesh · Ne · (N
(d−1)
pd N2d

pd Npd)

≈ Nmesh · Ne · N
(2d)
pd .

And for d = 2:

T opt
V elem(d)≈ Nmesh × Ne × N4

pd .

And the global matrix V assembly shown in Algorithm 6, differs from the one for the

matrix A in (3), with the extra term, for the self-contribution.
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Algorithm 6 Edge-based integration global matrix assembly
1: for i = 1 : Nmesh do
2: for r = 1 : 4 do
3: for k, l = 1 : Nloc do
4: p←map(i, k)
5: q←map(i, l)
6: ir ← neigh(i, k)
7: qr ←map(ir , l)
8: vp,q← vp,q + velem,s

i,k,l,r
9: if ir > 0 [neighbour exists] then

10: vp,qr
← vp,q + velem,n

i,k,l,r
11: end if
12: end for
13: end for
14: end for

(S.1 ) For the edge-based integration, we have to take into account the fact that we deal

with two cases: internal edge(face) - interface and neighbour’s faces contribute to the local

element calculation, boundary edge(face) - only self contribution, no neighbour is present.

However we have to take into account, that for different choice of the basis functions we

would have different number of contributions from each element to our local matrices.

I. General choice. For general choice of the basis functions, when we do not have

any special properties and restrictions for the basis functions on a reference elements, we

would have the following set-up. The degree of freedom of the global matrix V is DoF(V ) =

Nmesh · N d
pd , with Nmesh local elements contributing to the global matrix V . Analysing all

basis functions’ interactions with two abstract neighbouring elements KI and KI I , we get

four possible sets:

φI ,i ·φI I , j , i, j = 1 : N d
pd which results in N d

pd · N
d
pd non-zero elements in local Galerkin

matrix

φI ,i · ∇φI I , j , i, j = 1 : N d
pd which results in N d

pd ·N
d
pd non-zero elements in local Galerkin

matrix

∇φI ,i ·φI I , j , i, j = 1 : N d
pd which results in N d

pd ·N
d
pd non-zero elements in local Galerkin

matrix

∇φI ,i · ∇φI I , j , i, j = 1 : N d
pd which results in N d

pd ·N
d
pd non-zero elements in local Galerkin

matrix

Sets two and three are symmetric and can be handled with the same piece of code. Approx-

imation of the corresponding integrals numerically using Gauss-Legendre method requires

only Npd nodes per one edge, hence, the total number of operations required for the cal-

culation and assembly of the local blocks is:

TV elem(d)≈ Npd · N2d
pd (2.31)
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Then the global V calculation and assembly time is:

TV (d)≈ Nmesh · N2d+1
pd (2.32)

In the case of general basis functions, matrix V is nor dense, nor sparse, but has a block

structure, with N2d
pd non-zero elements in each block.

For specific choice of the basis functions, we would concentrate on two cases:

II. Antiderivative of Legendre Polynomials Antiderivative of Legendre Polynomials

(2.20). As before, we have the same degree of freedom and the same number of local

elements. Except that in this particular case, we can exploit the fact that basis functions

vanish outside of their domain (edge), which would give us only self-functions’ contribu-

tions per edge (2.2.2.2). However gradient of the chosen basis functions does not have this

property. Again we would have four possible sets of interactions:

φI ,i ·φI I , j , i, j = 1 : N d
pd which results in N d−1

pd non-zero elements in local Galerkin ma-

trix

φI ,i · ∇φI I , j , i, j = 1 : N d
pd which results in N d−1

pd ·N
d
pd non-zero elements in local Galerkin

matrix

∇φI ,i ·φI I , j , i, j = 1 : N d
pd which results in N d

pd ·N
d−1
pd non-zero elements in local Galerkin

matrix

∇φI ,i · ∇φI I , j , i, j = 1 : N d
pd which results in N2d

pd non-zero elements in local Galerkin

matrix

Sets two and three are symmetric and can be handled with the same piece of code. As

before, we would need Npd Gauss-Legendre quadrature nodes per edge, to numerically

approximate the integrals, resulting in, at most:

TV elem(d)≈ Npd · N2d−1
pd (2.33)

operations per local element, hence the global V calculation and assembly time is:

TV (d)≈ Nmesh · N2d
pd (2.34)

The matrix would have blocks with at most N2d
pd non-zero elements in each block, with

equal number of blocks with N d
pd non-zero elements and two times number of blocks with

N d
pd · N

d+1
pd non-zero elements.

III The choice of the special case of C1-polynomials, would give more vanishing on all

but one edges basis functions, and using the special gradient properties (2.23) would result

vanishing gradients (2.2.2.2):

φI ,i ·φI I , j , i, j = 1 : N d
pd which results in N d−1

pd ·N
d−1
pd non-zero elements in local Galerkin

matrix

φI ,i · ∇φI I , j , i, j = 1 : N d
pd which results in N d−1

pd ·N
d−1
pd non-zero elements in local Galerkin

matrix
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∇φI ,i ·φI I , j , i, j = 1 : N d
pd which results in N d−1

pd ·N
d−1
pd non-zero elements in local Galerkin

matrix

∇φI ,i · ∇φI I , j , i, j = 1 : N d
pd which results in N d−1

pd ·N
d−1
pd non-zero elements in local Galerkin

matrix

With Npd Gauss-Legendre quadrature nodes per edge, we end up with, at most:

TV elem(d)≈ Npd · N
2(d−1)
pd (2.35)

operations per local element, hence the global V calculation and assembly time is:

TV (d)≈ Nmesh · N2d−1
pd (2.36)

The matrix’ blocks would have at most N2
pd non-zero elements.

Using the same principle for abu(uh, v) and aub(uh, v) we obtain matrix B = (bp,q),

noting that it is defined only for Γ 0 := Γ \ ∂ Γ :

bp,q =

∫

Γ 0

�

β · ¹φpº
�

¹∇φqº+ ¹∇φpº
�

β · ¹φqº
�

d x

=

∫

Γ 0

�

β · ¹
∑

p=map(i,k)

φ loc
i,k º

�

¹∇
∑

q=map( j,l)

φ loc
j,l º

+ ¹∇
∑

p=map(i,k)

φ loc
i,k º

�

β · ¹
∑

q=map( j,l)

φ loc
j,l º

�

d x

=
∑

p=map(i,k)

∑

q=map( j,l)

∫

Γ 0

�

β · ¹φ loc
i,k º

�

¹∇φ loc
j,l º+ ¹∇φ

loc
i,k º

�

β · ¹φ loc
j,l º

�

d x

introducing edges ei,r and ei,s:

=
∑

p=map(i,k)

∑

q=map(i,l)

∫

∂ Ki∩∂ Ki

�

β · ¹φ loc
i,k º

�

¹∇φ loc
i,l º+ ¹∇φ

loc
i,k º

�

β · ¹φ loc
i,l º

�

ds

+
∑

p=map(i,k)

N
∑

r

∑

q=map(neigh(i,r),l)

∫

ei,r

�

β · ¹φ loc
i,k º

�

¹∇φ loc
ir ,lº+ ¹∇φ

loc
i,k º

�

β · ¹φ loc
ir ,lº

�

ds,

where, like in previous case, ir := neigh(i, r).

We compute the local element matrix Belem = (belem,[s||n]
i,k,l,r ) in a similar way to the matrix

V. Inner product form for this formulation is symmetric. Using the same scheme, as for

V elem, noting that Belem is computed on Γ 0 := Γ \ ∂ Γ , hence not defined on the boundary.

For belem,s
i,k,l,r , we get: when ei,r = e j,s - same edge, and on the same elements, e.g. i = j:

belem,s
i,k,l,r =

∫

ei,r

(βφ loc
i,k · ni,r) · (∇φ loc

i,l · ni,r) + (βφ
loc
i,l · ni,r) · (∇φ loc

i,k · ni,r)ds

when ei,r = e j,s - same edge, but on different elements, e.g. i 6= j:

belem,n
i,k,l,r =

∫

ei,r

βφ loc
i,k · ni,r · ∇φ loc

ir ,l · ni,r + βφ
loc
ir ,l · ni,r · ∇φ loc

i,k · ni,r ds
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And a modified assembly algorithm for the matrix B is:

Algorithm 7 Local matrix B loc computation
1: for i = 1 : Nmesh do
2: for r = 1 : Ne do
3: for k, l = 1 : Nloc do
4: ir ← neigh(i, k)
5: if ir > 0 [neighbour exists] then
6: belem,s

i,k,l,r ← belem
i,k,l,r+

∫

ei,r
(βφ loc

i,k · ni,r) · (∇φ loc
i,l · ni,r) + (βφ loc

i,l · ni,r) · (∇φ loc
i,k · ni,r)

7: belem,n
i,k,l,r ← belem

i,k,l,r+
∫

ei,r
βφ loc

i,k · ni,r · ∇φ loc
ir ,l · ni,r + βφ loc

ir ,l · ni,r · ∇φ loc
i,k · ni,r

8: end if
9: end for

10: end for
11: end for

where, we check for the neighbour’s existence, otherwise, the edge of the interest is

not shared with other elements, hence, is on the boundary.

Algorithm 8 Matrix B assembly
1: for i = 1 : Nmesh do
2: for r = 1 : Ne do
3: for k, l = 1 : Nloc do
4: p←map(i, k)
5: q←map(i, l)
6: ir ← neigh(i, k)
7: qr ←map(ir , l)
8: if ir > 0 [neighbour exists] then
9: bp,q← bp,q + belem,s

i,k,l,r

10: bp,qr
← bp,q + belem,n

i,k,l,r
11: end if
12: end for
13: end for
14: end for

This matrix’ assembly time estimation is similar to that of matrix V , as here, we consider

all edges (faces) contributions.
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At last, for the bilinear form as(uh, v) we get matrix S = (sp,q)

sp,q =

∫

Γ

α¹φpº · ¹φqºd x

=

∫

Γ

α¹
∑

p=map(i,k)

(φ loc
i,k )º · ¹

∑

q=map( j,l)

(φ loc
j,l )ºd x

=
∑

p=map(i,k)

∑

q=map( j,l)

∫

∂ Ki∩∂ K j

α¹φ loc
i,k º · ¹φ

loc
j,l ºd x

introducing edge ei,r :

=
∑

p=map(i,k)

∑

q=map(i,l)

∫

∂ Ki

α¹φ loc
i,k º · ¹φ

loc
j,l ºds

+
∑

p=map(i,k)

Ne
∑

r=1

∑

q=map(neigh(i,r),l)

∫

ei,r

α¹φ loc
i,k º · ¹φ

loc
ir ,lºds

Introducing the local element matrix Selem = (selem,[s||n]
i,k,l,r ), similarly to V elem and Belem.

For the case, when ei,r is a boundary edge:

selem,s
i,k,l,r =

∫

ei,r

(αφ loc
i,k · ni,r) · (φ loc

i,k · ni,r)ds.

Exploiting the fact that outward normals should be perpendicular to each other:

selem,s
i,k,l,r =

∫

ei,r

αφ loc
i,k ·φ

loc
i,k ds.

And for the case ei,r = e j,s, when i = j

selem,s
i,k,l,r =

∫

ei,r

αφ loc
i,k ·φ

loc
i,l ds,

when i 6= j, employing orthogonality between outwards normals:

selem,n
i,k,l,r = −

∫

ei,r

αφ loc
i,k ·φ

loc
ir ,l ds

Assembly algorithm is the same as for matrix V . The number of operations required is

similar, to the one of matrix V .

2.3.3 Lifting operators' matrix formulation

Now, to represent lifting operators in their matrix form, we could agree to use c[·] coefficient

vector. For simplicity, we are not going to define any dimensions of the vector. Analyse the

given definition of r-lifting operator:

∫

Ω

r(ϕ) ·τd x = −
∫

Γ

ϕ · {τ}ds r : [L2(Γ )]2→ [Whp]
d ,
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where τ ∈ [Whp]d .

Choosing ψp ∈ [Whp]d as a translation of τ on an element Kp, cr
p ·ψp as a translation

of r(ϕ), and cϕp ·ψp as a projection of ϕ:

r(¹uº) =
Nloc
∑

p

cru
p ψp

finally,

∫

Ω

r(¹uº)τd x = −
∫

Γ

¹uº · {τ}ds (2.37)

Nloc
∑

p

cru
p

∫

Ω

ψp ·ψqd x = −
∫

Γ

¹uº · {ψq}ds, q = 1, . . . , Nloc , (2.38)

with Nloc being a number of Raviart-Thomas elements.

Here, the following element on the left hand side can be isolated as a Mass matrix:

M = (mp,q); mp,q =
Nloc
∑

p

∫

Γ

ψq ·ψpd x , q = 1, . . . , Nloc .

Recalling the definition

u=
Npd
∑

p

cu
pφp, φ ∈ Vhp

and substituting into the right hand side of the (2.38):

−
∫

Γ

¹

Npd
∑

p

cu
pφpº · {ψq}ds, q = 1, . . . , Nloc

= −
Npd
∑

p

cu
p

∫

Γ

¹φpº · {ψq}ds, q = 1, . . . , Nloc . (2.39)

Again, now in (2.39), we can separate the following:

mΓp,q =

∫

Γ

¹φpº · {ψq}ds

=

∫

Γ

¹

∑

p=map(i,k)

φ loc
i,k º · {

∑

q=map( j,l)

ψloc
j,l }ds

=
∑

p=map(i,k)

∑

q=map( j,l)

∫

∂ Ki∩∂ K j

¹φ loc
i,k º · {ψ

loc
j,l }ds.

Due to construction and arbitrary choice of the local basis functions, we can concentrate

our attention only on the functions on the current element Ki . Neighbouring element’s basis

functions interactions can be handled with the local basis functions, with support on the

edge ei,r which coincide for both elements Ki , K j . We also introduce a special index ir :=

neigh(i, r), which indicates when the used local basis functions belong to both elements
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Ki and K j edge’s r, and the index is obtained through the table of neighbours - neigh(·, ·).
Substituting:

mΓp,q =
∑

p=map(i,k)

∑

q=map(i,l)

∫

∂ Ki∩∂ Ki

¹φ loc
i,k º · {ψ

loc
i,l }ds

+
∑

p=map(i,k)

N e
∑

r=1

∑

q=map(ir ,l)

∫

ei,r

¹φ loc
i,k º · {ψ

loc
ir ,l}ds.

Expanding the jump and average notation. Due to the nature of the discontinuous Galerkin

matrix we use local basis functions with non-zero values only on the edges, so we would

have interaction only when edge ei,r of Ki and the edge e j,s of K j are the same edge. Due to

this fact, we are only interested in the elements K j which are neighbours of Ki , so we only

consider cases when the edges ei,r and e j,s - are coinciding edges. To collect all contributions

only once, we use mapping table map(·, ·) which require input of index of the current

element and number(index) of a local basis function and returns index of a corresponding

global basis function. Introducing the local matrix M Γ ,elem = (mΓ ,elem,[s||n]
i,k,l,r ). Upper index s

corresponds to self-element contribution and index n corresponds to neighbouring element

contribution.

When element’s edge is at the boundary of Γ , hence, there are no neighbour,

mΓ ,elem,s
i,k,l,r =

∫

ei,r

φ loc
i,k

�

ni,r ·ψloc
i,l

�

ds,

where ni,r is an outward normal on the edge ei,r .

For the cases when the element K j is present. For the cases, when ei,r = e j,s - same

edge, and on the same elements, e.g. i = j:

mΓ ,elem,s
i,k,l,r =

∫

ei,r

φ loc
i,k

�

ni,r ·
1
2
ψloc

i,l

�

ds

Using agreed mapping, when we have the same edge, but on different elements, e.g.

i 6= j. Due to the restrictions on the local basis functions, we should ensure, that the right

neighbouring element is employed, hence j ≡ ir := neigh(i, r):

mΓ ,elem,n
i,k,l,r =

∫

ei,r

φ loc
i,k

�

ni,r
1
2
ψloc

ir ,l

�

ds.

Matrix M Γ can be assembled, using the non-modified algorithm (6). We should pay atten-

tion to the elementary matrix’ special index qr , which ensures, that the contribution from

element Kir , neighbouring element Ki through the edge er , is added to the proper position

of the matrix M Γ .

After computing and assembling all the defined above matrices M and M Γ , we can
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substitute them into the (2.38) and get the matrix-vector representation:

(cru)T ·M = −(cu)T ·M Γ

M T · cru = −(M Γ )T · cu

using the fact that the M is symmetric, omit transposition

cru = −(M)−1 · (M Γ )T · cu. (2.40)

For the l-lifting operator, choosing the same setting, as for the r-lifting operator, ψ ∈
[Whp]d , φ ∈ Vhp, and β ∈ Rd being a constant on each edge, we can start the analysis of

the operator:
∫

Ω

l(ϕ) ·τd x = −
∫

Γ 0

ϕ¹τºds l : L2(Γ 0)→ [Vhp]
d .

Setting

l(β¹uº) =
Nloc
∑

p

c lu
p

�

β ·ψp

�

,

we get

∫

Ω

Nloc
∑

p

c lu
p

�

ψp ·ψq

�

d x = −
∫

Γ 0

�

β · ¹uº
�

¹ψqºds, q = 1, . . . , Nloc

Nloc
∑

p

c lu
p

∫

Ω

ψp ·ψqd x = −
∫

Γ 0

�

β · ¹
N2
∑

p

cu
p ·φpº

�

¹ψqºds, q = 1, . . . , Nloc

Nloc
∑

p

c lu
p

∫

Ω

ψp ·ψqd x = −
N2
∑

p

cu
p

∫

Γ 0

�

β · ¹φpº
�

¹ψqºds, q = 1, . . . , NRT (2.41)

Again, as in (2.38), we can separate the Mass matrix M , and introduce the matrix M Γ 0
with

the entries:

M Γ 0

p,q =

∫

Γ 0

�

β · ¹φpº
�

¹ψqºds

=

∫

Γ 0

�

β · ¹
∑

p=map(i,k)

φ loc
i,k º

�

¹

∑

q=map( j,l)

ψloc
j,l ºds

=
∑

p=map(i,k)

∑

q=map( j,l)

∫

∂ Ki∩∂ K j

�

β · ¹φ loc
i,k º

�

¹ψloc
j,l ºds.

Expanding, using the fact, that the local basis functions are only non-zero on their edge:

mΓ
0

p,q =
∑

p=map(i,k)

∑

q=map(i,l)

∫

∂ Ki∩∂ Ki

�

β · ¹φ loc
i,k º

�

¹ψloc
i,l ºds

+
∑

p=map(i,k)

N e
∑

r=1

∑

q=map(ir ,l)

∫

ei,r

�

β · ¹φ loc
i,k º

�

¹ψloc
i,l ºds.

Similarly, to the M Γ ,elem definition, we can split the M Γ 0,elem computation into the self-

interaction and neighbouring interaction. We should note, that Γ 0 does not include any
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boundary edges, hence there would be no contributions if element Ki has no neighbour.

The self-interaction case then is ei,r = e j,s are the same edge, and on the same elements,

e.g. i = j:

mΓ
0,elem,s

i,k,l,r =

∫

ei,r

�

�

βφ loc
i,k

�

· ni,r

�

�

ψloc
i,l · (−ni,r)

�

ds.

And for the same edge, but on different elements, e.g. i 6= j, ei,r = e j,s, we set j ≡ ir :=

neigh(i, r):

mΓ
0,elem,n

i,k,l,r =

∫

ei,r

�

�

βφ loc
i,k

�

· ni,r

�

�

ψloc
ir ,l · (−ni,r)

�

ds.

The matrix M Γ 0
can be assembled, using the non-modified algorithm (8). As in previous

case, extra care should be given to the special index ir .

Writing (2.41) in matrix notation:

(c lu)T ·M = −(cu)T ·M Γ 0

M T · c lu = −(M Γ 0
)T · cu

c lu = −(M)−1 · (M Γ 0
)T · cu. (2.42)

Auxiliary matrices defined to handle the l- and r- lifting operators:

M = (mp,q) ∈ RNRT×NRT
; mp,q = (ψp,ψq)Γ (2.43)

M Γ = (mΓp,q) ∈ R
Npd×NRT

; mΓp,q = (¹φpº, {ψq})Γ (2.44)

M Γ 0
= (mΓ

0

p,q) ∈ R
Npd×NRT

; mΓ
0

p,q = (¹φpº,¹ψqº)Γ 0 (2.45)

Matrix M is a classical DG-mass matrix, which is constructed using vector-valued Raviart-

Thomas functions. M is a positive definite invertible matrix. Matrices M Γ and M Γ 0
have a

scalar-valued basis functions on the left and vector-valued basis functions on the right side.

Last step in matrix system form definition is to obtain a proper setup for lifting opera-

tors’ interactions.

ar r(·, ·)-case:

∫

Ω

r(¹uº) · r(¹vº)d x

could be rewritten as a global sum form using the projection on the elements and coefficient

vectors:
∫

Ω

�

(
Nloc
∑

p

cru
i ψp) · (

Nloc
∑

q

crv
q ψq)

�

d x .

This is equivalent to the following vector-matrix relation

(cru)T ·M · crv
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with previously defined coefficient-vectors (2.40), we have

cru = −M−1 · (M Γ )T · cu

crv = −M−1 · (M Γ )T · cv .

Notation cru reads as - coefficient-vector c of r-lifting operator applied to u. Also, vector

cu and vector cv are the translation of an the functions uh, v ∈ Vhp, what gives us right to

set it up to the values of the basis function on elements of our discretisation. The resulting

contribution of rr (2.9) to primal bilinear formulation Bh(uh, v) is

(cu)T ·M Γ ·M−1 · (M Γ )T · cv . (2.46)

ar l(·, ·)-case:

Similarly,
∫

Ω
r(¹uº) · l(¹vº)d x can be expanded, as

∫

Ω

�

(
N
∑

i

cru
i ·ψi) · (

N
∑

j

c l v
j ·ψ j)

�

,

resulting in

(cru)T ·M · c l v ,

with contribution

(cu)T ·M Γ ·M−1 · (M Γ 0
)T · cv .

al r(·, ·)-case:

For
∫

Ωi
l(¹uº) · r(¹vº)d x resulting contribution

(cv)T ·M Γ 0
·M−1 · (M Γ )T · cu

equals to the transposed contribution of rl-case (2.10).

al l(·, ·)-case:
∫

Ωi
l(¹uº) · l(¹vº)d x using the same technique could be represented as

(cu)T ·M Γ 0
·M−1(·M Γ 0

)T · cv .

Now, the next problem arises, the number of operations required for computation of

such system, can be obtained in the same way as the matrices A, B, V . First, in the worst-

case, we would need at most N5
pd operations to compute each edge-based local matrix. We

can also multiply matrices on a local level, reducing the total number of operations for

matrix-matrix-matrix multiplication to 2N2d
pd , as we have two N d

pd × N d
pd sparse matrices.

For the latter, we have to add computation of the inverse of the mass-matrix M , which is

N3d
pd , using the Gauss-Jordan algorithm. Finally, we have to repeat it for every element of

the mesh, to get the total:

Tr r,r l,l r,l l(Npd)≈ Nmesh(3N2d+1
pd + 3N3d

pd ). (2.47)
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The matrix multiplication on a local level, can be performed using the fact, that we

deal with block-sparse matrices. Analyse on an example of first contribution (2.46)

M r r = M Γ ·M−1 · (M Γ )T

First, we introduce block notation M Γ
I ,K , which translates as all interactions on element Ki for

all k = 1, . . . , Nloc basis functions belonging (non-zero) to (on) that element. Obviously, for

mass-matrix, blocks would described as M−1
K ,L for all cross-element interactions on [Whp]d .

This can be described more precise with sum notation [46]:

M Γ
I ,K =

∑

k

M Γ
i,k (2.48)

Or index notation:

M Γ
I ,K = M Γ

i,(1,...,k)

Now set:

M r r
I ,J =

∑

K

∑

L

M Γ
I ,K M−1

K ,L(M
Γ
J ,L)

T , I , J = 1, . . . , N

Here, we should note, that mass-matrix is symmetric, and would only have diagonal blocks

with non-zero values. This collapses L sum:

M r r
I ,J =

∑

K

M Γ
I ,K M−1

K ,K(M
Γ
J ,K)

T , I , J = 1, . . . , N

In this setting we only have two cases, for M Γ
I ,K (and for M Γ

J ,L) is not zero, only when

I = K or K = Ir , which can be generalised as follows:

M Γ
I ,K = M Γ

Is
, s = 0, . . . , Ne

where, M Γ
Is
= M Γ

I ,Is
s = 1, . . . , Ne is interactions through edges (faces) of elements in block

I , excluding the self-interactions when s = 0, which are described with and M Γ
I0
= M Γ

I ,I .

Finally this can be reduced to:

M r r
I ,J =

∑

r

M Γ
I ,Ir

M−1
Ir ,Ir

M Γ
Ir ,J , I , J = 1, . . . , N (2.49)

This can be rewritten as a full element-wise sum:

M r r =
∑

i

∑

r,s

M Γ
ir ,i M

−1
i,i M Γ

i,is
, I , J = 1, . . . , N (2.50)

For this, we need to substitute the (2.48) into the (2.49), and for the block-index Ir , we

are using, as in previous examples, entry from neighbouring elements list ir = neigh(i, k).

Hence (2.49) is equivalent to (2.50). Moreover, this ensures, that only the entries which

have an actual interaction, no multiplications with zero, are taking part in the M r r ’s as-

sembly.
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2.4 Right hand side

We consider all penalty elements, to be moved inside the primal formulation. We should

define vector form for the right hand side of a system Fh(v) =
∫

Ω
f vd x , taking φi as a

projection of v on an element Ki yields the following

Fi =

∫

Ω

Nmesh·N d
pd

∑

i=1

f (x) ·φi(x)d x .

Thus we could set vector

F = (Fi)Nmesh·N d
pd

:= (( f (x),φi(x)))Nmesh·N d
pd

.

The time consumption for the right hand side calculation and assembly is similar to the

one of the Galerkin matrices calculation and setup and can be estimated with, considering

Ng = Npd numerical quadrature points, required for integral computation

Trhs ≈ Nmesh · N d
pd · N

d
pd (2.51)

2.5 Global matrix formulation

Finally, the primal bilinear form (2.2) in its full linear matrix system representing Local

Discontinuous Galerkin method has the following form

(A− V + B +M r r +M r l + (M r l)T +M l l + S) · cu = F, (2.52)

where matrices M r r , M r l and M l l represent the corresponding r r, r l and l l contributions.

And setting Ah := (A−V +B+M r r+M r l+(M r l)T +M l l+S) as Global Galerkin Matrix,

we get the primal matrix form, suitable for solving as a linear system:

Ah · cu = F, (2.53)

with cu being a vector of unknowns.

The global matrix formulation is a matrix-matrix addition operation and would require

at most:

TGM ,LDG,addit ion ≈ 8 · Nmesh · N2d
pd (2.54)

For the Symmetric Interior Penalty method, we have a more compact version of (2.52):

(A− V + S) · cu = F. (2.55)

The global Galerkin matrix (2.53) stays the same, with Ah := (A−V+S). The matrix-matrix

addition operation would be:

TGM ,I P,addit ion ≈ 3 · Nmesh · N2d
pd . (2.56)
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2.6 A-priori estimates

2.6.1 Error estimate for the model problems

To estimate how close the obtained solution uh ∈ Vhp to the exact solution u ∈ V , we can

find a bound for the approximation error ‖u− uh‖DG .

Following [29, section 2.2], introduce the broken Sobolev space of composite order s,

for the partition Th,

Hs(Ω,Th) = {u ∈ L2(Ω) : u|K ∈ HsK (K), ∀K ∈ Th},

equipped with the broken Sobolev seminorm

|u|s,Th
=

 

∑

K∈Th

|u|2HsK

!1/2

Theorem 2.6.1. From [29, Remark 3.12]. For uniform approximation orders pK = Npd ≥
0, sK = s, 1 ≤ s ≤ min(Npd + 1, k), k ≥ 1, and h = maxK∈Th

(hK), the approximation error

bound is

‖u− uh‖DG ≤ C
�

h
pK + 1

�s− 1
2

|u|s,Th
,

with C > 0 independent of the polynomial degree and mesh size. The integer number k ≥ 1

is arising from the broken Sobolev space order, chosen for the Discontinuous Galerkin approx-

imation [29, Theorem 3.11].

For the proof we refer to the source, noting that it trivially follows from the study shown

in [29, subsections 3.3 and 3.4].

2.6.2 hp-Condition number estimate

Condition number of a Galerkin matrix, which arise from discontinuous Galerkin method,

serve the purpose of measuring how sensitive the approximation would be to the roundings

and cancellations during the solution process.

The spectral condition number of a symmetric positive definite matrix A is given as a

ratio of the largest λmax(A) and smallest λmin(A) eigenvalues of the matrix

κ(A) =
λmax(A)
λmin(A)

.

From [4, Corollary 2.9] we derive the following

Theorem 2.6.2. Condition number of a stiffness matrix A of a symmetric discontinuous

Galerkin method can be bounded by

κ(A)≤ γ
minK∈Th

p4
K

minK∈Th
h2

K

maxK∈Th
hd

K

minK∈Th
hd

K

.
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for γ > 1 being meshsize and approximation polynomial degree independent,hK is an element

K size, pK is a maximum polynomial degree on that element. Therefore, if the mesh Th and

the polynomial approximation degrees are globally uniform we have

κ(A)≤ CδγN2d
pd h−d , (2.57)

with Cδ > 0, h=max(hK), and Npd =maxK∈Th
(pK).

The proof can be obtained in [4, subsection 2.4]. Essentially, we use pK := Npd .

2.7 Post-processing

2.7.1 Condition number computation

The spectral condition number κ(A) of the symmetric positive definite matrix A, is defined

as a direct relation between the smallest λmin and largest λmax eigenvalues of the matrix

κ(A) :=
λmax

λmin
.

Condition number is used as one of the measures of the stability of the approximation

obtained by solving system of a form Ax = b, and, generally for κ(A) = 10n, n is a number

of digits lost in numerical precision of the solution method.

One of the methods to rapidly obtaining the extreme measures of the eigenvalues of

the matrix is a symmetric Lanczos Algorithm, which defaults to an Arnoldi’s method for

symmetric positive definite matrices [46, section 6.6]. If matrix A is symmetric then the

associated Hessenberg matrix Hm becomes symmetric tridiagonal, which in turn requires

just three vectors to store. This reduces the general algebraic complexity of the algorithm.

Generally, the Hessenberg matrix

Hm = V T AV, Hm ∈ Rm×m,

where V ∈ Rn×m is a matrix with orthonormal columns and A is a matrix which eigenvalues

are sought. For simplicity, we restrict ourselves to the case m= n.

The Lanczos algorithm is shown in an algorithm (9).
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Algorithm 9 Lanczos algorithm
1: Choose an initial vector v of 2-norm unity.
2: β1← 0
3: v0← 0
4: for i = 1, 2, ..., m do
5: wi ← Avi − βi vi−1

6: αi ← (wi, vi)
7: wi ← wi −αi vi

8: βi+1← ‖wi‖2

9: if βi+1 == 0 then
10: [STOP]
11: end if
12: vi+1← wi/βi+1

13: end for

This algorithm results in the Hessenberg matrix, assembled as follows:

Hm =













α1 β2 0

β2
. . . . . .
. . . . . . βm

0 βm αm













.

Let m = n, then if λ is an eigenvalue of a Hm, then it is also an eigenvalue of A and if

Hm x = λx , x is an eigenvector of Hm, then y = V x is the corresponding eigenvector of A,

this allows to compute the eigenvector [46, Section 6.6]:

Ay = AV x = V HmV T V x = V Hm I x = V Hm x = V (λx) = λV x = λy.

This transforms the problem of eigendecomposition of potentially dense matrix A into the

eigendecomposition of a tridiagonal matrix Hm.

Lanczos algorithm is cheap in terms of implementation, and is built-in into the conven-

tional or preconditioned CG algorithm. This allows improved the numerical stability of the

results obtained by Lanczos [46, algorithm 6.1.16]. At the same time it is not useful for

larger m.

Results presented in Chapter 4 are calculated using the Lanczos algorithm.

2.7.2 Convergence rate calculation

According to lecture notes [37], if one knows the error of the approximated solution in L2

or H1
0 , then it’s possible to calculate convergence rate of the problem, using previous result

and knowing the degree of freedom (number of unknowns), which is a result of the chosen

space discretisation:

αi = −
log (ei+1/ei)
log (Ni+1/Ni)

Where ei is an L2 or H1
0 error estimate on a chosen partition, Ni is a degree of freedom of

the chosen partition.
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This estimate is easily obtained by noting that if

ei ≈
C

Nαi

then

log(ei) ≈ log(C)−α log(Ni),

log(ei+1) ≈ log(C)−α log(Ni+1)

leading to the estimate αi of α just given.

Convergence rate is an important indicator for the numerical approximation tasks, as

it is allows to see the actual gain in the precision of the solution with the growth in degree

of freedom.

In order to check the implementation, we considered problems with known or com-

putable approximation error in L2 and H1
0 .



Chapter 3

Iterative solvers

3.1 Conjugate Gradients method

In order to solve the global linear system, shown in (2.53), we can use the iterative solver.

Algorithm 10 Conjugate Gradients method
1: [Initialize] r0← b− Ax0

2: p0← r0

3: k← 0
4: while |rk+1| ≥ ε do
5: qk← Apk

6: αk←
rT
k rk

pT
k qk

7: xk+1← xk +αkpk

8: rk+1← rk −αkqk

9: βk←
rT
k+1rk+1

rT
k rk

10: pk+1← rk+1 + βkpk

11: k← k+ 1
12: end while

As a main solver we use the Conjugate Gradients (CG) iterative method. For the model

problem of a form Ax = b, where A is real, symmetric, positive definite. The initial input

vector x0 can be an approximate solution or 0. The algorithm employs residual vector r,

A-conjugate vector p, and scalars α and β in-line, making it cheap to control the stability of

the solution. CG-method uses vectors b, x , r, p, q and input matrix A, which in the scope of

our research is given by the global system matrix (2.55) or (2.52). Main operations which

one should perform in order to implemented method is a matrix-vector multiplication and

vector-vector dot product. Vector dot product can be performed by distributing the pieces

of the vectors across processes. Each process then calculates vector sum of component-

wise multiplication of the vectors from the assigned blocks and then that local sums can be

gathered and summarised in order to obtain full sum of the dot product. For matrix-vector

multiplication full row of the matrix should be multiplied on a full vector and summarised,

what will give as a result element of the resulting vector, corresponding to the matrix’s row.

This implies that for matrix-vector multiplication one need to have full input vector which,

49
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but resulting vector can be split into pieces and distributed between all processes. However

matrix should be split preserving the rows. That shows that only vector p should be stored

as a global vector (on all processes) and all others can easily be computed locally (only the

part required for computation on the local process).

The algorithm 12 uses expensive matrix-vector multiplication just once per iteration,

making it attractive for parallel implementation. In case of parallel implementation, we do

not have to store whole vectors r, x , q on all processes, but rather split the vectors in parts

amongst processes. The same can be done with the Galerkin Matrix A. On the contrary to

split vectors r, x , q, we would have to store full vector p on all processes and update it for

every iteration. Due to a block-sparse nature of our Galerkin Matrix, we can define which

entries of the employed vectors are necessary and reduce the split vector data even more.

3.1.1 Linear Algebra parallelisation techniques. Computational com-

plexity

Here, in order to analyse the possibility of parallel implementation we need to determine

complexity of the method in terms of operation count. We additionally should expand the

notation.

First, we set, for square matrix A, N1 ≡ N2 := Nmesh ·N d
pd , and define Galerkin matrix A∈

R(Nmesh·N d
pd )×(Nmesh·N d

pd ), and vectors q, p ∈ RNmesh·N d
pd . Then, the matrix-vector multiplication

operation qk = Apk used in the CG method, omitting the iteration counter k:

q = Ap, (3.1)

Expanding the sum notation with A := (ai, j)
1,...,N1
1,...,N2

, q := (qi)1,...,N1 and p := (p j)1,...,N2
, we

get:

qi =
N1
∑

i=1

ai, j p j , j = 1, . . . , N2. (3.2)

Now, we can introduce parallel computation using index notation. Say, we have Np ∈ N+

processes, numbered as # = 0, 1, . . . , NP − 1. For simplicity, we establish limits for each

process # as

1≤ N0,# < N1, (3.3)

N0,# - being the lower bound for indices and,

1< N1,# ≤ N1, (3.4)

N1,# - being the upper bound for indices, with N0,# ≤ N1,#. Computation of the local limits

is not as trivial as it seems and will be discussed further. We would use # as an upper index,

denoting the process where the part of the vector q is stored. In order to assemble full

vector, from it’s distributed partitions, we use concatenation operation ||, which is defined,

for two vectors a := (a1, a2, . . . , an) and b := (b1, b2, . . . , bn), as:

a||b := (a1, a2, . . . , an, b1, b2, . . . , bn).
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We can now define the parallel matrix vector multiplication, for distributed vector q# :=

(qi)N0,#,...,N1,# and distributed matrix A# := (ai, j)
N0,#,...,N1,#

1,...,N2
, as:

q# = A#p, (3.5)

which requires full vector p. Full vector p will ensure that each element of q# is computed

fully, and there is no need to reduce the sum across the processes. Expanded form of (3.5)

then is:

qi =
N1,#
∑

i=N0,#

ai, j p j , j = 1, . . . , N2. (3.6)

Now, the computational complexity of the serial matrix-vector multiplication, for some

general matrix M ∈ R(NM×NM ), with arbitrary chosen NM , and vector v ∈ R(NM ) is

Odense
MV (N

2
M ),

for dense M , and

Osparse
MV (NM ),

for the block-sparse M . This, when applied to (3.1,3.5), yields number of operations for se-

rial and parallel matrix-vector multiplication for general choice, hence pessimistic estimate,

in terms of problem’s dimension d:

T dense
MV,ser(d) = (2d + 1)(Nmesh · N d

pd)
2 (3.7)

T sparse
MV,ser(d) = (2d + 1)Nmesh · N2d

pd (3.8)

T dense
MV,par(d) =

(2d + 1)(Nmesh · N d
pd)

2

NP
(3.9)

T sparse
MV,par(d) =

(2d + 1)Nmesh · N2d
pd

NP
, (3.10)

where the factor (2d+1) arise from the maximum number of neighbours through an edge

and the element self-contribution per one element.

We should note, that we do not require to transfer any matrix data during or after the

matrix-vector multiplication for CG method.

Next operation to expand, is computation of scalars α,β ∈ R. To compute α, we first

split computation of the numerator and denominator, which are vector dot-products. Set

t := rT
k rk and s := pT

k qk, where vector r ∈ RNmesh·N d
pd , given as r := (ri)1,...,N1 . Applying the

same index limits (3.4,3.3) and omitting k, we get:

t# =
N1,#
∑

i=N0,#

ri ri , t =
NP−1
∑

#=0

t#, (3.11)

s# =
N1,#
∑

i=N0,#

piqi , s =
NP−1
∑

#=0

s#,

α=
t
s
. (3.12)
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Summation of scalars over processes, like in (3.11), is called scalar reduction, and requires

transfer of a real number t# from local process # to root process (conventionally 0-th pro-

cess), where received numbers are summed. After all scalars reduced, we can perform

(3.12), and transfer it from root process to all local processes. Knowing computational

complexity of a dot-product Odot−product(Nmesh · N d
pd), we can compute number of opera-

tions required, for serial and parallel algorithms:

Tsc,ser(d) = 2Nmesh · N d
pd + 1,

Tsc,par(d) =
2Nmesh · N d

pd

NP
+ 2NP + 1,

where 2NP+1 arise from the transfer operation. Two NP -long transfer operations arise from

the vector transfer, required for the scalar operation, and one 1-unit transfer operations

arise from redistributing the scalar value amongst all the processes. We note that this is

"at-most" value. Additionally, we note that one 1-unit transfer operation depends on a

chosen precision for the data-type.

Storing value of t for current iteration, allows us to perform one less dot-product,

computing βk. This in turn decreases, in this particular case, number of operations for

computation of αk and βk in total to:

Tsc2,ser(d) = 3Nmesh · N d
pd + 2, (3.13)

Tsc2,par(d) =
3Nmesh · N d

pd

NP
+ 3NP + 2, (3.14)

where 3NP+2 arise from the transfer operation. We save one NP -long transfer operation by

storing values of vector tk, as mentioned in paragraph before. This results in three NP -long

transfer operations for computation of both scalars αk and βk for current iteration k. Two

1-unit transfer operations arise from the scalar redistribution.

In CG method, we use so-called zaxpy operations. Considering xk+1 = xk + αkpk, set

z = xk+1, to separate new and old values for current x . This operation can be performed

locally on each process #. Results of the computation, can be stored locally. In expanded

notation for vector x := (x i)1,...,N1 , omitting k:

zi = x i +αpi , i = 1, . . . , N1.

And for local vectors x# := (x i)N0,#,...,N1,# , z# := (zi)N0,#,...,N1,#:

zi = x i +αpi , i = N0,#, . . . , N1,#.

Obviously, computational complexity of zaxpy operation will be a sum of complexities of

vector-by-scalar multiplication Ovsm(Nmesh ·N d
pd) and vector summation Ovsm(Nmesh ·N d

pd).
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This yields number of operations required:

Tzax p y,ser(d) = 2Nmesh · N d
pd , (3.15)

Tzax p y,par(d) =
2Nmesh · N d

pd

NP
. (3.16)

We can now compute a total number of operations required per iteration of CG method,

excluding the communication operations cost. We have three zaxpy operations with length

of vectors being Nmesh ·N d
pd , two operations for computation of search directions, with three

unique dot-products, we reuse results of residual’s dot-product, and, finally, the matrix-

vector multiplication. Summing over the time required for operations, we get:

TCG,I t,ser(d) = 3 · Tzax p y,ser(d) + Tsd2,ser(d) + TMV,ser(d), (3.17)

TCG,I t,par(d) = 3 · Tzax p y,par(d) + Tsd2,par(d) + TMV,par(d). (3.18)

Now, we can introduce Tt r as a time required for one bite to be transferred from process

to process in seconds. Additionally we require to add the time necessary for establishing

connection among hosts, and account for network\bus latency time. We require, to send

NP − 1 real numbers during the scalars computations. This transfer is required for (one)

computation of rT
k rk, (one) computation of pT

k qk, (one) computation of rT
k+1rk+1. We need

to send resulting αk and βk after computation from root to distributed processes, totalling

to NP − 1 per each scalar. This totals to:

Tsc,t r(d) = 5(NP − 1). (3.19)

Now we analyse the computation and transfer of conjugate vector pk+1 of length Nmesh ·
N d

pd . Computation is a standard zaxpy operation with number of operations shown in

(3.16). Parallel zaxpy operation will only update elements of pk+1, unique for each process

#, with indices i = N0,#, . . . , N1,#. As we require to perform matrix-vector multiplication

in each consecutive iteration, we need whole vector pk+1 on all processes. At most, we

require NP processes to send
Nmesh·N d

pd
NP

real numbers to NP − 1 other processes:

Tpk+1,t r(d) = NP(NP − 1)
Nmesh · N d

pd

NP
,

= (NP − 1) · (Nmesh · N d
pd). (3.20)

Adding all the transfer operations (3.19,3.20) with the algebraic cost of CG (3.18), yields:

TCG,I t,par(d) = 3 · Tzax p y,par(d) + Tsd2,par(d) + TMV,par(d) + Tpk+1,t r(d) + Tsc,t r(d). (3.21)

Now, that we have defined general tools, for complexity analysis, we can perform an analy-

sis of the matrix-vector multiplication for a specific choice of the basis functions ADLP and

C1.
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3.1.2 E�ect of the basis functions on matrix-vector multiplication

We will now analyse the cost of parallel matrix-vector multiplication, as the most expensive

operation within CG method. We analyse it for different choice of the local basis functions

and for the different ways of the distribution of data with the processes. This allows us to

compute the optimistic operation counts for the CG algorithm.

We perform analysis of the three cases with block-sparse system matrices and a general

case with no optimization to matrix structure.

First, we will take a look at the serial implementation of CG for the general structure

of the system matrix. Substitute (3.8,3.13,3.15) into (3.17):

T GEN
CG,I t,ser(d) = 6Nmesh · N d

pd + 3Nmesh · N d
pd + 2+ (2d + 1)Nmesh · N2d

pd

= 9Nmesh · N d
pd + (2d + 1)Nmesh · N2d

pd + 2.

Parallel algorithm requires, for computation only:

T GEN
CG,I t,par,comp(d) = 3

2Nmesh · N d
pd

NP
+

3Nmesh · N d
pd

NP
+ 3NP + 2+

(2d + 1)Nmesh · N2d
pd

NP

=
9Nmesh · N d

pd

NP
+
(2d + 1)Nmesh · N2d

pd

NP
+ 3NP + 2. (3.22)

Now summing with all transfer costs (3.19,3.20) with computation cost for pessimistic im-

plementation of CG (3.22):

T GEN
CG,I T,par(d) =

9Nmesh · N d
pd

NP
+
(2d + 1)Nmesh · N2d

pd

NP

+ 3NP + 2+ 5(NP − 1) + (NP − 1) · (Nmesh · N d
pd)

=
9Nmesh · N d

pd

NP
+
(2d + 1)Nmesh · N2d

pd

NP

+ (Nmesh · N d
pd + 5) + (3NP + 2) (3.23)

From equation (3.23), we conclude that an increase in the number of processes, while

decreasing computational complexity per iteration, will increase the number of transfer

operations undertaken. At the same time, the number of transfer operations grows slower

than the gain from parallel computation. However, conventionally, transfer operations are

much more slower than those of summation and multiplication, and parallelisation effect

can be lost for massively-parallel execution.

Now, for the special choice of the basis functions, we analyse the global matrix struc-

ture. It should have a block structure, where each diagonal block is contributed by matrix

A, and all off-diagonal blocks are sums of the blocks of edge-based matrices V, B, S etc.

Each block-row, for quadrilateral space discretisation, would have at most 1+ 2d blocks.

In some cases we would have less off-diagonal blocks, which depends on a position of a

quadrilateral element in space, e.g. when the element have all four neighbours, we would

have four blocks, when the element is on the boundary, we would have only two or three

blocks, depending on the actual position and geometry of the space. All diagonal blocks
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would be obtained from a volume integral for the bilinear form A, hence these blocks are

dense, with N2d
pd non-zero elements.

Off-diagonal blocks would have different structure, as shown in ((S.1)2.3.2). Com-

paring that structure against the terms of primal bilinear form (2.2) given in (2.8) it is

clear, that we do not face gradient-gradient interaction, but, at most, function-gradient

interaction. This yields the following structure:

I General case. All dense with N 2d
pd non-zero elements,

II Antiderivative of Legendre Polynomials. All dense with N d
pd ·N

d−1
pd non-zero

elements,

III C1 polynomials. All p-sparse with N d−1
pd · N

d−1
pd non-zero elements.

List 3.1: Count of non-zero elements in the system matrix off-diagonal blocks. SIPG
method.

The off-diagonal entries in Symmetric IPG arise from the element-neighbour interac-

tions, knowing that for d-cube domain discretization, we would have at most 2d neigh-

bours with shared edge per element, we can determine number of total contributions from

off-diagonal blocks.

The structure of the system matrices can be derived using the basis function properties

and the statements above. Considering Interior Penalty Discontinuous Galerkin method,

we construct the following image of the system matrices:

Figure 3.1: Interior Penalty method Galerkin matrix for General choice of basis
functions
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Figure 3.2: Interior Penalty method Galerkin matrix for ADLP basis functions

Figure 3.3: Interior Penalty method Galerkin matrix for C1 basis functions

For general data storage, we choose to transfer all data, computed on each process

from that process to all other processes. This is the most straightforward, but the most

time consuming case.

Instead we can base the distributed data structure for storage and transfer, purely on

the system matrix structure or choice of basis functions. In order to define such a structure,

we first introduce some basic tools required for the distributed data structure.

For a system matrix A := (ai, j)
Nmesh·N d

pd

Nmesh·N d
pd

, with total number of entries (Nmesh · N d
pd)

2, for

each process #= 0, . . . , NP−1 we create a lists χ of a size at most 3·NP×(Nmesh ·N d
pd)

2. For

each process number #, there is a triplet of columns at positions {3(#)+1, 3#+2,3#+3},
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from total of 1, . . . , 3 · NP columns. For the parallel split based on the internal structure of

the matrix A, the columns’ (Nmesh · N d
pd)

2 entries store the following information:

1. 3#+ 1 Column index of matrix A - i

2. 3#+ 2 Row index of matrix A - j

3. 3#+ 3Process number k which stores the entry ai, j

The list above can be optimized in terms of the storage size. We can do so, by not

including entries ai, j of matrix A which are equal to zero.

Now, the determination of which process stores particular entries of the matrix A, in

the most general way, can be done in the following way. Introducing local, for the process

#, lower limit (3.3):

1≤ N0,# < Nmesh · N d
pd ,

being the lower bound for indices and, upper limit (3.4):

1< N1,# ≤ Nmesh · N d
pd ,

being the upper bound for indices, with N0,# ≤ N1,#.

So-called equal split allows to define them as:

N0,# =







1 if #= 0

# ·
�

Nmesh·N d
pd

NP

�

else

and

N1,# =







Nmesh · N d
pd if #= NP − 1

# ·
�

Nmesh·N d
pd

NP

�

else

The lower and upper index limiters, allows us to reduce the size of the list χ even further,

limiting the number of required rows Nr to:

Nr =max(N1,# − N0,#), #= 0, . . . , NP − 1.

For our choice of the basis functions, we can use the geometric split of the mesh, and

then accounting only for basis functions on the elements, which belong to different pro-

cesses. This requires analysis of the mesh to determine which of the basis functions are

going to be used during the local matrices computation. We would have to perform an

analysis for each element in order to determine if that element’s local basis functions are

required on more than one process. We can establish which process # will posses the

coefficients which arise from the particular basis function and which other processes will

require those coefficients, if any. Once this is established, we can use the data structure χ,

keeping its internal structure. This type of split requires more storage for the list χ itself,

but minimizes the data transfer, due to the fact that we essentially require only to transfer

coefficients which are employed on more than one process. This also allows to parallelize

the fine grid level exact solvers of the Additive two-level non-overlapping Schwarz method.
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The total amount of data to transfer during the matrix-vector multiplication, according

to the aforementioned choice is present in the following table 3.1, for different choice of

the basis functions and type of the data storage.

Table 3.1: Matrix-vector multiplication per off-diagonal block and required data
transfer for special choice of basis functions. Data transfer for all processes.N 1/d

mesh =
h−1 arises from the geometrical splitting.

B.F.
MV mult Data transfer

Full broadcast Matrix based Geometry based
General NmeshN 2d

pd (Np − 1)NmeshN d
pd - -

ADLP NmeshN 2d−1
pd (Np − 1)NmeshN d

pd (Np − 1)N 1/d
meshN d

pd (Np − 1)N 1/d
meshN d

pd

C1 NmeshN 2d−2
pd (Np − 1)NmeshN d

pd (Np − 1)N 1/d
meshN d−1

pd (Np − 1)N 1/d
meshN d−1

pd

Using table 3.1 we can derive necessary number of operations for each matrix-vector

multiplications. For ADLP basis functions, in parallel implementation, accounting for at

most 2d neighbours (second column), and the main diagonal block, and the data transfer

(fourth or fifth columns), we have

TMV,ADLP =
Nmesh · N2d

pd

NP
+

2dNmesh · N2d−1
pd

NP
+ (NP − 1) · N1/d

meshN d
pd , (3.24)

and substituting it and (3.13,3.15) into the (3.21), yields total cost per iteration

TADLP
CG,I T,par(d) =

9Nmesh · N d
pd

NP
+

Nmesh · N2d
pd

NP
+

2dNmesh · N2d−1
pd

NP
+ (NP − 1) · N1/d

meshN d
pd

+ 3NP + 2+ 5(NP − 1) + (NP − 1)(Nmesh · N d
pd). (3.25)

Similarly to (3.24) for C1 basis function we have:

TMV,C1 =
Nmesh · N2d

pd + 2dNmesh · N2d−2
pd

NP
+ (NP − 1)N1/d

meshN d−1
pd . (3.26)

Now, by substituting (3.26,3.13,3.15) into the (3.21), we obtain the CG total operations

count, including the data transfer:

T C1
CG,I T,par(d) =

9Nmesh · N d
pd

NP
+

Nmesh · N2d
pd + 2dNmesh N2d−2

pd

NP
+ (NP − 1)N1/d

meshN d−1
pd

+ 3NP + 2+ 5(NP − 1) + (NP − 1) · (Nmesh · N d
pd)

=
9Nmesh · N d

pd

NP
+

Nmesh · N2d
pd + 2dNmesh N2d−2

pd

NP
+ (NP − 1)N1/d

meshN d−1
pd

+ (NP − 1) · (Nmesh · N d
pd + 3) + 5NP (3.27)

Using C1 basis functions saves asymptotically, as Nmesh→∞:

80% of memory and operations in 2d in comparison to ADLP
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86% of memory and operations in 3d in comparison to ADLP

We also should introduce the initialisation time TIni t for the MPI protocol, which have

unavoidable impact on the overall time, but happens only once during the first iteration.

So, the total time is:

TT T L := NI t · TI t + TIni t .

One should note, that the initialisation time TIni t depends on network topology, number

of physical machines in cluster, number of assigned sockets per physical machine, number

of processes and other hardware- and software-related properties. For simplicity, we will

omit any analysis of the initialization time, as it goes beyond the scope of this work.

3.1.3 Convergence estimate

Introducing NI t to denote number of required iterations yields the final total number of

operations cost required for CG algorithm,

TCG ≈ NI t · TCG,I t . (3.28)

We will now analyse the number of iterations NI t and upper bound, in order to have a

definite comparison between classical parallel CG and the method extended with precon-

ditioner. From [46, Theorem 6.29] , we know, that the upper bound for convergence holds

as:

‖x∗ − xk‖A ≤ 2

�p

κ(A)− 1
p

κ(A) + 1

�k

‖x∗ − x0‖A,

where, x∗ is the exact solution, xk is the solution on k-th step, x0 is the first approximation,

κ(A) is the condition number of matrix A,

κ(A) :=
λmax(A)
λmin(A)

, (3.29)

with λmax ,λmin, are respectively maximal and minimal eigenvalues of the matrix A, and

the norm ‖x‖2A = 〈Ax , x〉. The error estimate on the step k can be bounded with desirable

value ε as ‖x∗ − xk‖A ≤ ε · ‖x∗ − x0‖A [5].

Lemma 3.1.1. The number of steps k to reach a relative approximation error of ε > 0 i.e.

‖x∗ − xk‖A ≤ ε · ‖x∗ − x0‖A,

is given by

k ≥ ln
�

2
ε

�

(
p

κ(A) + 1)
2

.

Proof. We need to find k, such that

2

�p

κ(A)− 1
p

κ(A) + 1

�k

≤ ε.
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First:

2

�p

κ(A)− 1
p

κ(A) + 1

�k

≤ ε

⇔ ln(2) + k ln(

�p

κ(A)− 1
p

κ(A) + 1

�

) ≤ ln(ε)

⇔ k ≥
ln(2

ε )

− ln(
�p

κ(A)−1p
κ(A)+1

�

)
(3.30)

Analysing the ln(
�p

κ(A)−1p
κ(A)+1

�

) = ln(
�

1− 2p
κ(A)+1

�

).

Set x = − 2p
κ(A)+1

and obtain ln(1+ x). We next show that ln(1+ x) ≤ x , x > −1.

We have, with f (x) = ln(1+ x)− x that

f (0) = 0

and

f ′(x) =
1

x + 1
− 1=

1− x − 1
x + 1

= −
x

x + 1
< 0, for x > 0.

And for −1< x < 0:

f ′(x) = −
x

x + 1
> 0.

Therefore f (x)≤ 0 for x > 0, and therefore

ln(1+ x)≤ x .

Substituting the x back:

ln(

�

1−
2

p

κ(A) + 1

�

)≤ −
2

p

κ(A) + 1

And substituting the result into (3.30):

k ≥ ln(
2
ε
)
(
p

κ(A) + 1)
2

(3.31)

This completes the proof.

Corollary 3.1.2. Condition number can be bounded by (2.57) of Theorem 2.6.2

κ(A)≤ CδγN2d
pd h−d , (3.32)

and noting that iteration number k is always a positive integer, the inequality (3.31) can be

written as:

k ≥
�

ln(
2
ε
)

p

Cδh−2p4 + 1
2

�

(3.33)
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3.1.4 Preconditioned Conjugate Gradient method

The CG method analysed in the previous section, is considered numerically stable solver

([46]), however, for the cases when number of iterations k is too high (κ(A) is large

enough), e.g. k → DoF(A), we might better use a preconditioner for our system. Given

a symmetric, positive definite matrix B, with slight abuse of the notation, we can consider

the modified linear system (2.1) for uh ∈ Vhp:

BAh(uh, v) = BFh(v), (3.34)

for v ∈ Vhp is an arbitrary basis function.

We can obtain a modified linear system in matrix notation, from (2.53):

BAhcu = BF, (3.35)

We note that even though BAh is not necessarily symmetric, it is positive definite and it

reduces to the identity in case B = A−1
h . Substituting aforementioned into the CG algorithm

(12), we get:

Algorithm 11 Preconditioned CG method
1: [Initialize] r0← b− Ax0

2: z0← Br0

3: p0← z0

4: k← 0
5: while |rk+1| ≥ ε do
6: qk← Apk

7: αk←
zT

k rk

pT
k qk

8: xk+1← xk +αkpk

9: rk+1← rk −αkqk

10: zk+1← Brk+1

11: βk←
zT

k+1rk+1

rT
k rk

12: pk+1← zk+1 + βkpk

13: k← k+ 1
14: end while

We should note, that the line (10) of the algorithm 11 is a Fletcher-Reeves formula. It

can be substituted by Polak-Ribiére formula βk←
zT

k+1(rk+1−rk)
zT

k rk
which adds additional vector

to store, but adds more flexibility to the method [46, Section 6.7].

In this case we are interested in the structure of the preconditioning matrix B, how it

impacts the algebraic complexity of the solver and communication cost compared to the

non-preconditioned system.

Another factor which is of our most attention is choosing B such that κ(BA) < κ(A),

so the number of iterations of preconditioned solver is smaller than the one of the original

kprec < k. Later we will show, that kprec should satisfy kprec ≤ Cprec(BA)k, to be worthwhile

the preconditioning for a factor Cprec(BA), depending on the precontidioned system.

The Additive two level Schwarz method can be used, to construct the preconditioner
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for our model problem [52].

3.2 The Additive Schwarz Method

A component which should be introduced in this work for successful preconditioning of the

resulting Discontinuous Galerkin system

Au= f

is the domain decomposition method. In order to do this we should introduce the classical

injection and projection operators and the auxiliary spaces.

We introduce NS non-overlapping subdomains Ωi with respect to the original domain

Ω to support the finite decompositions as in (1.3):

Ω= ∪NS
i=1Ωi .

As in [2, section 3], we can now denote by TS a family of partitions Ωi and start with

introduction of the coarse partition TH with H being a mesh size, in addition to the original

partition Th(1.4). As in [2, (19)], we only consider nested partitions:

TS ⊆ TH ⊆ Th.

Additionally, we introduce the sets of all faces F i
h for each subdomain Ωi , i = 1, . . . , NS

similarly to original Fh including both interior and boundary faces. We can introduce

the local and coarse solvers as given by Antonietti et al [5]. Local spaces are defined as

restrictions of the finite element space Vhp (1.7) to the subdomains Ωi:

V i
hp := {v ∈ L2(Ωi) : v |K∈ P(K) ∀K̂ ∈ TH}, i = 1, . . . , NS , (3.36)

and to restrict the finite element space Whp (1.9) we use the second term of (1.10):

W i
hp := [V i

hp]
d , i = 1, . . . , NS .

The local primal forms are then given as:

Ai : V i
hp × V i

hp→ R, Ai(vi , wi) = Ah(R
T
i vi , RT

i wi) ∀vi , wi ∈ V i
hp, i = 1, . . . , NS (3.37)

with RT
i : V i

hp→ Vhp, i = 1, . . . , NS being a classical injection operator from V i
hp to Vhp.

We now can choose polynomial degree q, such that 1 ≤ q ≤ p and define a finite

element space, analogous to the space Vhp (1.7):

VHq := {v ∈ L2(Ω) : v |K∈ P(K) ∀K̂ ∈ TH}, (3.38)

where K̂ is an element of a coarse space discretization TH and P(K) = [Pq(K̂)]d with
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polynomial degree q, and the following inclusion holds

VHq ⊆ Vhp, (3.39)

in addition, for the method considered in this work, we set

V 0
hp := VHq. (3.40)

The coarse bilinear form would look as:

A0 : VHq × VHq→ R, A0(v0, w0) = Ah(R
T
0 v0, RT

0 w0) ∀v0, w0 ∈ VHq (3.41)

with RT
0 : VHq→ Vhp a classical injection operator from VHq to Vhp. Introducing the projec-

tion operators Pi = RT
i P̃i : Vhp→ Vhp, i = 0,1, . . . , NS , where

P̃i : Vhp→ V i
hp, Ai(P̃i vh, wi) = Ah(vh, RT

i wi) ∀wi ∈ V i
hp, i = 1, . . . , NS , (3.42)

P̃0 : Vhp→ VHq, A0(P̃0vh, w0) = Ah(vh, RT
0 w0) ∀w0 ∈ VHq,

the additive Schwarz operator is defined by:

Pad =
NS
∑

i=0

Pi , (3.43)

for a total of NS subspace partitions for Vhp.

Then, the Schwarz method consists of solving, by a suitable Krylov iterative solver, the

system of equations

Paduh = Fh, (3.44)

where Fh is an appropriate right hand side, and uh ∈ Vhp is a corresponding approxi-

mated solution. Recalling the space partitioning (3.36) and introduced finite element space

(3.38), we need to account which and how the basis functions on the coarse partition would

look and how they implicate the Discontinuous Galerkin system and the preconditioned sys-

tem (3.44). We note, that the Schwarz operator is invertible by construction. To do this we

first find and analyse the local preconditioner in matrix form. Consider the form defined

as local primal form for the system (3.37):

Ai(vi , wi) = Ah(R
T
i vi , RT

i wi) ∀vi , wi ∈ V i
hp, i = 1, . . . , Nmesh.

To derive the method’s matrix formulation, we start with the matrices C i , which are,

sometimes, called restriction matrices and (C i)T are sometimes called prolongation matrices

[35]. To understand the formation of matrices C i , we should recall the domain decompo-

sition Ω = Ω1 ∪ . . . ∪ ΩNS
, such that each Ωi is a union of polyhedra in Th, we can form

restriction matrices C0, . . . , CNS which restrict to those vertices in the interior of Ωi . These

matrices are uniquely determined up to permutation of the rows of global matrix Ah. We
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should also note that the dimension of those matrices, in our case, is the

C i ∈ R
NmeshNd

pd
NS

×NmeshN d
pd , i = 1, . . . , NS ,

C0 ∈ RNmesh(
h
H )

dqd×NmeshN d
pd .

To compute the matrices C i , we first need define the number of non-zero coefficients

of C i required for the fine grid partitioning as Nsub,i , i = 0, . . . , NS , designating sepa-

rate Nsub,0 as a number of coefficients for the coarse partitioning. As we have NS fine

partitions on the original one, for each matrix Ai being a local part of an original matrix

Ah, with at-most N2 elements, for

N = Nmesh · N d
pd ,

we can set

Nsub,i =
Nmesh · N d

pd

NS
, i = 1, . . . , NS (3.45)

Nsub,0 = Nmesh(
h
H
)d · qd , (3.46)

Obviously, Nsub,i is a constant for any i = 1, . . . , NS for non-overlapping Additive Schwarz

Method, when basis functions on both fine and sub- grids have the same polynomial degree.

We set:

Nsub, f := Nsub,1 ≡ Nsub,2 ≡ . . .≡ Nsub,NS
. (3.47)

Additionally, we restrict ourselves to such NS , that Nsub, f and Nsub,0 are positive integers.

Recall the definition of the classical injection operator RT
i : V i

hp→ Vhp, i = 1, . . . , Nmesh,

we can find such ui ∈ V i
hp, that RT

i ui := u, RT
i ui ∈ Vhp. Recalling the basis function nota-

tion for uh (2.15), we choose the basis

Vhp = span{φ j , j = 1, . . . , N}

V i
hp = span{φ i

k, k = 1, . . . , Nsub,i , i = 0, . . . , NS},

such that,

ui =
Nsub, f
∑

k=1

dkφ
i
k(x), ui ∈ V i

hp,

where
−→
d = (dk), k = 1, . . . , Nsub, f is ui-th coefficients vector.

Applying the operator to the basis function:

RT
i φ

i
k(x) ∈ Vhp⇒ Riφ

i
k(x) :=

N
∑

j=1

C i
k, jφ j(x),

where C i is the local basis functions’ linear configuration matrix, which maps the fine grid’s

basis functions numerical values from Vhp onto V i
hp. Here, we should note that we employ

the same basis functions on both fine and coarse grids.
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Applying the operator RT
i on ui with i = 1, . . . , NS:

RT
i

Nsub,i
∑

k=1

dkφ
i
k(x) =

Nsub,i
∑

k=1

dT
k Riφ

i
k(x)

=
Nsub,i
∑

k=1

dk

N
∑

j=1

C i
k, jφ j(x), (3.48)

And substituting both operator resulting in (3.48) and discrete u in identity RT
i ui := u:

Nsub,i
∑

k=1

dk

N
∑

j=1

C i
k, jφ j(x) =

N
∑

j

c jφ j

N
∑

j=1

Nsub,i
∑

k=1

dkC i
k, jφ j(x) =

N
∑

j

c jφ j ,

for i = 1, . . . , NS , yields matrix identity:

−→
dT C i = c. (3.49)

This yields the matrix formulation of the preconditioning matrix, for Āi and ĀHq being

a matrix representation of the Ai (3.37) and A0 being a matrix representation of the Ā0

(3.41):

Bad =

� NS
∑

i=1

C iĀ−1
i (C

i)T
�

+ C0Ā−1
Hq(C

0)T . (3.50)

Then the matrix representation of the additive Schwarz operator Pad (3.43) is given as:

Pad =
NS
∑

i=0

Pi =

� NS
∑

i=1

C iĀ−1
i (C

i)T
�

+ C0Ā−1
Hq(C

0)T .

In this work we will consider the special case q = 1. This will reduce the complexity of

both the coarse level restriction\prolongation matrices, and the coarse level preconditioner

matrix. We will analyse this case in the following subsection.

3.2.1 Computational complexity

To compute the algebraic cost of the preconditioner computation on a local level, we use

the assembly scheme, shown in (3.50).

Second, we should estimate the matrix product cost, namely the C iA−1
i (C

i)T . Knowing

the number of non-zero entries both in the C i matrices and, in the worst case, in the most

dense global matrix blocks as N2d
pd , we can compute the matrix product cost:

TĀ := (N2d
pd )

2 + ((
h
H
)d · qd)2 + (N2d

pd )
2 = 2N4d

pd + (
h
H
)2d · q2d

We now estimate the cost of the matrix B local partitions Bi computation. We add the

algebraic operations costs for the inverse of the matrix Āi . Then we add the cost of matrix-
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matrix and two matrix-vector multiplications. We also note, that we deal with matrices of

different sizes at the same time. The cost of the computation of Bi then looks as:

TBi
:= (N2d

pd )
3 + ((

h
H
)2d · q2d)2 + (N2d

pd )
2 + ((

h
H
)2d · q2d)2 = N6d

pd + N4d
pd + 2(

h
H
)4d · q4d .

From this we see, that preconditioner matrix may be computed and assembled in full and

serial implementation before the solving process, but it would require a total of N6d
pd +N4d

pd +

2( h
H )

4d ·q4d operations. The resulting matrix would not be sparse, which would heavily, by

order at most, N d
mesh · N

2d
pd impact each iteration of the preconditioned CG algorithm 11.

To avoid complexity explosion we can, instead, do it on a local level, for each iteration,

keeping the precomputed local matrices Ai , and the restriction matrices C i , i = 1, . . . , NS .

First can be computed during the local primal form’s computation. The latter can be set-

up during the spline assembly. The multiplication for the zk+1 ← Brk+1 performed in a

distributed way, as:

zk+1←
NS
∑

i=0

C iA−1
i (C

i)T rk+1,

starting from the right and going to the left. The actual parallelisation for coarse and fine

grid levels is explained in the next Subsection 3.2.2.

We introduce temporary matrix and vectors, required for the split computations. Let

Ti,1, Ti,2 ∈ RNsub, f , Ti,3 ∈ RN for i = 0, . . . , NS . This allows us to perform the multiplication

in three steps:

I Ti,1 = (C i)T · rk+1

II Ti,2 = A−1
i · Ti,1

III Ti,3 = C i · Ti,2,

IV zk+1 =
∑NS

i=0 Ti,3,

which is not reducing the algebraic complexity, but allows us to reduce the machine time

by distributing the computation of fine grid elements amongst the processes.

Considering, first, the fine grid levels i = 1, . . . , NS . The inverse of a partition A−1
i ,

would be computed once, during the set up routine, and stored with a designated process,

this allows not to compute it every iteration. Then, for the general choice of the basis

function, we have:

T f ine,gen
ASM ,i t := NS

�

Nsub, f · N + N2
sub, f + N · Nsub, f

�

= NS(N
2
sub, f + 2N · Nsub, f ). (3.51)

Now, choosing the same basis functions on both fine and sub grids, would yield restric-

tion\prolongation matrices Ci , i = 1, . . . , NS to be a selection matrices, having non-zero

values on the main diagonal only, additionally those values would be equal to one. Then:

T f ine,sel
ASM ,i t := NS

�

Nsub, f + N2
sub, f + Nsub, f

�

= NS(N
2
sub, f + 2Nsub, f ). (3.52)
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Coarse grid level computation comprise an inverse computation for each iteration, but this

can be avoided, and inverse can be computed prior. The operation count looks as:

T coarse
ASM ,i t :=

�

Nsub,0 · N + Nsub,0 · Nsub,0 + N · Nsub,0

�

= N2
sub,0 + 2Nsub,0 · N . (3.53)

Adding (3.51) and (3.53) gives the general operation count for Additive Schwarz method:

T gen
ASM ,i t := NS(N

2
sub, f + 2N · Nsub, f )

+ N2
sub,0 + 2Nsub,0 · N . (3.54)

Adding (3.52) and (3.53) gives the operation count for optimized Additive Schwarz method:

T sel
ASM ,i t := NS(N

2
sub, f + 2Nsub, f )

+ N2
sub,0 + 2Nsub,0 · N . (3.55)

Now, substituting (3.45) and (3.46) into (3.54), and expand:

T gen
ASM ,i t := NS((

Nmesh · N d
pd

NS
)2 + 2Nmesh · N d

pd

Nmesh · N d
pd

NS
)

+ (
Nmesh

NS
(

h
H
)dqd)2 +

Nmesh

NS
(

h
H
)dqd · Nmesh · N d

pd

=
(Nmesh · N d

pd)
2

NS
+ 2(Nmesh · N d

pd)
2

+ (
Nmesh

NS
(

h
H
)dqd)(

Nmesh

NS
(

h
H
)dqd + Nmesh · N d

pd). (3.56)

And for the optimized case, substituting (3.45) and (3.46) (3.55), and expand:

T sel
ASM ,i t := NS((

Nmesh · N d
pd

NS
)2 + 2

Nmesh · N d
pd

NS
)

+ (
Nmesh

NS
(

h
H
)dqd)2 +

Nmesh

NS
(

h
H
)dqd · Nmesh · N2d

pd

=
(Nmesh · N d

pd)
2

NS
+ 2Nmesh · N d

pd

+ (
Nmesh

NS
(

h
H
)dqd)(

Nmesh

NS
(

h
H
)dqd + Nmesh · N d

pd). (3.57)

We also consider special case with q = 1

T sel,opt
ASM ,i t :=

(Nmesh · N d
pd)

2

NS
+ 2Nmesh · N d

pd

+ (
Nmesh

NS

h
H
)d(

Nmesh

NS
(

h
H
)d + Nmesh · N d

pd). (3.58)
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The parallel version in the genaral case, would then look as:

T gen
ASM ,i t,par :=

NS(N2
sub, f + 2N · Nsub, f )

NP
+ (NP − 1)(

N
NP
)

+ N2
sub,0 +

2Nsub,0 · N
NP

+ 2(NP − 1)(
Nsub,0

NP
). (3.59)

And for the optimized case:

T sel
ASM ,i t,par :=

NS(N2
sub, f + 2Nsub, f )

NP
+ (NP − 1)(

N
NP
)

+ N2
sub,0 +

2Nsub,0 · N
NP

+ 2(NP − 1)(
Nsub,0

NP
). (3.60)

Now, substituting (3.45) and (3.46) into (3.59), and expand:

T gen
ASM ,i t,par :=

(Nmesh · N d
pd)

2

NP NS
+

2(Nmesh · N d
pd)

2

NP

+ (
Nmesh

NS
(

h
H
)dqd)2 +

Nmesh(
h
H )

dqd · Nmesh · N d
pd

NP

+ (NP − 1)(
Nmesh · N d

pd

NP
) + 2(NP − 1)

Nmesh(
h
H )

dqd

NP
. (3.61)

And for the optimized case, substituting (3.45) and (3.46) into (3.60), considering q = 1,

and expand:

T sel
ASM ,i t,par :=

(Nmesh · N d
pd)

2

NP NS
+

2Nmesh · N d
pd

NP

+ (
Nmesh

NS
(

h
H
)d)2 +

Nmesh(
h
H )

d · Nmesh · N d
pd

NP

+ (NP − 1)(
Nmesh · N d

pd

NP
) + 2(NP − 1)

Nmesh(
h
H )

d

NP
. (3.62)

3.2.2 Computation of the restriction\prolongation matrices

First, we can establish the coarse and fine grid total number of elements ratio:

N coarse
mesh = Nmesh · (

h
H
)d ,

for d-dimensional case. Next, we establish the total number of functions in use on the

elements of the coarse mesh:

N coarse := N coarse
mesh · q

d .

This allows us to estimate the amount of non-zero entries for matrices C i as ( h
H )

d · qd ,

effectually the storage size for each local C i .

Next, we will show in detail the process of the parallel implementation of the precon-

ditioner routines. Here, we should note, that if we are reusing the same basis functions

and the same space partition for Vhp and V i
hp given in (3.36), then the restriction matrices
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would be mainly sparse, for the piecewise constant basis function, with values of ones for

the entries which correspond to the values of the global basis functions with support on

both fine and coarse grids. However, for the choice of the local basis functions with higher

polynomial degrees, the restriction matrix would be dense for the coarse grid and associ-

ated partition V 0
hp. In order to calculate such a matrix we would need to solve a system

shown before in (3.49):
−→
d = cT C i

For better understanding of this process, let us analyse the fine and coarse grids in a real

example on a one dimensional mesh, shown in figures (3.4,3.5).

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1 φ1
1

φ1
2

φ1
3

φ2
1

φ2
2

φ2
3

Figure 3.4: Fine grid mesh in 1-d with local basis functions with polynomial degree
p up-to 2. Two elements on a grid.
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Figure 3.5: Coarse grid mesh in 1-d with local basis functions with polynomial
degree p up-to 2. One element on a grid.

We need to clarify, that each element of the grid uses local coordinate system. In order,

to transform the coordinates to global coordinates system, we use, x = F1(t), x = F2(t)

and x = Fc(t), for each subspace V 1
hp, V 2

hp and the space on a coarse grid V 0
hp respectively,

with t being a local coordinates, independent in each space\subspace.
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As for the local basis functions indices, we use super script, to specify the element of

the fine grid, where the local basis function is non-zero, index is in range 1, . . . , Nmesh. Sub

script is in range 1, . . . , Nloc and specifies the number of the local basis functions on the

aforementioned element. As, the chosen local basis functions, exist everywhere, but by

construction restricted to have non-zero value only on one element, on their grids we get

the following equations, for the first local basis function, on a coarse grid:

φc
1(F

−1
c (x)) = C1

1,1φ
1
1(F

−1
1 (x)) + C1

1,2φ
1
2(F

−1
1 (x)) + C1

1,3φ
1
3(F

−1
1 (x))

+ C1
2,1φ

2
1(F

−1
2 (x)) + C1

2,2φ
2
2(F

−1
2 (x)) + C1

2,2φ
2
3(F

−1
2 (x)),

for C i
j,k, i = 1, . . . , N coarse - the number of coarse grid local basis funcitons, j = 1, . . . , Nmesh

- number of elements of the fine grid and k = 1, . . . , Nloc - number of the fine grid basis

functions.

This can be extended on all coarse grid local basis functions:

φc
i (F

−1
c (x)) =

Nloc
∑

k=1

C i
1,kφ

1
k(F

−1
1 (x))

+
Nloc
∑

k=1

C i
2,kφ

2
k(F

−1
2 (x)), (3.63)

for i = 1, . . . , N coarse.

As we only need to calculate the local basis function’s value on the element, where it

is a non-zero, we split the (3.63) in parts, for each fine grid element, and use the local to

that element coordinates:

φc
i |K1
(F−1

c (F1(t))) =
Nloc
∑

k=1

C i
1,kφ

1
k(t)

φc
i |K2
(F−1

c (F2(t))) =
Nloc
∑

k=1

C i
2,kφ

2
k(t), (3.64)

for i = 1, . . . , N coarse, K1, K2 represent the fine grid elements, and t is a local coordinate,

independent and non-consecutive per element.

A linear system, arising from the (3.64), can be obtained, by introducing the interpo-

lation nodes t l ∈ [−1,1], with l >= N coarse, and setting

Ai,l = φ
c
i (F

−1
c (F1(t l))), i, l = 1, . . . , N coarse,

Bk,l = φ
1
k(t l), k = 1, . . . , Nloc , l = 1, . . . , N coarse,

and Ci,k = C i
0,k:

Ai,l =
Nloc
∑

k=1

Ci,k · Bk,l ,

So, to get the local restriction matrix C = (Ci,k), we need to evaluate:

C = AB−1
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It is clear, that to obtain a restriction\prolongation matrix C in this case shown in figures

3.4 and 3.5, we need to solve the following system of equations:

φc
1(x

c)|K1
= C1,1φ1(x) + C1,2φ2(x) + C1,3φ3(x)

φc
1(x

c)|K2
= C1,4φ4(x) + C1,5φ5(x) + C1,6φ6(x)

φc
2(x

c)|K1
= C2,1φ1(x) + C2,2φ2(x) + C2,3φ3(x)

φc
2(x

c)|K2
= C2,4φ4(x) + C2,5φ5(x) + C2,6φ6(x)

φc
3(x

c)|K1
= C3,1φ1(x) + C3,2φ2(x) + C2,3φ3(x)

φc
3(x

c)|K2
= C3,4φ4(x) + C3,5φ5(x) + C2,6φ6(x), (3.65)

where, C j,i , j = 1, . . . , N coarse, i = 1, . . . , Nmesh · N d
pd are the elements of a restriction

matrix, φi , i = 1, . . . , Nmesh · N d
pd are the local basis function on a fine grid and φc

j , j =

1, . . . , N coarse are the local basis functions on a coarse grid. The formulae (3.65) can be,

for all j = 1, . . . , N coarse, then written as:

Ne
∑

e=1

φc
j (x

c)|Ke
=

Nloc
∑

i

C j,i ·φi(x),

here we know all the coarse grid basis functions φc values on the corresponding edges

e = 1, . . . , Ne, and all the global basis functions φ on all elements i = 1, . . . , Nloc , with

Nloc = Nmesh · N d
pd . This can be simplified, by interpolating the local basis functions from a

fine grid to coarse one, to find a value of the coarse grid basis function:

Ne
∑

e=1

RT
0φi(ΦKe

(x c)) =
Nloc
∑

i

C j,i ·φi(x),

where j = 1, . . . , N coarse and local coarse grid coordinates transformation ΦKe
(x c). The in-

terpolation on a coarse grid, can be performed by applying Newton formulae. The result-

ing system of equations can be then solved using LU decomposition, to find the unknowns

C j,i , j = 1, . . . , N coarse, i = 1, . . . , Nloc .

To compute the restriction matrix Ci ∈ R
(Nmesh·N d

pd )×(N
coarse), one would need to solve

Nmesh · N d
pd system of equations of N coarse unknowns.

As the next step, we should determine the communication cost for each iteration of the

preconditioned CG method.

3.2.3 Iteration count

Stability of the preconditioner in question was proven in [5] and involves introduction of

additional coefficient:

C2
# := Cσ

H
h

N2
pd

q
,

for Cσ > 0 being a mesh and polynomial degree - independent constant, and the spectral

condition number estimate:

κ(BA)≤ C2
#(NH + 2),
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with NJ introduced to denote the maximum number of adjacent partitions that any given

subdomain in the partition TH might posses.

It was shown in Corollary 3.1.2, namely in (3.33):

k ≥ ln(
2
ε
)
(C#

p

(NH + 2) + 1)
2

Hence, the number of steps k for the preconditioned CG method, for desirable ε > 0 can

be found with:

k = dln(
2
ε
)
(C#

p

(NJ + 2) + 1)
2

e (3.66)

3.2.4 Parallelization techniques

In order to properly explain the optimal parallel implementation, we would start with

domain partitioning.

For defined domain finite decomposition Ω (1.3), with space of rectangular decompo-

sition Vhp (1.8), define sub-grid VHq as in (3.38), with every logical partition element of

Vhp smaller than the logical partition element of VHq. Every element of VHq contains at

least two elements of Vhp. Furthermore, for each element of VHq, define spaces of finite

rectangular decomposition V i
hp as in (3.36). The arbitrary case can be seen on figure (3.6):

I II

III IV

Figure 3.6: Domain decomposition. Black - subgrid. Green - coarse grid. Red - fine
grid.

In figure 3.7 we zoom in on subgrid element I we can see that numbering of the coarse

grid elements within the subgrid element is not consecutive. Let I be the set corresponding

to the first top left subgrid element. The set

I := {Ec
1, Ec

2, Ec
5, Ec

6}, (3.67)
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with sets of neighbouring coarse grid elements being

Ineigh(I I) := I ∩ I I = {Ec
3, Ec

7},

Ineigh(I I I) := I ∩ I I I = {Ec
9, Ec

10},

Ineigh(IV ) := I ∩ IV = {Ec
11}.

From the observed picture we conclude, that "internal" coarse grid element Ec
1 has no in-

teraction outside of its subgrid, and require no data transfer for global system matrix com-

putation, nor for solver, nor for pre-conditioner step in chosen CG solver.

Ec
9 Ec

10 Ec
11

Ec
5 Ec

6 Ec
7

Ec
1 Ec

2 Ec
3

I

Figure 3.7: Domain decomposition. Subgrid element I with coarse grid elements
and neighbourhood. Black - subgrid. Green - coarse grid.

Here, we zoom in further in figure 3.8, to coarse grid elements Ec
2 and Ec

3, which be-

long to different subgrid elements I and I I correspondingly and require data transfer for

computation. Let X (Ec
2) and X (Ec

3) be the sets of all fine grid elements contained within Ec
2

and Ec
3 correspondingly, as in:

X (Ec
2) = {E f

3 , E f
4 , E f

11, E f
12},

X (Ec
3) = {E f

5 , E f
6 , E f

13, E f
14}.

Corresponding set X (Ec
2)

neigh(X (Ec
3)) of neighbouring elements of sets X (Ec

2) and X (Ec
3) is

then:

X (Ec
2)

neigh(X (Ec
3)) := X (Ec

2)∩ X (Ec
3) := {E f

4 , E f
12, E f

5 , E f
13}

Due to the nature of the chosen basis functions, only the functions on shared edges between

fine grid elements require data transfer for parallel computation.
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E f
11 E f

12 E f
13 E f

14

E f
3 E f

4 E f
5 E f

6

Ec
2 Ec

3

Figure 3.8: Domain decomposition. Coarse grid elements Ec
2 and Ec

3 from neigh-
bouring subgrids elements. With fine grid elements contained within aforemen-
tioned. Green - coarse grid. Red - fine grid.

This allows us to choose suitable uniform grid domain discretisation. Furthermore, the

optimal subgrid restraints irrespective of the geometry and dimension of the problem would

be to develop a subgrid, such that a number of interacting interfaces of the corresponding

coarse grid is minimal. Say for interface between I and I I to have the smallest possible

cardinality of |I ∩ I I |.
First, we discuss the case for uniform grid of quadrilateral elements. Here, we should

introduce the parallel version of the Conjugate Gradient method with Additive Schwarz as

preconditioner. We are going to expand the algorithm given in 11.

Consider the problem:

Ax = b

where A is a system matrix arising from (2.1), b is a right hand side, and x is a vector of

unknowns. We set

NDoF := Nmesh · N2
pd

being the degrees of freedom. Additionally we define number of threads (parallel pro-

cesses) which will be used in computation Np ≥ 1, and number of partitions

NS ≤ Np

for Additive Schwarz method.

We do not require to store whole vectors and matrices during the parallel computation

on all threads. We can instead store the spread data in chunks of size

NC := NDoF/Np,

where we round the NC to the closest integer. Chunks could be identified with correspond-

ing thread (process) ID:# ∈ 0, . . . , Np − 1. This will require to set auxiliary boundaries per

thread (process) for parallel computation. We will design boundaries for the vectors and

matrices, used in parallel CG as a function of a thread (process) ID.

nlC(#) =

¨

# · NC if #≥ 1;

0 if #= 0
(3.68)

As lower boundary for the #-th thread (process).
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nuC(#) =

¨

min((#+ 1) · NC , Nmesh · N d
pd) if #< Np − 1;

Nmesh · N d
pd if #= Np − 1.

(3.69)

As upper boundary for the #-th thread (process). We note that we need the # = Np − 1

condition of the (3.69) explicitly, for the cases when the Nmesh · N d
pd is an odd integer and

can result in min((#+ 1) · NC , Nmesh · N d
pd) being less than the Nmesh · N d

pd .

Analysing the difference between serial and parallel matrix-vector multiplication. As an

example we take line 6 of algorithm 11. Set q := qk and p := pk. End-to-end multiplication,

then looks as:

qi =
NDoF
∑

j=1

Ai, j p j , i = 1, . . . , NDoF ,

whereas parallel multiplication on thread(process) with ID id will look as:

qi =
nu(id)
∑

j=nl (id)

Ai, j p j , i = 1, . . . , NDoF .

Additionally we set the auxiliary boundaries for restriction\prolongation matrices C i for

corresponding spaces V i
hp, i ∈ 1, . . . , NS . First we set number of matrices per thread (pro-

cess)

NCS := NS/Np.

We define the boundaries per thread (process), in the same way as (3.68,3.69).

nlCS(#) =

¨

# · NCS if #≥ 1;

0 if #= 0
(3.70)

As lower boundary for the #-th thread (process).

nuCS(#) =

¨

min((#+ 1) · NCS , Nmesh · N d
pd) if #< Np − 1;

Nmesh · N d
pd if#= Np − 1.

(3.71)

As upper boundary for the #-th thread (process).

Here, we should note, that although only the restriction matrices, which are neces-

sary on a thread (process) for computation, would be computed on each thread (process),

the matrix corresponding for a coarse partition VHq would only be computed on a thread

(process) with ID 0.

Before proceeding, we would analyse this operation further, as both, system matrix and

preconditioner matrix are distributed between processes. From algorithm 11, line 6:

qk← A{i}pk.

Here, A{i} is a partition {i},i = 1, . . . , Np, of a system matrix Ah, computed and distributed

amongst Np process. Vectors qk and pk would require appropriate partitioning with {i},i =
1, . . . , Np to distribute them among processes.

Later qk, which is distributed amongst Np processes used in residual direction vector
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computation, from (11), rk+1 ← rk − αkqk. And this new vector rk+1 is used in computa-

tion of preconditioner expansion vector zk+1← Brk+1. At the same time preconditioner B

requires expansion to three operations (3.2.1). This brings additional restraints onto the

boundaries design (3.68, 3.69, 3.70, 3.71). Matrix B can be rewritten as:

B = C T
0 · A

−1
0 · C0 +Σ

NS
k=1C T

k · A
−1
j · Ck

Introducing partitioning {i},i = 1, . . . , Np, same as for system matrix Ah, for distribu-

tion of preconditioner matrix among the processes, we assume, that subgrid-to-fine re-

striction\prolongation matrices Ck are stored fully on corresponding processes. Whereas

coarse-to-fine restriction\prolongation matrices CC would be computed and stored dis-

tributively across processes:

B{i} = (C{i}C )
T · (A{i}C )

−1 · C{i}C +Σk∈{i}C
T
k · A

−1
{i} · Ck.

Here, we should note, that the storage size allocated for any chunks of matrices would

be equal to the whole matrix, indexing would also be preserved as in original matrices.

Partition of corresponding vectors would be the same. Hence, the steps to compute zk+1,

would require similar partitioning of resulting vector, transfer of intermediate results z{i}k+1

from local processes and reduction (appropriate communication and summation of inter-

mediate result) of the results zk+1 from all processes.

z{i}k+1 = (C
{i}
C )

T (A{i}C )
−1(C{i}C · r

{i}
k+1)) +Σ

NS
j C T

j · (A
−1
{i} · (C j r

{i}
k+1)). (3.72)

Now, to illustrate the actual split among processes, we would separate (3.72) into two

parts:

z{i}k+1 = (C{i}C )
T (A{i}C )

−1(C{i}C · r
{i}
k+1)) (3.73)

+ Σ
NS
j C T

j · (A
−1
{i} · (C j r

{i}
k+1)) (3.74)

Matrix (A{i})−1, i = 1, . . . , N coarse
mesh will be distributed among processes, according to the

subgrid elements’ configuration, which they are supported by. Here, we should note, that

original matrix A is a sparse matrix, with non-zero elements on main diagonal.

We will illustrate computation zk+1 on a particular case, for 4 processes and coinciding

subgrid partition (3.6) with 4 elements I , I I , I I I , IV , coarse grid (3.7) with elements EC
i ,

i = 1, . . . , N coarse
mesh , N coarse

mesh = 16 and fine grid (3.8) with elements E f
i , i = 1, . . . , N f ine

mesh,

N f ine
mesh = 64.

We first want to show subgrid-to-fine grid part of (3.74) computation, as it would re-

quire no data transfer. We enumerate restriction/prolongation matrices C according to the

fine grid elements’ (3.8) enumeration. Furthermore, we can compute selection matrices

C j , according to the subgrid’s process distribution.

The operation we need to perform is:

zk+1 = Σ
NS
j C T

j · (A
−1
{i} · (C j r

{i}
k+1).
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Each prolongation matrix, in our chosen domain partition, would be represented as a se-

lection matrix, due to the fact, that subgrid’s elements are supported on fine grid elements

inside them. This allows us to untangle the Σ notation and perform multiplication of cor-

responding selection matrices C j with parts of the vector rk+1. Just to demonstrate how

the multiplication is done, say on process I , we choose C1 and C9 which are on process I ,

and corresponding part r{1}(k+1),1 and r{1}(k+1),9 of the vector rk+1:

C1









C9









r{1}(k+1),1

r{1}(k+1),2

r{1}(k+1),9

r{1}(k+1),10

. . .





















































































=

C1 · r{1}(k+1),1

C2 · r{1}(k+1),2

C1 · r{1}(k+1),9

C10 · r{1}(k+1),10

. . .





















































































Figure 3.9: Multiplication of matrices C1 and C9 with parts of vector rk+1. Results
are stored appropriately in vector t on the r.h.s

Then, the full multiplication t{i} := C j r
{i}
k+1, can be illustrated on process I :

C1

C2

C9

C10

C3

C4

C11

C12

C17

C18

C25

C26

C19

C20

C27

C28

C { j}

∗

r{1}k+1 r{2}k+1 † r{5}k+1 r{6}k+1 ‡
rk+1

=

t{1} t{2} † t{5} t{6} ‡
t

Figure 3.10: Preconditioner coarse-to-fine t{i} := C j r
{i}
k+1 computation on process I .

Note, that † and ‡ are standing for chunks and parts 3, 4 and 7, . . . , 16 correspond-
ingly, and which are filled with zeros and are not in use on the current process.

The shown domain decomposition (3.6) then will require distribution of chunks of ma-

trix A among processes. For process I , we need only chunks which arise from elements in set

I (3.67). For simplicity we enumerate them with accordance to the coarse element number,

so then, the first process I would store the following four chunks A−1
{1}, A−1

{2}, A−1
{5}, A−1

{6}. The

chunks on the second process I I would then be enumerated as A−1
{3}, A−1

{4}, A−1
{7}, A−1

{8}. Etc.

From the matrix vector multiplication, we know, that corresponding chunk of the ma-

trix, is going to be multiplied with corresponding part of the vector. Hence, we can dis-
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tribute only necessary parts of the vector t among the processes, and enumerate them in

the similar way. For multiplication of the matrix A−1 with the vector t on process I we

would require parts t{1}, t{2}, t{5}, t{6}. We need no data transfer, as all necessary parts are

stored on the processes, where multiplication is performed.

Next step in preconditioner is the multiplication of A−1 and t. On process I it can be

written as:

l I := A−1
{1} · t

{1} + A−1
{2} · t

{2} + A−1
{5} · t

{5} + A−1
{6} · t

{6} (3.75)

Or in alternative notation:

l I := A−1
{I} · t

{I}

And can be illustrated as:

A−1
{1} A−1

{2} † A−1
{5} A−1

{6} ‡
A−1

∗

t{1} t{2} † t{5} t{6} ‡
t

=

l{1} l{2} † l{5} l{6} ‡
l

Figure 3.11: Preconditioner step l i := (A{i})−1 · t{i} computation on process I . Note,
that † and ‡ are standing for chunks and parts 3,4 and 7, . . . , 16 correspondingly,
and which are filled with zeros and are not in use on the current process.

The last step of preconditioner computation is z{i}k+1 := (C j)T l{i}. The process is similar

to the one illustrated in (3.10):

(C1)T

(C2)T

(C9)T

(C10)T

(C3)T

(C4)T

(C11)T

(C12)T

(C17)T

(C18)T

(C25)T

(C26)T

(C19)T

(C20)T

(C27)T

(C28)T
C { j}

∗

l{1} l{2} † l{5} l{6} ‡
l

=

z{1}k+1 z{2}k+1 † z{5}k+1 z{6}k+1 ‡
zk+1

Figure 3.12: Preconditioner step z{i}k+1 := (C j)T l{i} computation on process I . Note,
that † and ‡ are standing for chunks and parts 3,4 and 7, . . . , 16 correspondingly,
and which are filled with zeros and are not in use on the current process.

Finally, the coarse-to-fine part of the equation (3.73) requires computation. The coarse-

to-fine prolongation matrix C0 is computed and stored in chunks across all processes, with

the account of coarse grid elements. They will be enumerated similarly. Using the same
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partition as in (3.75):

t I := C{1}0 · r{1}k+1 + C{2}0 · r{2}k+1 + C{5}0 · r{5}k+1 + C{6}0 · r{6}k+1

Or in alternative notation:

t I := C{I}0 · r{I}k+1

And can be illustrated as:

C {1}0 C {2}0 † C {5}0 C {6}0 ‡
C0

∗

r{1}k+1 r{2}k+1 † r{5}k+1 r{6}k+1 ‡
rk+1

=

t{1} t{2} † t{5} t{6} ‡
t

Figure 3.13: Preconditioner step t i := C {i}0 · r
{i}
k+1 computation on process I . Note,

that † and ‡ are standing for chunks and parts 3,4 and 7, . . . , 16 correspondingly,
and which are filled with zeros and are not in use on the current process.

Due to the fact, that inverse of the full matrix A0 would be dense, it would be very ex-

pensive to compute inverse and communicate it on all processes. Additionally, non sparse

structure disallows convenient chunk-to-part matrix vector multiplication. Instead, we

would communicate the result of t i := C{i}0 · r{i}k+1, from each process {i} into the t core,

which would be stored at our core process. Matrix vector multiplication l := A−1
0 · t

core

would be performed on the core process, and result would be communicated to corre-

sponding processes. This can be illustrated as such:
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I I I I I I I I I IV I I I IV

t{1} t{2} t{3} t{4} t{5} t{6} t{7} t{8} t{9} t{10} t{11} t{12} t{13} t{14} t{15} t{16}
t core

∗

A−1
0 A−1

0

=

l{1} l{2} l{3} l{4} l{5} l{6} l{7} l{8} l{9} l{10} l{11} l{12} l{13} l{14} l{15} l{16}
l

I I I I I I I I I IV I I I IV

Figure 3.14: Preconditioner step for l := A−1
0 · t

core computation. Data communica-
tion to core process for t core precedes the matrix multiplication, hence shown prior
to multiplication. Communication of vector l is not simultaneous from core to all
processes.

And the last step is z{i}k+1 := (C0)T l{i}, which is performed in similar way to (3.13).

Vector zk+1 is then reduced (communicated and summed appropriately) among pro-

cesses, ensuring that corresponding part is stored on the process. This ensures that all

subsequent steps in the preconditioned parallel Conjugate Gradient method’s algorithm do

not require full vector on any of the processes, henceforth minimizing the communication

to sole scalar values.

Now, taking into account that all the computations, i.e dot product, addition and sub-

traction, will be performed on each thread (process) separately, division can not be done in

such a way. Hence, we would have to introduce temporary variables to store intermediate

results, transfer (reduce) all of the results to core thread (process) . Division operation

would be then performed on the core thread (process), and result would be broadcast to

all other threads (processes). According to the aforementioned the coarse level of the Addi-

tive Schwarz in fact creates biggest bottleneck and does not allow effective parallelization.

In this work we tackle this by using the lowest polynomial approximation order possible.

Nevertheless, as shown further in the tables 3.2-3.5, we can overcome this bottleneck in

Additive Schwarz by introducing the Multigrid Method as a coarse level solver.

3.3 Multigrid method as a coarse level solver

Here we are going to present a modification of the Additive Schwarz Method. Recalling

(3.50):

BASM =
NS
∑

i=1

C iĀ−1
i (C

i)T + C0Ā−1
Hq(C

0)T ,
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As we have noted in the previous section, we would require computation of matrix ĀHq,

computation of the corresponding inverse, or solving the system. Instead, we can use the

Multigrid Method (MG), then modified preconditioner looks as:

BASM ,MG =
NS
∑

i=1

C iĀ−1
i (C

i)T + C0BMG(C
0)T , (3.76)

with the coarse level solver being:

BMG,coarse = C0BMG(C
0)T (3.77)

Here, we can note, that, although, inverse of the system matrix would be the best

choice in terms of the accuracy and convergence, approximation is cheaper in terms of

computation time. Additionally, we should point out, that the presented MG method is

not a Krylov Subspace Method. Main difference is that to solve a system of equations as

Ax = b any Krylov Subspace method requires only defined matrix A, and right hand side

vector b [46]. Additional information, such as the nature of (partial-)differential equation

to solve, choice of the basis function, space discretisation method etc do not matter for

successful implementation of Krylov Subspace method. Whereas MG method requires extra

information about the problem itself, e.g. in the case of Poisson equation, string relation

between eigenfunctions of the iteration matrix and the chosen mesh.

In this section, to avoid confusion, we will refer to the polynomial approximation degree

as pMG,k. We are also considering the case with polynomial approximation degree to be

uniformly pMG,k = 1, but start with performing the analysis for general positive pMG,k.

In addition we define the number of Multigrid levels as NMG .

Define the Multigrid Method, according to [14] and [13], assume that we are given a

sequence of finite-dimensional vector spaces

Vk := {v ∈ L2(Ω) : v |K ◦TK ∈MpMG,k(K̄) ∀K ∈ TH,k}, k = 0, . . . , NMG (3.78)

where TH,k is a quasi-uniform partition as defined earlier (1.3) of a set {TH,k}
NMG
k=1 , and

MpMG,k(K̄) is a space of polynomials PpMG,k
, pMG,k ≥ 1, (1.5) in case of a K̄ := 4 being

a reference simplex, otherwise a space of polynomials QpMG,k
, pMG,k ≥ 1 (1.6) in case

of a reference hypercube K̄ := �. We consider pMG,k to be uniform on TH,k, where k =

1, . . . , NMG . We consider our finite decomposition to comply with Hk := maxK∈TH,k
HK ,

for all diameters HK on each element K , with k = 0, . . . , NMG . By suitably choosing the

sequence {TH,k, Vk}
NMG
k=0 , we can obtain h−, p− and hp−multigird methods as defined in

[3]. We also should note, according to [3, (2.1)], that sequence of spaces (3.78) would be

nested

V0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ VNMG
.

In order to comply with additive Schwarz method’s convergence framework, we restrict

the modification with inherited space discretization. We also have

V0 ≡ VHq (3.79)
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This allows to represent the primal bilinear DG form (2.2) on each subspace. Designating

primal bilinear form as

A0(·, ·) : VHq × VHq→ R,

set

A0(·, ·)≡ AMG,0(·, ·). (3.80)

Now, we introduce for each Vk, k = 0, . . . , NMG the bilinear form

Ak(·, ·) : Vk × Vk→ R, k = 0, . . . , NMG .

We also introduce for each Vk, k = 0, . . . , NMG a corresponding inner product of the form

(·, ·)k : Vk × Vk→ R, k = 1, . . . , NMG . (3.81)

We now need to introduce the tools for the MG method. Introduce linear operators

Ik : Vk−1→ Vk,

for k = 1, . . . , NMG . The operators {Ik} are called prolongation operators and defined as a

classical linear interpolation operation in [14, page 4]. The operator maps functions from

one level Multigrid level to another:

Ikvk−1 = vk, for all vk ∈ Vk and vk−1 ∈ Vk−1.

Introduce the operator Ak : Vk→ Vk by:

(Aku, v)k = Ak(u, v) for all v ∈ Vk.

Additionally, we define the linear operators PMG,k : Vk → Vk−1, for k = 1, . . . , NMG and

special case P0
MG,k : Vk→ Vk−1, for k = 1, . . . , NMG by

Ak−1(PMG,k−1u, v) = Ak(u, Ikv) for all u ∈ Vk−1 (3.82)

and

(P0
MG,k−1u, v)k−1 = (u, Ikv)k for all u ∈ Vk−1.

Operator IkPMG,k−1 is a symmetric operator with respect to the Ak form [49, Chapter 4,

section 2] and [14, Page 4].

We now define the smoothing process using the linear operator RMG,k : Vk → Vk for

k = 1, . . . , NMG . Symmetry of the operator is scrutinised in [14]. If RMG,k is nonsymmetric,

then we define Rt
MG,k to be its adjoint and we set:

R(l)MG,k =

¨

RMG,k, if l is odd,

Rt
MG,k, if l is even.

where l is current iteration number of pre-smoothing operation, on level k.
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The multigrid operator

BMG,k : Vk→ Vk (3.83)

is then given as follows [49, p.137]:

Algorithm 12 Multigrid algorithm. For input arguments g and mk, receive an
output collection BMG,k, for k = 0, . . . , NMG

1: [For a given] g, m
2: if k = 0 then
3: [Initialize] BMG,0← A−1

0
4: else
5: x0← 0
6: q0← 0
7: for l = 1, . . . , mk do [PRESMOOTHING]
8: x l ← x l−1 + Rl+mk

MG,k(g − Ak x l−1)
9: end for

10: for i = 1, . . . , v do [COARSE GRID CORRECTION]
11: qi ← qi−1 + BMG,k−1

�

P0
MG,k−1(g − Ak xmk)− Ak−1qi−1

�

12: end for
13: ymk ← xmk + Ikqv

14: for l = mk + 1, . . . , 2mk do [POSTSMOOTHING]
15: y l ← y l−1 + Rl+mk

MG,k(g − Ak y l−1)
16: end for
17: BMG,k g ← y2mk

18: end if
19: [Output] BMG,0:k

In the above algorithm, each

mk ∈ Z+ (3.84)

is a variable for each level and determines the number of smoothing operations. v ∈ Z+,

if v = 1 the above algorithm is a V-cycle, whereas for v = 2 the algorithm is a W-cycle.

BMG,k is a linear and symmetric operator for each k, which additionally implies that it is

symmetric with respect to the (·, ·)k inner product[14]. Moreover, denoting Id as an identity

operator. Setting

Gk := Id−RMG,kAk,

yields

G∗k = Id−Rt
MG,kAk

being adjoint with respect to

AMG,k(·, ·),

which in turn leads to spectrum of G∗kGk being defined in the interval [0, 1), which is shown

in [14, A.1]. Additionally, from the same source,

Id−BMG,kAk

is a symmetric operator on Vk with respect to the AMG,k form.
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Additionally we note, that the cases

Ak(Iku, Ikv) =Ak−1(u, v) for all u, v ∈ Vk−1,

are only allowed when the forms Ak are inherited from the finest grid.

Introducing the error propagation operator as in [3], applicable for Multigrid method

for hp-Discontinuous Galerkin methods,

Ek,m1,m2
= Gm2

k (Idk−I k
k−1Pk−1

k )Gm1
k . (3.85)

The Multigrid preconditioner, being a complex structure, can now be derived from the

algorithm 12. Considering the multigrid process MGW (k, g, z0, m1, m2) on a system, arising

from the preconditioned CG algorithm, shown in 11, by denoting with Ah,k the matrix

corresponding to the bilinear formAk, and g = r for residual vector r from the algorithm

11. The error propagation operator, for the first and last cycles of the multigrid process is

Ek,m1,m2
(z − z0) := z −MGV (k, g, z0, m1, m2).

According to the method z0 = 0, and z = A−1
h,k g, yielding

Ek,m1,m2
z = z − BMG g,

and taking into account Ah,kz = g, it follows

Ek,m1,m2
z = z − BMGAh,kz. (3.86)

Here, we can give the bound for the error propagation operator for the Multigrid method

as in [3]. We note, that ‖ · ‖1,k is a DG norm on a level k of MG algorithm. We start by

defining necessary constant, from [3, Theorem 4.5], we have the following

Theorem 3.3.1. There exists a positive constant C2l vl independent of the mesh size, the poly-

nomial approximation degree, and the level k such that

‖E2l vl
k,m1,m2

v‖1,k ≤ C2l vlδk‖v‖1,k

for any v ∈ Vk, 0, . . . , NMG , with

δk :=
p2+µ

MG,k

(1+m1)1/2(1+m2)1/2
, (3.87)

m1, m2 ≥ 1, and µ = 0,1 for optimal and suboptimal estimates, respectively. Therefore,

the two-level method converges uniformly provided the number pre- and postsmoothing steps

satisfy

(1+m1)
1/2(1+m2)

1/2 ≥ ιp2+µ
MG,k

for a positive constant ι > C2l vl .

Additionally, the DG-norms ‖·‖1,k, k = 1, . . . , NMG trivially exist on Vk, k = 1, . . . , NMG



CHAPTER 3. ITERATIVE SOLVERS 85

and arise from the forms (3.81). For the proof we refer to [3, page 608].

Lemma 3.3.2. From [3, Lemma 4.6, page 608]. There exists a positive constant Cstab inde-

pendent of the mesh size, the polynomial approximation degree, and the level k such that

‖I k
k−1v‖1,k ≤ Cstab‖v‖1,k−1, ∀v ∈ Vk−1

‖Pk
k−1v‖1,k−1 ≤ Cstab‖v‖1,k, ∀v ∈ Vk.

Now, we present

Theorem 3.3.3. From [3, Theorem 4.7, page 609].Error propagation operator estimate.

Let δk and C2l vl be defined as in Theorem 3.3.1, and let Cstab be defined as in Lemma 3.3.2.

Then, there exists a positive constant Ĉ > C2l vl such that, if the number of pre- and postsmooth-

ing steps satisfies

(1+m1)
1/2(1+m2)

1/2 ≥ ιp2+µ
MG,k

C2
stab Ĉ2

Ĉ − C2l vl
, (3.88)

it holds that

‖Ek,m1,m2
v‖1,k ≤ Ĉδk‖v‖1,k v ∈ Vk

with

Ĉδk < 1.

That is, the W-cycle algorithm converges uniformly with respect to the discretization parame-

ters and the number of levels provided that m1 and m2 satisfy (3.88).

We can show that the MG operator BMG can be bounded.

Lemma 3.3.4. For predefined operators BMG and A, there exist a constant 0 < δ = Ĉδk < 1

as in (3.87), such that

(1−δ)(v, A−1v)≤ (BMG v, v)≤ (1+δ)(v, A−1v). (3.89)

Proof. From Theorem 3.3.3 and (3.86) we have

‖Ek,m1,m2
z‖1 = ‖(Id−BMGAh,k)z‖1 ≤

p

δ‖z‖1
⇒ ‖(Id−BMGAh,k)‖1 ≤

p

δ

by the norm-inner product equivalence

⇔ (A(Id−BMGAh,k)v, v)≤ δ(Av, v)

and rearranging the terms within inner products

⇒ (1−δ)(v, A−1v)≤ (BMG v, v)≤ (1+δ)(v, A−1v)

Lemma 3.3.5. For predefined operators BMG and A, there exist constants 0 < δ1 < δ2, such

that

δ−1
2 (Av, v)≤ (B−1

MG v, v)≤ δ−1
1 (Av, v). (3.90)
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Proof. From Lemma 3.3.4, setting δ1 = 1−δ and δ2 = 1+δ, we have

δ1(A
−1u, u)≤ (BMGu, u)≤ δ2(A

−1u, u)

From

(ABMGAu, u)
(Au, u)

setting v = Au

=
(ABMG v, A−1v)
(v, A−1v)

=
(BMG v, v)
(A−1v, v)

=
(A−1BMGAv, v)
(A−1v, v)

it follows that

δ1 ≤ λmin(BMGA) = inf
(ABMGAu, u)
(Au, u)

, δ1 ≤ λmin(ABMG) = inf
(A−1ABMG v, v)
(A−1v, v)

δ2 ≥ λmax(BMGA) = sup
(ABMGAu, u)
(Au, u)

, δ2 ≥ λmax(ABMG) = sup
(A−1ABMG v, v)
(A−1v, v)

we then have

(B−1
MG v, v)

(Av, v)
setting v = A−1u

=
(B−1

MGA−1u, A−1u)

(u, A−1u)

=
(A−1(ABMG)−1u, u)

(A−1u, u)

and

inf
(A−1(ABMG)−1u, u)

(A−1u, u)
= λmin((ABMG)

−1) = λ−1
max(ABMG)≥ δ−1

2

sup
(A−1(ABMG)−1u, u)

(A−1u, u)
= λmax((ABMG)

−1) = λ−1
min(ABMG)≤ δ−1

1 .

We obtain

δ−1
2 ≤

(B−1
MG v, v)

(Av, v)
≤ δ−1

1

δ−1
2 (Av, v)≤ (B−1

MG v, v)≤ δ−1
1 (Av, v)

This completes the proof.

3.3.1 Computational complexity

We will discuss convergence of the MG method in the next section. Now we analyse the

complexity and operation count for the presented in Algorithm 12 MG method.

We should outline that, although one of the main points of this work is the Multigrid
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method for uniform approximation polynomial degrees pMG,k = q = 1, k = 0, . . . , NMG ,

we still going to perform the theoretical estimations including general pMG .

Introduce the number of coefficients, number of non-zero elements of matrices Ak, on

each level k = 0, . . . , NMG of the Multigrid process, for arbitrary chosen

r = (
h
H
)d < 1,

such that

N0 := Nmesh(
h
H
)d · qd

Nk := rk−1N0.

Adding up all algebraic operations in the algorithm 12, yields the number of computational

operations:

KMG = 5NMG + 4 ·mkNMG + 2 · vNMG

+
NMG
∑

k=2

Nk

mk
+ 4 ·mk

NMG
∑

k=2

Nk

mk
+ 4 · v

NMG
∑

k=2

Nk

mk

+ N2
MG

= (5+ 4 ·m(k) + 2 · v)NMG + (1+ 4 ·mk + 4 · v)
NMG
∑

k=2

Nk

mk
+ N2

MG . (3.91)

We safely use the fact, that the matrices Ak, k = 0, . . . , NMG arise from forms inherited from

the bilinear form (3.80), which renders the aforementioned matrices sparse. Then term
∑NMG

k=1
Nk
mk

can be written as

N0

NMG
∑

k=1

rk

mk
,

and using geometric series, we find, for any NMG:

NMG
∑

k=1

Nk

mk
< N0

1
1− r

.

This allows to approximate the number of operations as:

TMG(d) := (5+ 4 ·mk + 2 · v)NMG + (1+ 4 ·mk + 4 · v)N0
1

1− r
+ N2

MG . (3.92)

which in big-O notation yields:

OMG(Nmesh(
h
H
)d · p2d

MG).

Now, the described above modification for the Additive two-layer Schwarz method

would require different number of operations. We are now analysing the Additive two-

layer Schwarz method with Multigrid method as a coarse level solver. For (3.62), choosing
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pMG = q = 1, substituting the matrix inverse on coarse grid with MG algorithm

TASM ,MG,i t := NS(N
2
sub, f + 2Nsub, f )

+ TMG (3.93)

With parallel version:

TASM ,MG,i t,par :=
NS(N2

sub, f + 2Nsub, f )

NP
+ (NP − 1)(

N
NP
)

+ TMG (3.94)

We are not considering any parallelisation for the MG method in this work.

3.4 Preconditioners' convergence analysis

3.4.1 The Abstract Additive Schwarz Method convergence analysis

We will now introduce the abstract additive Schwarz method as given in [52, Section 2.2].

We start with considering a suitable finite dimensional Hilbert space V , and symmetric,

positive definite bilinear form

A(·, ·) : V × V → R,

with associated stiffness matrix form A. Also consider linear functional f ∈ V .

We can now state the problem, find u ∈ V , such that

A(u, v) = f (v), v ∈ V. (3.95)

Given a basis of V , we have the function u ∈ V uniquely determined by the set of degrees of

freedom. Applying the functional f ∈ V to the basis of V we obtain the vector F , so-called

"load vector", and we can write (3.95) in a matrix form

Au= F, (3.96)

with the vector of unknowns, also called solution vector, u, and symmetric positive definite

A.

Consider family of spaces

{Vi , i = 0, . . . , NS},

and the interpolation operators

RT
i : Vi → V,

Ri : V → Vi ,

often called prolongation\restriction operators, respectively. We also need the following
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decomposition of space V to hold

V = RT
0 V0 +

NS
∑

i=1

RT
i Vi . (3.97)

Which allows for all v ∈ V to be written, with v0 ∈ V0 and vi ∈ Vi , i = 1, . . . , NS , as

v = RT
0 v0 +

NS
∑

i=1

RT
i vi .

Introduce abstract bilinear forms on the subspaces

Āi(·, ·) : Vi × Vi → R, i = 1, . . . , NS ,

and the associated abstract local stiffness matrices

Āi : Vi → Vi .

We also define projection-like operators

P̃i : V → Vi : Āi(P̃iu, vi) = A(u, RT
i vi), vi ∈ Vi , (3.98)

which is well defined since the local bilinear forms are coercive. Using the definition (3.98),

define the Schwarz operators

Pi = RT
i P̄i : V → RT

i Vi ⊂ V, i = 0, . . . , NS .

Also in the case of exact local solvers

A(Piu, RT
i vi) = A(u, RT

i ui), vi ∈ Vi .

According to [52, Lemma 2.1] Pi are self-adjoint with respect to the scalar product induced

by the A(·, ·) and positive semi-definite, and the operator is given

Pi = RT
i Ā
−1
i RiA, i = 0, . . . , NS . (3.99)

If the local bilinear forms are given by (3.103), then Pi is a projection

P2
i = Pi .

We can now define the additive Schwarz preconditioner

Pad =
NS
∑

i=0,...,NS

Pi . (3.100)

The additive Schwarz operator is symmetric and positive definite, and defined in matrix

form as

Pad = BadA,
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with matrix Bad given as

Bad =
NS
∑

i=0

RT
i Ā
−1
i Ri .

To check the convergence of the abstract Additive Schwarz method, we consider solu-

tion of the system, as in (3.96), for u ∈ V

Padu= Fad ,

where Fad = Bad f , f ∈ V ′, is a suitable right hand side. Immediately, we can give the

condition number of Pad

κ(Pad) =
λmax(Pad)
λmin(Pad)

, (3.101)

with

λmax(Pad) = sup
u∈V

A(Padu, u)
A(u, u)

, λmin(Pad) = inf
u∈V

A(Padu, u)
A(u, u)

.

And now, to show the stability and convergence, we need to bound the Schwarz operator.

To find and prove the bound of the Schwarz operator, we need to show the following

assumptions, developed in [52, section 2.3]:

Assumption 3.4.1. From [52, Assumption 2.2]. (Stable Decomposition) There exists a

constant C0, such that every u ∈ V admits a decomposition

u=
NS
∑

i=0

RT
i ui , ui ∈ Vi , i = 0, . . . , NS

that satisfies
NS
∑

i=0

Āi(ui , ui)≤ C2
0 A(u, u).

Assumption 3.4.2. From [52, Assumption 2.4]. (Local stability) There exist constantsω>

0, such that

A(RT
i ui , RT

i ui)≤ωĀi(ui , ui) ui ∈ Vi , i = 0, . . . , NS

Assumption 3.4.3. From [52, Assumption 2.3]. (Strengthened Cauchy-Schwarz inequal-

ities) There exist constants 0≤ εi j ≤ 1, i, j = 1, . . . , NS , such that

|A(RT
i ui , RT

j u j)| ≤ εi, jA(R
T
i ui , RT

i ui)
1
2 A(RT

j u j , RT
j u j)

1
2

for all ui ∈ Vi , u j ∈ Vj . Define ρ(E ) to be spectral radius of E = {εi j}i, j=1,...,NS
.

Now, in order to find the bound for the condition number, according to [52], we need

to introduce the following lemmas.

Lemma 3.4.4. From [52, Lemma 2.5]. Let Assumption 3.4.1 be satisfied. Then,

A(Padu, u)≥ C−2
0 A(u, u), u ∈ V (3.102)
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and consequently Pad is invertible. In addition,

A(P−1
ad u, u) = min

ui ∈ Vi

u=
∑

RT
i ui

∑

i=0

Āi(ui , ui).

Lemma 3.4.5. From [52, Lemma 2.6]. Let Assumptions 3.4.2 and 3.4.3 be satisfied. Then

for i = 0, . . . , NS ,

‖Pi‖A ≤ω.

In addition,

A(Padu, u)≤ω(ρ(E ) + 1)A(u, u)

And combining those Lemmas 3.4.4 and 3.4.5, we get the [52, Theorem 2.7]

Theorem 3.4.6. Let Assumptions 3.4.2,3.4.1 and 3.4.3 be satisfied. Then the condition num-

ber of the additive Schwarz operator Pad defined in (3.100) satisfies

κ(Pad)≤ C2
0ω(ρ(E ) + 1)

To comment on parameters we will refer to [52, pages 39-46]. We note that for the

presented case with exact unscaled local solvers ω is equal to one. The spectral radius

ρ(E ) is used to give an upper boundary for the λmax(Pad). The inequalities in Assumption

3.4.3 trivially hold for εi j = 1. However, this will set ρ(E ) to be equal to NDOF , which is

a very poor bound. The best possible bound is obtained for orthogonal spaces {RT
i Vi}, in

which case εi j = 0, for i 6= j, and ρ(E ) = 1.

3.4.2 The Additive two-level non-overlapping Schwarz Method

For the topic of this study, one of the preconditioner methods, which we use, is the Addi-

tive two-level non-overlapping Schwarz Method, first proposed in [2] and later developed

for hp Discontinuous Galerkin methods [4]. For the sake of completeness, we cite main

findings of the work which we are employing in the current thesis.

The set up and notation of the method are as in 3.2. We note, that for the implemen-

tation, we choose the exact local solver, using the direct-inverse on both levels.

For the levels with operators Pi , i = 1, . . . , NS , we first compute the system matrix Ah

(2.53), which arise from the primal bilinear form Bh(·, ·) : Vhp × Vhp → R (2.2); then we

locate the partitions {(Ah)i} to use later according to the form (3.50). For the coarse level,

we are constructing the system matrix, using the primal bilinear form on a coarse partition

TH , for given H.

For the exact local solvers the following holds [52, section 2.2]

Ai(vi , wi) = A(RT
i vi , RT

i wi), vi , wi ∈ Vi , (3.103)

implying

Ai = RT
i ARi
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To show the convergence, spectral bounds and stability of the method, we start by citing

the analysis from [4, section 4] for the symmetric hp DG methods.

We derive the following.

Lemma 3.4.7. From [4, Assumption 3]. (Strengthened Cauchy-Schwarz inequalities)

There exist constants 0≤ εi j ≤ 1, i, j = 1, . . . , NS , such that

|A(RT
i ui , RT

j u j)| ≤ εi, jA(R
T
i ui , RT

i ui)
1
2 A(RT

j u j , RT
j u j)

1
2

for all ui ∈ Vi , u j ∈ Vj . Define ρ(E ) to be spectral radius of E = {εi j}i, j=1,...,n.

Proof. Lemma (3.4.7) holds for εi,i = 1, for i = 1, . . . , NS , which is, again, due to the

construction. As for i 6= j, it is noted [4, page 18] that Ah(RT
i ui , RT

j u j) 6= 0 only if ∂Ωi ∩
∂Ω j 6= 0, so εi j = 1 in those cases, and εi j = 0 otherwise. Then, ρ(E ) can be bounded by

ρ(E )≤max
i

∑

j

|εi j| ≤ 1+ NH ,

where NH is the maximum number of adjacent subdomains that a given subdomain might

have.

Lemma 3.4.8. From [4, Assumption 2]. (Local stability) There exist constant 1 ≤ ω < 2,

such that

Ah(R
T
i ui , RT

i ui) ≤ ωAi(ui , ui) ui ∈ V i
hp, i = 1, . . . , NS

Ah(R
T
0 u0, RT

0 u0) ≤ ωA0(u0, u0) u0 ∈ VHq. (3.104)

Proof. Lemma 3.4.8 is trivial for the exact local solvers due to the construction withω= 1.

For the case when 1 < ω < 2 inequalities (3.104) hold strictly with <, which can be

observed in the reference.

Theorem 3.4.9. From [5, Theorem 5.1].(Stable Decomposition) Every v ∈ Vhp admits a

decomposition of the form v =
∑NS

i=0 RT
i ui , with v0 ∈ VHq and vi ∈ V i

hp, i = 1, . . . , N , which

satisfies the bound
NS
∑

i=0

Ai(vi , vi)≤ C2
ASM Ah(v, v),

with

C2
ASM = γ

H
h

p2

q
(3.105)

where constant γ > 1, is an independent of the meshsize and the approximation order, which

arises from the penalty term of the primal bilinear form (2.2).

Now we can formulate the convergence theorem for the Additive two-level non-overlapping

Schwarz Method.

Theorem 3.4.10. From [5, Theorem 5.2]. The condition number of the additive Schwarz

operator Pad defined in (3.43) satisfies

κ(Pad)≤ C2
ASM (NH + 2). (3.106)
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For CASM given as in (3.105), and NH is the maximum number of adjacent subdomains that

a given subdomain might have.

Proof. The estimate follows from the definition of the abstract additive Schwarz opera-

tor’s condition number bound in Theorem 3.4.6 for parameters of the space decomposition

provided in Lemmas 3.4.8,3.4.7 and Theorem 3.4.9.

In the next section we are going to introduce the Schwarz Method non-exact local solver

on the coarse level.

3.4.3 Multigrid method as a coarse level solver

The abstract convergence theory for Schwarz method was proven for the exact local solvers

in the works of Toselli and Widlund [52], Smith, Bjørstad and Gropp [51], and Antonietti

and Houston [4]. Abstract convergence theory is based on assumed existence of stable

decomposition, stability of the local bilinear forms, and boundedness of the used operators

in relation to employed bilinear form [52, Theorem 2.7].

In the defined case (3.77), we first set a coarse grid bilinear form Â0 : VHq × VHq → R
to comply with

Â0(u, v) = (B−1
MGu, v),∀u, v ∈ VHq.

Now, we require to show that it is possible to use the MG method as an approximate local

solver for the Additive Schwarz method. For this, we first formulate the assumptions which

allow stable decomposition, local stability, and strengthened Cauchy-Schwarz inequality for

the chosen fine grid decompositions.

We start with

Lemma 3.4.11. For predefined operators BMG and A0, there exist constantsω1,ω2 > 0, such

that

ω1(A0u, u)≤ (B−1
MGu, u)≤ω2(A0u, u). (3.107)

Proof. Proof follows from Lemmas 3.3.4 and 3.3.5.

Lemma 3.4.12. (Stable decomposition) There exists a minimum constant C0 > 0, such that

for all u ∈ Vhp there exists a decomposition

u=
N
∑

i=0

Rt
i ui ,

with u0 ∈ VHq, ui ∈ V i
hp, i = 1, . . . , N, and that satisfies

� N
∑

i=1

Ai(ui , ui)

�

+ Â0(u0, u0)≤max(1,ω2)C
2
0 Ah(u, u).

Proof. From Theorem 3.4.9, we have ∀u ∈ Vhp a decomposition

u=
∑

i=0

RT
0 ui , u0 ∈ VHq, ui ∈ V i

hp, i = 1, . . . , NS
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with
NS
∑

i=0

Ai(ui , ui)≤ C2
0 Ah(u, u).

Now with Lemma 3.4.11, we have

Â0(u0, u0) = (B
−1
MG(u0, u0)≤ω2A0(u0, u0).

Consequently, we have

NS
∑

i=1

Ai(ui , ui) + Â0(u0, u0) ≤
NS
∑

i=1

Ai(ui , ui) +ω2A0(u0, u0)

≤ max(1,ω2)
NS
∑

i=0

Ai(ui , ui)

≤ max(1,ω2)C
2
0 Ah(u, u)

Lemma 3.4.13. (Strengthened Cauchy-Schwarz inequalities) There exist minimum con-

stants 0≤ εi j ≤ 1, 1≤ i, j ≤ N , that satisfy

|A(Rt
i ui , Rt

ju j)| ≤ εi, jA(R
t
i ui , Rt

i ui)
1
2 A(Rt

ju j , Rt
ju j)

1
2

for all ui ∈ V i
hp, u j ∈ V j

hp. ρ(E ) is a spectral radius of E = {εi j}i, j=1,...,NS
, such that

ρ(E )≤ 1+ NH ,

where NH is the maximum number of adjacent subdomains that a given subdomain might

have.

Proof. The Strengthened Cauchy-Schwarz inequalites holds for εi,i = 1, for i = 1, . . . , NS ,

which is, again, due to the construction. As for i 6= j, it is noted [4, page 18] that

Ah(RT
i ui , RT

j u j) 6= 0 only if ∂Ωi ∩ ∂Ω j 6= 0, so εi j = 1 in those cases, and εi j = 0 oth-

erwise. Then, ρ(E ) can be bounded by

ρ(E )≤max
i

∑

j

|εi j| ≤ 1+ NH ,

as it is identical to proven 3.4.7.

Lemma 3.4.14. (Local stability) When the assumptions of lemma 3.4.11 hold, let ω̃ =

max(ω, ωω1
) be such that

A(RT
i ui , RT

i ui) ≤ ω̃Ai(ui , ui) ui ∈ V i
hp, i = 1, . . . , N (3.108)

A(RT
0 u0, RT

0 u0) ≤ ω̃(B−1
MGu0, u0) u0 ∈ VHq. (3.109)

Proof. From Lemma 3.4.8 we have

Ah(R
T
i ui , RT

i ui)≤ωAi(ui , ui) ui ∈ V i
hp, i = 1, . . . , NS ,



CHAPTER 3. ITERATIVE SOLVERS 95

which proves (3.108).

Using Lemma 3.4.11 together with (3.104), for all u0 ∈ VHq we have

Ah(R
T
0 u0, RT

0 u0) ≤ ωA0(u0, u0)

≤
ω

ω1
(B−1

MGu0, u0)

≤
ω

ω1
Â0(u0, u0),

which proves (3.109).

This completes the proof.

Theorem 3.4.15. Let assumptions in Lemmas 3.4.12, 3.4.14 and 3.4.13 hold. Then the

condition number of the modified additive Schwarz operator with MG method PASM ,MG as an

approximate local solver on a coarse grid VHq, satisfies

κ(PASM ,MG)≤ C2
ASM ,MG(NH + 2),

for CASM ,MG = ω̃ · γ
H
h

N2
pd
q , ω̃=max(ω2,ω1).

Proof. The bound on condition number follows by Lemmas 3.4.12, 3.4.14 and 3.4.13 being

satisfied, and taking the bound for ρ(E ) as in lemma 3.4.7.

Remark 1. Theorem 3.4.15 and Lemma 3.3.4 allows us to detail the constant CASM ,MG =

ω̃ · γH
h

N2
pd
q . For ω̃

ω̃=max(ω2,ω1) =max(
1

1−δ
,

1
1+δ

) =
1

1−δ
=

1

1− Ĉδk
.

We can bound the number of iterations for the Additive two-level non-overlapping

Schwarz Method with Multigrid method as a coarse level solver. For the modified Addi-

tive two-layer Schwarz method with Multigrid method as a coarse level solver the constant

CASM ,MG is growing exponentially with the growth in the polynomial approximation de-

gree, due to the simple fact that q = 1. This is only counterweighted with ω̃≤ 1.

Theorem 3.4.16. The number of iterations k of the Conjugate Gradients method, with the

Additive two-level non-overlapping Schwarz Method with Multigrid method as a coarse level

solver to achieve an accuracy of ε can be bounded by

k = dln(
2
ε
)
(CASM ,MG

p

(NH + 2) + 1)

2
e, (3.110)

for NH being a maximum number of adjacent partitions that any given subdomain of fine level

partition might posses.

Proof. Considering the Lemma 3.1.1, by analogy with (3.66), number of iterations k can be

bound with (3.33). Choosing the constant corresponding to the method, we get (3.110).
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We can now analyse the complexity and give the time estimations for the modified

additive Schwarz method, with multigrid method as an approximate local solver on a coarse

partition, as a preconditioner for the Conjugate Gradient method as an iterative solver.

3.5 Complexity. Time estimations

The method’s time consumption can be defined, in terms of big-O notation, as:

Omain := OGSA+OCG ,

where OGSA is a time consumption per Galerkin System assembly and OCG is a time con-

sumption per Conjugate-Gradient method based solver. The conventional CG solver com-

plexity can be defined as:

OCG := Ni t · (OMV +OP +OLO +OSP) ,

where OMV is a matrix-vector multiplication operations, parallel or serial, OP is a precon-

ditioner’s contribution, zero if we apply no preconditioner, OLO is a linear operations’ con-

tribution, lastly OSP is a scalar operations’ contribution. The Galerkin system assembly can

be defined as:

OGSA := OMS +OMAP +OGM +OA+ORHS ,

where OMS is a mesh and geometry setup, OMAP is a mapping between geometry informa-

tion and local-elements and their neighbours’ information, OGM is a Global matrix assembly,

OA is a local matrices assembly, which depends on a primal bilinear form, and ORHS is a right

hand side calculation time. The global matrix assembly time would depend on a primal

bilinear form complexity. Local matrices timing depends on how many and which type

of integrals we have in a chosen primal bilinear form, as well as the choice of the basis

functions.

Now, we show the complexity and time estimations for the CG method with ASM as

preconditioner and ASM with MG as a coarse level solver.

Summing over the computational complexity per iteration for CG method with ADLP

basis functions (3.25) with number of operations per iteration for optimised ASM (3.62)

yields number of operations per iteration for Conjugate-Gradient method with additive
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Schwarz method:

T sel,ADLP
CG,ASM ,i t,par :=

9Nmesh · N d
pd

NP
+
(2d + 1)Nmesh · N2d

pd

Np
+ Np · N

1/d
meshN d

pd

+ 3NP + 2+ 5(NP − 1) + (NP − 1) · (Nmesh · N d
pd)

+
(Nmesh · N d

pd)
2

NP NS
+

2Nmesh · N d
pd

NP

+ (
Nmesh

NS
(

h
H
)d)2 +

Nmesh(
h
H )

d · Nmesh · N d
pd

NP

+ (NP − 1)(
Nmesh · N d

pd

NP
) + 2(NP − 1)

Nmesh(
h
H )

d

NP
. (3.111)

And for the C1 basis functions CG algorithm (3.27) with ASM, yields

T sel,C1
CG,ASM ,i t,par :=

9Nmesh · N d
pd

NP
+

Nmesh · N2d
pd + 2d · Nmesh · N d

pd

Np
+ Np · N

1/d
meshN d−1

pd

+ (NP − 1) · (Nmesh · N d
pd + 3) + 5NP

+
(Nmesh · N d

pd)
2

NP NS
+

2Nmesh · N d
pd

NP

+ (
Nmesh

NS
(

h
H
)d)2 +

Nmesh(
h
H )

d · Nmesh · N d
pd

NP

+ (NP − 1)(
Nmesh · N d

pd

NP
) + 2(NP − 1)

Nmesh(
h
H )

d

NP
. (3.112)

Now, by summing expressions (3.25) with number of operations per modified additive

Schwarz method (3.60) with multigrid method as an approximate local solver for coarse

grid (3.92):

T sel,ADLP
CG,ASM ,i t,par :=

9Nmesh · N d
pd

NP
+
(2d + 1)Nmesh · N2d

pd

Np
+ Np · N

1/d
meshN d

pd

+ 3NP + 2+ 5(NP − 1) + (NP − 1) · (Nmesh · N d
pd)

+
(Nmesh · N d

pd)
2

NP NS
+

2Nmesh · N d
pd

NP

+ [(5+ 4 ·mk + 2 · v)NMG

+ (1+ 4 ·mk + 4 · v)
Nmesh(

h
H )

d

1− r
+ N2

MG

�

. (3.113)
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And for the C1 basis functions (3.27) i

T sel,C1
CG,ASM ,MG,i t,par :=

9Nmesh · N d
pd

NP
+

Nmesh · N2d
pd + 2d · Nmesh · N d

pd

Np
+ Np · N

1/d
meshN d−1

pd

+ (NP − 1) · (Nmesh · N d
pd + 3) + 5NP

+
(Nmesh · N d

pd)
2

NP NS
+

2Nmesh · N d
pd

NP

+ [(5+ 4 ·mk + 2 · v)NMG

+ (1+ 4 ·mk + 4 · v)
Nmesh(

h
H )

d

1− r
+ N2

MG

�

. (3.114)

Now, to perform the speed gain analysis, we first formulate the Amdahl’s law [1], for

parallel execution time ratio TNP
of a total execution time TT

TNP
:=$+

1−$
NP

, (3.115)

with $ being a fraction of a serial code, and 1 −$ is a fraction of a parallel code. This

translates into speed up gain SNP

SNP
:=

TT

TN
=

NP

NP$+ 1−$
. (3.116)

Speed up gain is not linear, as it can be seen from the (3.116).

Now, in order to compute the serial or parallel code fraction we can to compare the

operation count for parallel and for serial algorithms. For instance for the CG algorithm

with Additive two-layer non-overlapping Schwarz method, theoretical fraction of the serial

code of the ASM part itself, can be obtained by dividing the operation count for parallel

execution (3.60) by the operation count for serial execution (3.55)

$ASM ,sel,i t :=
T sel

ASM ,i t,par

T sel
ASM ,i t

.

Using the formulas (3.112) and (3.114) we can separate the coarse level solver and com-

pare the operation count for both. We want to determine how much MG is faster than ASM

on the coarse level for VHq. We are comparing the MG not only with non-parallel version of

ASM an a coarse grid, but also the ASM with effect of the parralelization. We are perform-

ing comparison for V-cycle MG method. Both methods are analysed for the approximation

polynomial degree set to be equal to 1 on coarse level. We use the C1-polynomials as a

basis functions for all comparisons, as the optimal choice for the investigated problem.

The comparison performed by considering from (3.53,3.92) the following

Θ :=
T coarse

ASM ,i t,par

TMG
. (3.117)

All computations are made for C1 basis functions as a considered optimal choice, as it will

be demonstrated in the next chapter.
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Table 3.2: Comparison of the Multigrid method with the direct inverse for the
Additive Schwarz Method on a coarse level. h

H =
1
2 . 2D. Numbers are from (3.117).

Number of Processes
h−1 Nmesh Npd DoF 1 2 4 8

4 16 3 256 17.4 8.8 4.5 2.3
4 16 4 400 30.9 15.5 7.9 4.0
4 16 10 1936 192.8 96.5 48.3 24.3
8 64 3 1024 19.0 9.5 4.8 2.5
8 64 4 1600 33.7 16.9 8.5 4.3
8 64 10 7744 210.0 105.0 52.6 26.3

16 256 3 4096 19.4 9.7 4.9 2.5
16 256 4 6400 34.4 17.2 8.7 4.4
16 256 10 30976 214.8 107.4 53.7 26.9
32 1024 3 16384 19.5 9.8 4.9 2.5
32 1024 4 25600 34.6 17.3 8.7 4.4
32 1024 10 123904 216.0 108.0 54.1 27.1
64 4096 3 65536 19.5 9.8 4.9 2.5
64 4096 4 102400 34.7 17.4 8.7 4.4
64 4096 10 495616 216.3 108.2 54.1 27.1

Table 3.3: Comparison of the Multigrid method with the direct inverse for the
Additive Schwarz Method on a coarse level. h

H =
1
4 . 2D. Numbers are from (3.117).

Number of Processes
h−1 Nmesh Npd DoF 1 2 4 8

4 16 3 256 4.3 2.2 1.1 0.6
4 16 4 400 7.7 3.9 2.0 1.0
4 16 10 1936 48.2 24.1 12.1 6.0
8 64 3 1024 4.7 2.4 1.2 0.6
8 64 4 1600 8.4 4.2 2.1 1.1
8 64 10 7744 52.5 26.2 13.1 6.6

16 256 3 4096 4.8 2.4 1.2 0.6
16 256 4 6400 8.6 4.3 2.1 1.1
16 256 10 30976 53.7 26.8 13.4 6.7
32 1024 3 16384 4.9 2.4 1.2 0.6
32 1024 4 25600 8.6 4.3 2.2 1.1
32 1024 10 123904 54.0 27.0 13.5 6.7
64 4096 3 65536 4.9 2.4 1.2 0.6
64 4096 4 102400 8.7 4.3 2.2 1.1
64 4096 10 495616 54.1 27.0 13.5 6.8
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Table 3.4: Comparison of the Multigrid method with the direct inverse for the
Additive Schwarz Method on a coarse level. h

H =
1
2 . 3D. Numbers are from (3.117).

Number of Processes
h−1 Nmesh Npd DoF 1 2 4 8

4 16 3 256 26.0 13.1 6.6 3.3
4 16 4 400 61.7 30.9 15.5 7.8
4 16 10 1936 963.6 481.8 241.0 120.5
8 64 3 1024 28.4 14.2 7.1 3.6
8 64 4 1600 67.2 33.6 16.8 8.4
8 64 10 7744 1049.6 524.8 262.4 131.2

16 256 3 4096 29.0 14.5 7.3 3.6
16 256 4 6400 68.7 34.4 17.2 8.6
16 256 10 30976 1073.5 536.8 268.4 134.2
32 1024 3 16384 29.2 14.6 7.3 3.7
32 1024 4 25600 69.1 34.6 17.3 8.7
32 1024 10 123904 1079.7 539.8 269.9 135.0
64 4096 3 65536 29.2 14.6 7.3 3.7
64 4096 4 102400 69.2 34.6 17.3 8.7
64 4096 10 495616 1081.2 540.6 270.3 135.2

Table 3.5: Comparison of the Multigrid method with the direct inverse for the
Additive Schwarz Method on a coarse level. h

H =
1
4 . 3D. Operation count for parallel

versions NP = 2, 4,8 includes data transfer operation count. Numbers are from
(3.117).

Number of Processes
h−1 Nmesh Npd DoF 1 2 4 8

4 16 3 256 3.3 1.6 0.8 0.4
4 16 4 400 7.7 3.9 1.9 1.0
4 16 10 1936 120.4 60.2 30.1 15.1
8 64 3 1024 3.5 1.8 0.9 0.4
8 64 4 1600 8.4 4.2 2.1 1.1
8 64 10 7744 131.2 65.6 32.8 16.4

16 256 3 4096 3.6 1.8 0.9 0.5
16 256 4 6400 8.6 4.3 2.1 1.1
16 256 10 30976 134.2 67.1 33.5 16.8
32 1024 3 16384 3.6 1.8 0.9 0.5
32 1024 4 25600 8.6 4.3 2.2 1.1
32 1024 10 123904 135.0 67.5 33.7 16.9
64 4096 3 65536 3.6 1.8 0.9 0.5
64 4096 4 102400 8.6 4.3 2.2 1.1
64 4096 10 495616 135.2 67.6 33.8 16.9
64 4096 4 512000 62.31 31.15 15.58 7.79
64 4096 10 5451776 15211.84 7605.92 3802.96 1901.48

Results in the tables (3.2,3.3,3.4,3.5) show, that direct inverse on the coarse level for

Additive Schwarz Method is being slower than the non-parallel Multigrid method. Direct

inverse on the coarse level of Additive Schwarz Method with full effect of the parallel
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computation still might outperform the non-parallel Multigrid version when applied to a

problem with lower polynomial degree or when executed massively parallel. Although

massive parallelization of the aforementioned ASM hypothetically would allow to solve

the problem with higher polynomial degree basis faster than non-parallel MG method, we

should also consider that the data transfer for the MPI implementation would surge sig-

nificantly and might negate the parallel effect. As for the OpenMP massive parallelization

does not require data transfer, and the number of parallel threads in OpenMP is currently

only limited by the integer data type in the software implementation. On the other hand,

at the moment largest massive multi-core and multi-chip devices are limited to hundreds,

hence for the problem with Npd = 10 shown in (3.3), even for the smallest mesh size, it

would require at least NP = 1024 to outperform the presented Multigrid method, which

is currently impossible to reach using only one of the analysed platforms. We can observe

similar trends for all data presented.



Chapter 4

Numerical experiments

In this chapter we are presenting numerical results in detail, provide the validation of the

estimates using problems with known, as well as unknown, smooth solution, present ap-

proximate error estimates, convergence rate for different penalty terms, mesh sizes and

polynomial degrees. First we need to give specification of the hardware to set some com-

mon ground in case of future experiments, or improvements for different types of (non-

) parallel executions.

We are going to demonstrate results for the the model problem introduced in (2.1) for

different spatial dimensions (2,3), right hand sides, initial parameters, boundary condi-

tions. We are going to compare the methods with Anti-Derivatives of Legendre Polynomial

(ADLP) functions (2.20) and C1 (b-spline) functions (2.21), as basis functions.

4.1 Model problems in 2D

We choose the following model problems to solve using Symmetric Interior Penalty and

Local Discontinuous methods. In order to compare the results of the CG method with ASM

as a preconditioner with MG as the coarse level solver, with the ones shown in [2, Section

7], we introduce the following model problem of the Laplacian on the square Ω = [0,1]2

in two spatial dimensions:

−∆u = f in Ω

u = u0 on Γ = ∂Ω.

Problem C. Exact solution given as

u(x , y) = ex y ,

with

u(0, y) = u(x , 0) = e0 = 1,

and right hand side given as:

f (x , y) = ex y(x2 + y2).

102
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Here, the penalty term is chosen α := γh−1, for γ= 10.

For all of the experiments we are using meshes with rectangular elements (squares)

with uniform element radius h, and basis functions with polynomial degree p.

4.2 Model problem in 3D

As it was observed before, polynomial explosion in Discontinuous Galerkin method can

heavily influence the time required by the solver. In order to show how presented solvers

would behave for 3D problem, we choose simple model problem.

Consider, homogenous Dirichlet problem of the Laplacian on the cube Ω = [−1,1]3 in

three spatial dimensions

−∆u = f in Ω

u = 0 on Γ = ∂Ω.

Problem A3. Right hand side

f (x , y, z) = 3π2 sin(πx) sin(πy) sin(πz).

As the penalty term α we choose,

α := γp2h−1,

with sub-problems for γ = 10 and γ = 100. The exact solution of the model problem is

known to be:

u(x , y, z) = sin(πx) sin(πy) sin(πz).

4.3 Parallel solvers.

We are using four solvers in order to solve the matrix form of the model problems. We

designate them as follows:

Solver SA. Conventional Conjugate Gradients method described in chapter 3, section 1.

Solver SB. Conjugate Gradients method with Additive Schwarz Method as a precondi-

tioner, described in chapter 3, section 2.

Solver SC. Conjugate Gradient method with Additive Schwarz Method as a preconditioner

and Multigrid method as a coarse level solver for ASM described in chapter 3, section

4.

4.4 Used hardware and software

All executions were run on two clusters Milet with four hardware machines and Heron with

twelve hardware machines. For experiments’ purity and consistency, all OpenMP executions
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were run on Milet machines, whereas MPI executions were run on Heron cluster, without

OpenMP parallelism. The hardware specifications shown in the table below.

Table 4.1: Cluster machines’ specification. Each machine within cluster has identi-
cal specification.

Description Parameter

Architecture: x86_64
CPU op-modes: 32-bit, 64-bit
CPUs: 24 40
On-line CPUs: 0-23 0-39
Threads per core: 2
Cores per socket: 6 10
Sockets: 2
NUMA nodes: 2
CPU family: 6
Model: 45 79
Vendor name: Intel(R) Xeon(R) CPU
Model name: E5-2640 @ 2.50GHz E5-2640 @ 2.40GHz
CPU revision: 0 v4
Stepping: 7
CPU MHz: 2000 1317.681
BogoMIPS: 5004.97 4800.3
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 15360K 25600K
NUMA node0 CPUs: 0-5,12-17 0-38:even
NUMA node1 CPUs: 6-11,18-23 1-39:odd
Nodes in cluster: 4 12

Milet Heron

GNU Fortran (GCC) version 6.2.0 was used to compile the source code. OpenRTE

version 2.0.1 and Open MPI version 3.1 were used for parallel program execution with

MPI. For OMP parallelism Open MP libraries version 4.0 were used for the compilation of

the program.
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4.5 Validation of the results

Another error estimation arise from the CG method itself. Vector of residuals rk, for itera-

tion k, is being derived from Lanczos algorithm [46, Proposition 6.20], as a direct difference

between the right hand side vector b and a product of a Galerkin matrix A and the k-th

approximation of the solution cu
k (i.e. rk = b − Acu

k). Vector of residuals is conventionally

used as a convergence criterion in most implementations of the CG algorithm, typically [2,

Section 7],[50, Section 11.2], for some ε= 10−12, and Euclidean norm ‖·‖2, the following

is used:

‖rk‖2 ≤ ε‖r0‖2.

This allows to use the value of ‖rk‖2 at the final k-th iteration as an indicator of conver-

gence. In this work we are using the tolerance regulator

ε := 10−12,

and stopping criterion for the solver SA,

‖rk‖2 ≤ ε
‖b− Acu

k‖2
‖b‖2

.

Convergence criterion for the solvers SB,SC with preconditioner B is chosen as

‖zk‖2 ≤ ε
‖Bb−BAcu

k‖2
‖Bb‖2

.

We should note, that the error estimators shown, unless labelled otherwise, both in

L2 and H1
0 norms, obtained by the CG solver SA. We are allowed to use those as the er-

ror estimators for all three solvers, providing the solvers are used for the same problem

with the same parameters, boundary and initial conditions. This is due to the fact that

preconditioned CG solvers, if implemented correctly, demonstrate values which lie in the

ε neighbourhood of the conventional CG. The difference in absolute values amongst the

error estimators of the solvers arise from rounding and cancellations, and for parallel im-

plementation - precision loss during distributed computations.
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Figure 4.1: Error in L2, for problem C. Logarithmic scale on all axes.

In the figures 4.1 we can observe the convergence as both 1/h and p grow. Additionally

one can observe that for the surge in computable elements the error indicator rises, this can

be attributed to the numerical noise due to rounding and cancellations. The same trend is

observed on the figures 4.2.
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Figure 4.2: Error in H1
0 , for problem C. Logarithmic scale on all axes.

4.5.1 Condition number estimates

Condition number of the global system matrix is the best measure for convergence analysis.

It can be used to estimate the total number of iterations required by the iterative solvers

in theorem 3.1.1. Condition number is a relation (3.29) of the smallest λmin and largest
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λmax eigenvalues of the system matrix A:

κ(A) :=
λmax

λmin
. (4.1)

In this subsection we will compute the condition number. We first present required ta-

bles, and then derive the figures for simplicity of the data observations. In the following

tables h and H are the element radii of the fine and coarse grids. Npd is the polynomial

approximation degree. ∆κ - exponential change in condition numbers.
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Figure 4.3: Condition number estimates, for problem C, with CG solver SA. Loga-
rithmic scale on all axes.

In the case of conventional CG solver SA, on figures 4.3 we observe that condition

number with C1 basis functions are slightly higher than with ADLP. It is caused mostly

by the fact that with C1 we have much sparser system matrix and need more iterations to

solve the problem. Iteration numbers are shown on the following figures.
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Figure 4.4: Iteration number, for problem C, with CG solver SA. Logarithmic scale
on all axes.
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Figure 4.5: Condition number estimates, for problem C, with solver SB. Logarith-
mic scale on all axes.

Here, on the figures 4.5 we observe that the condition numbers of the preconditioned

system are very similar to each other. Ideally the condition numbers for the preconditioned

system matrix should be exactly the same.
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Figure 4.6: Iteration number, for problem C, with solver SB. Logarithmic scale on
all axes.
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Figure 4.7: Condition number estimates, for problem C, with solver SC. Logarith-
mic scale on all axes.
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Figure 4.8: Iteration number, for problem C, with solver SC. Logarithmic scale on
all axes.

Figures 4.5 and 4.7 show that the solvers SB and SC are spectrally equivalent, as the-

orems 3.4.10 and 3.4.15 show.
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4.6 Choice of the basis function e�ect

Choice of the basis function can give considerable gain in terms of the computation speed.

It can be demonstrated by performing the following analysis. Taking the CG algorithm’s

computational complexity per iteration applied for ADLP based system TADLP
CG,I T,par (3.25)

and the one for C1 T C1
CG,I T,par

Θ :=
TADLP

CG,I T,par

T C1
CG,I T,par

, (4.2)

which we will call "efficiency gain". The value of the efficiency gain Θ represents the ratio

of the times between that of using ADLP basis functions and with using C1 basis functions.

It shows how much faster the conventional parallel CG solver SA performed an iteration

with C1 basis function against itself with ADLP basis function.

The results of the formula (4.2) are shown on the figure 4.9 .
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Figure 4.9: Efficiency gain for problem C with solver SA. Comparison between
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MPI execution.

In figure 4.9 where comparison is done between the time required by the CG solver SA

for the system which uses ADLP basis functions and C1 basis functions. Comparison shown

is for the polynomial degrees p = 3, 4,10, for 1, 2,4, and 8 threads. It can be observed

that, the efficency gain Θ is changing the order with the polynomial approximation degree.

Additionally, we can conclude, that there’s a slight growth in Θ with higher degrees of

freedom.

Additionally, on the same figure, we observe that reduction for eight processes is less

than the one for four processes. This is observed for all parallel executions. This is due to

the fact, that solver with ADLP basis functions also improves for parallel execution (requires

less time per iteration for more parallel processes). This in turn slightly decreases the effect
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from the use of C1 basis functions.

4.7 Solver timing comparison

As it was argued in section Multigrid method as a coarse level solver, 3.4, solver SC,

which uses constant polynomial degree q = 1 would require less operations (3.92) to solve

the coarse level problem. This can be observed for both ADLP basis functions and C1 basis

functions in figures 4.10 and 4.11 correspondingly.
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Figure 4.10: Efficiency gain for the solution of the problem C by the solvers SC and
SB. Logarithmic scales on the Degree of Freedom axis. MPI execution. ADLP basis
functions.
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Figure 4.11: Efficiency gain for the solution of the problem C by the solvers SC and
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In figures 4.10 and 4.11 we observe the ratio of the times between that of using the par-

allel solver with Additive two-layer non-overlapping Schwarz method as a preconditioner

(solver SB) and that of using Multigrid method as a coarse level solver for the aforemen-

tioned preconditioner (solver SC).

4.8 E�ect of parallelization

In this section we are going to analyse the effect of the parallel implementation of the

problems.

The results shown below demonstrate the speed up and general gain per number of

threads. Although both solver use parallel data structure distributed amongst processes

for the execution, solver SC demonstrates higher gain in time reduction. Results for the

time required by the preconditioning show stability. It can be observed, that, generally,

solver SC tends to the exact parallelism on the fine grid part for higher approximation

polynomial degrees and bigger mesh, e.g. speed up scales with degree of freedom of the

problem, for higher degrees of freedom.

4.8.1 Numerical results in 2d

We compare the non-parallel execution time with the results obtained with the parallel

version. It is clearly seen that the C1 polynomials yield mostly exact parallelization for
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the higher approximation polynomial degree. Reducing the size of the coarse grid level

reduces the execution time.

Figures 4.12-4.14 demonstrate the schematic comparison of the speed up gained for

parallel executions for different solvers, such as conventional CG SA and preconditioned

ones with ASM SB and ASM+MG SC. It can be observed, that the speed up for the CG

solver with ASM SB does not reach full parallelization for higher polynomial degrees. It

can be explained by the fact that preconditioned part of the solver is also not embarrassingly

parallel, as it contains the coarse level part which grows with growth of the problem size.

This can be seen on figure 4.15.

At the same time, on figure 4.16 we observe that for higher degree of freedom total

preconditioning time speed up for ASM+MG solver SC becomes embarrassingly parallel.

Figures 4.17 demonstrate speed up on the fine grid of the additive two layer non-

overlapping Schwarz method. This is true for both preconditioners SB and SC as they have

the same fine grid solver.

On figures 4.18-4.26 we can clearly observe, that full speed up is achievable for higher

polynomial degrees. Parallel version is slower when the degree of freedom is not so high.
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Figure 4.12: CG solver SA speed up with increase in number of threads. Logarith-
mic scale on Degree of Freedom axis. MPI execution.
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Figure 4.13: CG solver with ASM SB speed up with increase in number of threads.
Logarithmic scale on Degree of Freedom axis. MPI execution.
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Figure 4.14: CG solver with ASM+MG SC speed up with increase in number of
threads. Logarithmic scale on Degree of Freedom axis. MPI execution.
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Figure 4.15: Speed up in total preconditioning time with increase in number of
threads for Additive Schwarz Method for solver SB . Logarithmic scale on Degree
of Freedom axis. MPI execution.
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Figure 4.16: Speed up in total preconditioning time with increase in number of
threads for ASM with Multigrid Method as a coarse level solver SC . Logarithmic
scale on Degree of Freedom axis. MPI execution.



CHAPTER 4. NUMERICAL EXPERIMENTS 126

 1

 2

 3

 4

 5

 6

 7

 8

 9

 100  1000  10000  100000  1x10
6

S
p

e
e

d
 u

p

Degree of freedom

p=3,#2
p=3,#4
p=3,#8
p=4,#2
p=4,#4
p=4,#8

p=10,#2
p=10,#4
p=10,#8

ADLP basis functions.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 100  1000  10000  100000  1x10
6

S
p

e
e

d
 u

p

Degree of freedom

p=3,#2
p=3,#4
p=3,#8
p=4,#2
p=4,#4
p=4,#8

p=10,#2
p=10,#4
p=10,#8

C1 basis functions.

Figure 4.17: CG solver with ASM SB and ASM+MG SC speed up in fine grid prob-
lem with increase in number of threads. Logarithmic scale on Degree of Freedom
axis. MPI execution.
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Figure 4.18: CG solver SA speed up vs. Number of available threads. Fixed poly-
nomial degree Npd = 3. MPI execution.
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Figure 4.19: CG solver SA speed up vs. Number of available threads. Fixed poly-
nomial degree Npd = 4. MPI execution.
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Figure 4.20: CG solver SA speed up vs. Number of available threads. Fixed poly-
nomial degree Npd = 10. MPI execution.
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Figure 4.21: CG solver SB speed up vs. Number of available threads. Fixed poly-
nomial degree Npd = 3. MPI execution.
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Figure 4.22: CG solver SB speed up vs. Number of available threads. Fixed poly-
nomial degree Npd = 4. MPI execution.
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Figure 4.23: CG solver SB speed up vs. Number of available threads. Fixed poly-
nomial degree Npd = 10. MPI execution.
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Figure 4.24: CG solver SC speed up vs. Number of available threads. Fixed poly-
nomial degree Npd = 3. MPI execution.



CHAPTER 4. NUMERICAL EXPERIMENTS 134

 0

 1

 2

 3

 4

 5

 6

 7

 2  3  4  5  6  7  8

S
p

e
e

d
 u

p

Number of Processes

h=1/4
h=1/8

h=1/16
h=1/32
h=1/64

ADLP basis functions.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2  3  4  5  6  7  8

S
p

e
e

d
 u

p

Number of Processes

h=1/4
h=1/8

h=1/16
h=1/32
h=1/64

C1 basis functions.

Figure 4.25: CG solver SC speed up vs. Number of available threads. Fixed poly-
nomial degree Npd = 4. MPI execution.
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Figure 4.26: CG solver SC speed up vs. Number of available threads. Fixed poly-
nomial degree Npd = 3. MPI execution.

4.8.2 Numerical results in 3d

Results for the three-dimensional problem A3 show that coarse level solver heavily impacts

the execution time. This can be seen by observing the speed up in the figures 4.33,4.34

and 4.35 which show the speed up gained by the solver SB. And on figures 4.36,4.37 and

4.38 which show the results for solver SC.
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On figures 4.27-4.29 we observe the same effect on the speed up for the higher poly-

nomial approximation degrees. It is trivial that there is not much gain in parallelization for

problems with smaller degree of freedom.
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Figure 4.27: CG solver SA speed up with increase in number of threads. Logarith-
mic scale on Degree of Freedom axis. MPI execution. Problem A3.
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Figure 4.28: CG solver with ASM SB speed up with increase in number of threads.
Logarithmic scale on Degree of Freedom axis. MPI execution. Problem A3.
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Figure 4.29: CG solver with ASM+MG SC speed up with increase in number of
threads. Logarithmic scale on Degree of Freedom axis. MPI execution. Problem
A3.
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Figure 4.30: CG solver SA speed up vs. Number of available threads. Fixed poly-
nomial degree Npd = 3. MPI execution.
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Figure 4.31: CG solver SA speed up vs. Number of available threads. Fixed poly-
nomial degree Npd = 4. MPI execution.
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Figure 4.32: CG solver SA speed up vs. Number of available threads. Fixed poly-
nomial degree Npd = 10. MPI execution.
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Figure 4.33: CG solver SB speed up vs. Number of available threads. Fixed poly-
nomial degree Npd = 3. MPI execution.
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Figure 4.34: CG solver SB speed up vs. Number of available threads. Fixed poly-
nomial degree Npd = 4. MPI execution.
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Figure 4.35: CG solver SB speed up vs. Number of available threads. Fixed poly-
nomial degree Npd = 10. MPI execution.
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Figure 4.36: CG solver SC speed up vs. Number of available threads. Fixed poly-
nomial degree Npd = 3. MPI execution.



CHAPTER 4. NUMERICAL EXPERIMENTS 146

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 2  3  4  5  6  7  8

S
p

e
e

d
 u

p

Number of Processes

h=1/4
h=1/8

h=1/16
h=1/32
h=1/64

ADLP basis functions.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2  3  4  5  6  7  8

S
p

e
e

d
 u

p

Number of Processes

h=1/4
h=1/8

h=1/16
h=1/32
h=1/64

C1 basis functions.

Figure 4.37: CG solver SC speed up vs. Number of available threads. Fixed poly-
nomial degree Npd = 4. MPI execution.
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Figure 4.38: CG solver SC speed up vs. Number of available threads. Fixed poly-
nomial degree Npd = 10. MPI execution.
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Conclusion

5.1 Analyses result

In this research, we have shown, that it is possible to reduce the complexity of the Dis-

continuous Galerkin method for higher approximation polynomial order with the proper

choice of basis function.

In Section 2.2 we presented the C1-basis function of two kinds, and showed their

properties and their derivative’s properties, so that later in Section 2.3 we were able to

demonstrate how those properties impact the matrix computation - it’s structure, order of

sparsity, and total number of non-zero interacting elements. This in turn allowed us to

understand the structure of the system matrices, e.g. the structure of the system matrices

in Figures 3.1,3.2 and 3.3, which allowed us to develop proper data-storage format χ for

matrix-based and for element-neighbours-based parallel distributions. Consequently, we

were then able to first compute and then to optimize the parallel matrix-vector multiplica-

tion for the choice of the basis function.

Permissibility of the choice of the C1 polynomials as basis functions is demonstrated

in Section 4.5 where we present the error, convergence and condition number analysis.

We have observed, that the error estimates are of the same order, which implies equal

convergence rates. The difference in the condition number estimates is of negligible order.

Usage of C1 basis functions shows, that the conventional parallel CG method can out-

perform itself for different choices of basis functions. This was noticed by comparing the

estimates of computational complexity of parallel version for a system with the Galerkin

matrix obtained by use of Antiderivative of Legendre polynomials (3.25), against the same

estimates for the C1-polynomials (3.27). This is also what we have observed from numer-

ical experimentation in Section 4.6 where we performed a specific comparison between

the time required for (i) ADLP and (ii) C1 basis functions based Galerkin systems to be

solved by the non-preconditioned parallel and non-parallel CG to solve the tasks for a given

number of degrees of freedom and parallel processes.

Additional gain in efficiency from the C1-polynomials can be seen for MPI implementa-

tion, due to the fact, that for the sparser matrices, and proper distribution, there is less data

to transfer amongst the processes. This was studied in subsection 3.1.2 with theoretical

estimates presented in Table 3.1. The effect of the C1-basis functions can be seen clearly
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by comparing speed up for 3d problem on figures 4.30,4.31,4.32 between the results for

ADLP and C1, where the latter mostly reached the exact parallelization.

At the same time we also demonstrated the possibility to accelerate the convergence

for the Conjugate Gradient method itself by applying a preconditioner. In this work we

concentrated on the Additive two-level non-overlapping Schwarz method first presented in

[4]. We observed that due to the properties of the chosen C1 basis functions, it is possible

to construct the so-called "embarrassingly parallel" (with parallel fraction larger than 0.9)

implementation for the fine level decomposition with exact local solvers. This can be seen

on figures 4.17, which demonstrate that fine grid problem reaches the Amdahl’s limit with

the rise in degree of freedom of the problem.

From the analysis of the ASM computational complexity (3.53) we have learned, that

the coarse level component will be increasing it’s impact on the overall preconditioner time

with increase in the degree of freedom. Due to the partial parallelization of the coarse grid

solver, we observe not much improvement there. To avoid the impact of the serial compo-

nent implementation we showed that we can restrict ourselves with a low approximation

polynomial degree, namely q = 1, without losing the convergence. This choice of approx-

imation polynomial degree allows us to deal with much smaller problems on the coarse

level in terms of degrees of freedom.

Although the method greatly reduces the time of the computation, we observe that for

lower approximation polynomial degrees Npd = 3, 4, the speed up does not scale prop-

erly with increase in the number of processes. We explain it with cache effect - when the

problem blocks are small enough their size can coincide with the CPU’s cache memory

size, which allows the problem to be solved faster, than for the parallel execution which is

heavily affected by data transfer, and required internal initialization of the memory shared

protocol on network level, which has lower priority. However, this effect is impacting the

system with C1 basis functions less, due to the fact that data transfer requires less time for

a sparser system.

Another method we have analysed, in order to reduce impact of the serial component

of the ASM method given by exact local solvers on the coarse grid, is an Additive two-level

non-overlapping Schwarz method with Multigrid method as a coarse level local solver.

The method presented in section 3.3 is derived from the Multigrid method for hp-

Discontinuous Galerkin [3], and modified to our need. We have shown in Section 3.3

that the Multigrid method can be used as a suitable solver. Choosing a low approximation

polynomial degree q = 1 for the Multigrid method as an approximate local coarse level

solver renders coarse grid problem to require less operations to solve. Choosing the number

of levels in a way such that the lowest level is solved on the smallest possible mesh, allows

to reduce the computational complexity down to the order of the mesh size as shown in

Subsection 3.4.3. The main outcome of the analyses of the Multigrid method for the hp-

discontinuous Galerkin is that it is much cheaper than the exact inverse. This can be seen

on figures 4.10 and 4.11

In addition, to make the computation even cheaper, we have used the primal bilinear

form on the family of spaces inherited from the finite-dimensional space which is defined

for the coarse grid discretization (3.79) to compute the local matrices, increasing the set
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up time, but allowing the method to be spectrally equivalent to the exact inverse.

We have derived the convergence for the modified Additive two-level non-overlapping

Schwarz Method with Multigrid method as a coarse level solver in Subsection 3.4.3, and

found spectral equivalence with the Additive two-level non-overlapping Schwarz method.

We observe this in numerical results in Figures 4.5,4.7, which also allow us to state that

both methods have equal quasi-uniform growth rate in approximation polynomial degree.

This is also true for the iteration number, as both methods have similar iteration bounds,

presented in Theorems 3.4.10 and (3.110), and observed in Figures 4.6 and 4.6.

For the analysed methods, we have observed an expected reduction in number of iter-

ations, and expected rate of growth of the condition number. We showed that some of the

solver routines can be fully parallelized with the suitable data structures.

All of the aforementioned allows us to conclude that the hp-discontinuous Multigrid

method with approximation polynomial degree one, allows us to use it as an efficient coarse

level solver of the Additive two-level non-overlapping Schwarz method, especially for prob-

lems with high degree of freedom by approximation polynomial degree or bigger mesh. We

also conclude that the developed data structure χ is effective for the parallel implementa-

tion.

5.2 Further research

We would suggest considering more research for the Multigrid method. As one of the

interesting scopes for the research from the position of this work is a development of an

adaptive scheme for the developed modification of the Additive two-level non-overlapping

Schwarz method with Multigrid method as an approximate local solver on a coarse level.

This might allow some additional optimization of the method as a coarse level solver, in

terms of the execution time and possible parallelization, which can be seen as another

possible research topic.

Parallelization of Multigrid method for hp-discontinuous Galerkin can also be per-

formed using similar data structure χ, due to the fact, that the method itself, from an

algebraic point of view has a matrix inverse and matrix-vector multiplication as the most

expensive operations. Analysis of the basic structure of those matrices might provide a

possible solution for the parallelization.

Additionally, interesting topic for the possible analysis is the behaviour of the Multi-

grid method for different parameters such as V-cycle, pre- and post-smoothers number

etc. It might be considered as a pareconditioner for the Generalized Minimal Residual and

Biconjugate Gradient iterative methods for non-symmetric Discontinuous Galerkin Finite

elements methods, and might improve numerical stability of the aforementioned.

The same type of research for the non-symmetric dG FEMs can be suggested for the

Schwarz Method as a preconditioner for the mentioned iterative methods. The research

might also include an analysis of the effect, which suggested C1 basis functions might have

onto the performance and stability of the methods.

Last, we should suggest a thorough analysis for the exact coarse level solver which

might allow parallel versions for bigger problems.
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