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Abstract

We study the problem of finding the next-to-shortest paths in a graph.
A next-to-shortest (u, v)-path is a shortest (u, v)-path amongst (u, v)-
paths with length strictly greater than the length of the shortest (u, v)-
path. In constrast to the situation in directed graphs, where the problem
has been shown to be NP-hard, providing edges of length zero are allowed,
we prove the somewhat surprising result that there is a polynomial time
algorithm for the undirected version of the problem.
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1 Introduction

Solutions to the problem of finding the shortest path between two vertices (or
all pairs of vertices) in both undirected and directed graphs are well-known [1].
Finding the K shortest paths between two vertices has also been well-studied,
in for instance [2, 3]. Problems involving finding a path between two vertices of
length strictly greater than the length of the shortest such path have received
much less attention due to the fact that in directed graphs, when we allow edges
of length zero, the problem has been shown to be NP-hard [4]. Here we consider
the problem of finding next-to-shortest paths in an undirected graph. We give
a polynomial time algorithm for the undirected version of the problem when
all edge lengths are strictly positive, thus answering a problem raised in [4] and
suggesting that the undirected version of the problem is significantly easier than
the directed version.
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Our graph theoretical notation is standard and we restrict our graphs to
being simple, that is, having no loops or multiple edges. For the most part, we
will deal with weighted graphs consisting of a graph G = (V,E) and a function
l : E → Q+ giving the length of each edge. Note that by Q+ we mean the set
{x : x ∈ Q, x > 0} so we do not allow edges with length zero. Given a set, A,
of edges we define l(A) in the obvious way, that is

l(A) =
∑
e∈A

l(e).

We use n(G) and m(G) to denote, respectively, the number of vertices and edges
of G. Whenever the context is clear we just use n and m. Since we need to
make frequent use of walks and paths, we give their standard definition. A walk
is an ordered list of vertices and edges v0, e1, v1, e2, v2, . . . , ek, vk such that for
1 ≤ i ≤ k, the endpoints of ei are vi−1 and vi. Sometimes we will deal with
directed graphs in which case we require ei = (vi−1, vi). Depending on the
context we may just specify a walk by giving either an ordered list of vertices
or of edges. A path is a walk for which the vertices v0, . . . , vk are distinct. A
(u, v)-path is a path for which v0 = u and vk = v. We define a (u, v)-walk in
similar way.

Given a weighted graph, G, the next-to-shortest (u, v)-path, is the shortest
(u, v)-path, amongst those (u, v)-paths having length strictly greater than the
length of the shortest (u, v)-path. If no such path exists, we say that the next-
to-shortest (u, v)-path has length ∞.

2 Main Result

This section is devoted to a proof of our main result.

Theorem 1 There is a polynomial time algorithm which inputs an undirected
graph G = (V,E), a length function l : E → Q+ and specified vertices u and v,
and finds a next-to-shortest (u, v)-path.

The main idea of the proof is to consider the set of edges that occur in a
(u, v)-path and the direction in which they are traversed. Given a weighted
graph G = (V,E) and specified vertices u and v, we define the shortest path
digraph DG(u, v) to be the digraph D = (V,A), where the arc (x, y) is in A if
there is a shortest length (u, v)-path of the form u, v1, . . . , vi, x, y, vi+3, . . . , vm, v.

We begin with a simple, preliminary and probably well-known lemma.

Lemma 2 For all w, any (u, w)-walk in DG(u, v) is a shortest (u, w)-path in
G.

Proof: Suppose not and let v0 = u, v1, . . . , vk = w be a walk in DG(u, v) with
the fewest number of arcs amongst those walks that are not shortest paths.
Denote this walk by W . Since (vk−1, vk) is an arc of DG(u, v), there is a shortest
(u, v)-path P passing through (vk−1, vk). Because W is a walk with the fewest
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arcs that is not a shortest path, deleting the last arc from W gives a shortest
(u, vk−1)-path W ′. So if we replace the portion of P between u and vk−1 by
W ′, we obtain a (u, v)-walk that is no longer than P . Since all edge lengths are
strictly positive, this must be a shortest (u, v)-path and the portion of this path
between u and vk is exactly W . Hence W must be a shortest (u, w) path.

�

We say that an arc (x, y) is a forward arc (of DG(u, v)) if (x, y) ∈ DG(u, v)
and a backward arc if (y, x) ∈ DG(u, v). Lemma 2 implies that an arc cannot
be both forward and backward.

The next lemma is a simple consequence of minimum cost flow techniques
and is presumably well-known but we give a sketch proof here since it is a key
part of the main theorem.

Lemma 3 Given a weighted, undirected graph, G, and specified vertices, u, v
and w, there is a polynomial time algorithm to find the shortest length (u, v)-path
passing through w.

Proof: Form a network N from G by replacing each edge by two arcs directed
in opposite directions and adding a new vertex t together with the arcs (u, t)
and (v, t). Assign a capacity of ∞ to all the arcs and to the vertices t and w,
and one to every other vertex. Give the arcs joined to t zero cost and give each
other arc cost equal to the length in G. Finding the shortest path in G from u
to v passing through w corresponds to finding a minimum cost flow of volume
two from w to t in N . This can be done with two iterations of the augmentation
step of the Ford-Fulkerson maximum flow algorithm or equivalently two shortest
path computations and hence gives an O(n2) algorithm, [1].

�

We now give the proof of the main theorem.
Proof of Theorem: We first verify that DG(u, v) can be constructed in poly-
nomial time. Let uw denote the length of the shortest (u, w)-path. Using
Dijkstra’s algorithm we can compute uw for each w in time O(n2). The arc
(x, y) is present in DG(u, v) if and only if

uy = ux + l({x, y}).

Thus DG(u, v) can be constructed in time O(n2).
Lemma 2 shows that any walk made up of forward arcs of DG(u, v) is a

shortest (u, v)-path. We first find the shortest path containing an arc that is
neither forward or backward. The shortest (u, v)-path passing through {x, y}
(in either direction) can be found by adding vertex w to subdivide {x, y} and
applying Lemma 3. The shortest such path (if it exists) can therefore be found
by applying Lemma 3, O(m) times.

The other type of (u, v)-path that needs to be considered is one containing
only forward and backward arcs but including at least one backward arc. Such a
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path must contain a forward arc (x, y) followed by a backward arc (y, z). Given
forward arcs (x, y) and (z, y), form G′ from G by deleting all edges adjacent to
y except {x, y} and {y, z}. Applying Lemma 3 to G′ with w = y will find the
shortest path containing one of (x, y) and (z, y) as a forward arc and the other
as a backward arc. Using the above procedure for each pair of forward arcs of
the form (x, y) and (z, y) will give the shortest path of this type and require
O(nm) applications of Lemma 3.

The next-to-shortest (u, v)-path is the shortest path found in either of the
two steps of the algorithm and can be found using O(nm) shortest path com-
putations, that is in O(n3m) steps overall.

�

3 Conclusion

We have shown that next-to-shortest paths can be found in undirected graphs
with strictly positive edge lengths in time O(n3m). The complexity status of
the next-to-shortest paths problem in directed graphs when the edge lengths
are required to be strictly positive is open, although we suspect that it is NP-
complete. Similarly we do not know the complexity of the next-to-shortest paths
problem in undirected graphs when edge lengths of zero are allowed.

A further interesting open question is to consider the structure of next-to-
shortest paths and whether any analogue of the Bellman optimality equations
hold. The position seems far from obvious.
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