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Abstract—Meaningful facial parts can convey key cues for
both facial action unit detection and expression prediction.
Textured 3D face scan can provide both detailed 3D geometric
shape and 2D texture appearance cues of the face which are
beneficial for Facial Expression Recognition (FER). However,
accurate facial parts extraction as well as their fusion are
challenging tasks. In this paper, a novel system for 3D FER
is designed based on accurate facial parts extraction and deep
feature fusion of facial parts. Experiments are conducted on the
BU-3DFE database, demonstrating the effectiveness of combing
different facial parts, texture and depth cues and reporting the
state-of-the-art results in comparison with all existing methods
under the same setting.
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I. INTRODUCTION

Facial expressions are important tools used to communi-

cate the emotional reaction and/or state of a person during

their daily activities. There are many expressions a human

can display, and behind each emotion there are a group

of components. These are the person’s intentions, action

tendencies, appraisals, other cognitions, neuromuscular and

physiological changes, expressive behavior, and subjective

feelings [1]. These components cause the movement of the

facial muscles which in return creates a visual expression

for others to see the emotion.
3D imaging instruments provide the ability to capture all

the muscle movement in an accurate way, regardless of the

lighting and pose variations. From these high resolution 3D

facial scans, the muscle activities are visually obvious, which

is beneficial for facial expression recognition. However,

there are two main challenges produced by it: 1) Normal 3D

data is a point cloud in the 3D space. Automatic location

detection of the frontal face and the registration with its

associated 2D face image is very complex and difficult. 2)

For facial expression recognition, different muscle activa-

tions have different impact on the shape of the face. The

Facial Action Coding System (FACS) [2] has defined the

relationship between action units and the emotional state.

However, the accuracy of current action unit detection is not

high. The accuracy of action unit based emotion detection

system is not high either.

In this paper, we focus on the task of recognizing the six

basic facial expressions by using both 2D appearance and 3D

geometric shape cues. Moreover, the importance of different

facial parts will be fully explored. In particular, a novel

system for 3D FER is designed based on accurate facial

parts extraction techniques and deep CNN feature fusion

schemes related to different facial parts. To accurately corp

meaningful facial parts from both facial texture maps and

depth maps, we propose a novel 4-stage procedures consists

of facial landmark localization, facial rotation correction,

facial resizing, facial parts bounding box extraction and post-

processing steps. To deeply explore the importance of dif-

ferent facial parts for FER, we propose a novel deep feature

fusion sub-net which can efficiently learn the importance

weights of different CNN features associated with different

facial parts. The proposed system is evaluated on the public

dataset and achieving the best results among other methods

in the same setting. The main contributions of this paper are

the following:

• A novel accurate facial parts localization method is de-

veloped based on the 2D face alignment techniques and

the one-to-one dense correspondence prior information

between facial texture maps and depth maps.

• A novel deep fusion CNN subnet is designed to learn

the combination relations and importance weights of

different facial parts represented by the pre-trained deep

CNN features.

• State-of-the-art performance (i.e. 88.54% average FER

rate) is achieved in comparison with all existing meth-

ods on the same dataset (i.e. BU-3DFE) and under the

same protocol.

The rest of the paper is organized as follow. Related works

are reviewed in section 2, and the details of the proposed

approach is described in section 3. In Section 4, we report

the experimental results and section 5 concludes the paper.
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II. RELATED WORKS

3D FER has become an extensive field of research with

many early attempts in [3], [4], [5], [6], [7] and most recent

works in [8], [9], [10] that trend to use both 2D and 3D

multi-modal data to further improve the accuracy. Huynh

et al. [11] proposed to use deep CNNs for classifying the

six basic facial expressions. Two CNNs are trained on the

BU-3DFE database based on the 2D facial appearance and

the the 3D face shape, respectively. Li et al. [8] thoroughly

investigates FER using both 2D and 3D modality, starting

with hand-crafted descriptors to capture local shape and local

texture information. This work was followed by introducing

deep learning techniques [9] in which they achieved state-

of-the-art performances on the BU-3DFE database. Recently,

deep learning is becoming an emerging solution, of which

different forms are utilized for certain tasks to aid 2D FER.

A popular idea that has been utilized for emotion detection

and recognition is the fast representation of the Deep Belief

Networks (DBNs). This was developed by Hinton et al. [12]

using a greedy algorithm to quickly learn a generative model

one layer at a time. Applications for DBNs include trying

learn and understand the facial expression behaviors in [13],

[14]. However, which regions of the face can provide better

discrimination towards facial expressions has not been fully

explored in these systems.

Lv et al. [13] proposed a framework that has multiple

learning stages to try and understand the face and parts

of the face. They use a DBN as an hierarchical detector

that starts of by looking for the face, which is achieved by

using a sliding window technique to capture HOG features.

The detected face then has patches taken from it, and

with this, they use the same approach to detect parts of

the face. This continues until smaller individual parts are

detected. Zhong et al. [15] splits the face into small non-

overlapping patches from which they try to categorize groups

of patches. These categories are based on the relation be-

tween the different expressions, which include the common

facial patches, specific facial patches, and the rest. They

found that only having the highly discriminative patches

improves performance, and that having too many patches

causes a decrease with volatility in performance. Essentially,

including too many patches introduces noise that makes the

task more challenging. Most recent works by Li et al. [16]

propose to use deep CNNs to learn regions of interest across

the faces. These regions are detected using landmarks paired

with an enhancing subnet, and the active regions are cropped

using a CNN trained for cropping. These regions are then

trained to detect for facial action unit activations in the form

of muscle movements.

The mentioned works propose ideas that look deeper

into the facial structure, to analyze patches instead for

better discrimination of expressions. The mentioned systems

have interesting ideas that can be exploited and improved

using recent and advanced face detection, alignment and

localization technologies [17], [18], [19], [20]. They can

be utilized to provide a consistent and less noisy solution.

Facial parts such as the Mouth, Eyes, Nose and Eyebrows

can be accurately captured and extracted. They can provide

the samples to a framework that can analyze what facial

parts work better and for which expression.

Having small patches as proposed by Zhong et al. [15]

lacks the ability to automatically localize and determine

what part is in effect for an expression. It can also have

trouble distinguishing patches when applied on faces of

different gender and ethnicity. Having a learned detector

for the face and parts as proposed by Lv et al. [13]

cannot guarantee the robustness as much as face detection,

alignment and localization techniques do, especially when

there are peculiar samples provided. Both proposals used the

JAFFE and CK+ database, which are not very diverse when

it comes to their subjects ethnicities. In their experiments,

they adopt a cross-validation approach, in which they do not

ensure a subject independent protocol. This can result in a

high performance which can be inconsistent when a new

subject is ever tested.

This paper looks to create a robust face alignment proce-

dure to accurately crop out meaningful 2D and 3D facial

parts for facial expression recognition. Meanwhile, these

cropped facial parts are described by a set of deep CNNs

features and their importance weights are fully explored

by learning a deep feature fusion CNN subnet. Finally,

the discriminative deep fused features of multiple facial

parts is paired with a multi-class SVM for facial expression

prediction.

III. PROPOSED APPROACH

A. Framework Overview

The proposed framework for FER using both 2D and

3D facial parts is illustrated in Fig. 1. Given textured 3D

face scans, we first generate well-aligned texture and depth

images as in [8]. Then, 2D facial landmarks are detected

and used to correct facial pose and extract 4 key facial parts

(i.e. Eyebrows, Eyes, Mouth and Nose). Once facial parts are

extracted from the texture and depth images, they are resized

and propagated individually through a pre-trained CNN and

the resulting feature at layer FC7 is extracted as the deep

representation of the facial part. In this case, a pre-trained

network is preferred to a newly trained network due to the

limited 3D facial data samples. The extracted deep features

for each facial part are fused together through a smaller deep

fusion network, that focuses on learning and interconnecting

the contributions of each facial parts for FER. Once the

parameters of the deep fusion network are learned, fused

and fine-tuned deep features are extracted and SVM is used

for the final expression classification.
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Figure 1. Framework designed to learn facial expressions. Starting with (a), facial parts are generated for both depth and texture images and trained
separately. (b) Deep features are extracted from each facial part using the pre-trained VGG-NET-M [21] CNN. The features are taken after the Conv-5
layer, which is pooled to a size of 6 × 6 × 512 per facial part. The feature maps for each facial part are fused together producing a higher dimensional
feature map of 6 × 6 × 2048. (c) is the fine-tuning process that is applied directly on the feature maps that learns the relation between the facial parts,
by interconnecting them through a series of fully connected layers. Stochastic Gradient Descent is used for back-propagation, with the SoftMax layer as
the loss function. Once the fine-tuning layers are trained for the depth and texture images separately, the FC7 layer features (2 × 2048 dimensions) are
extracted for each sample in (d). They are reduced in dimensionality (e) using PCA, keeping 99% variance. Finally in (f), a SVM model with a polynomial
kernel is adopted to learn and predict the facial expressions.

B. Facial Parts Extraction

To extract the facial parts from a sample, an approach us-

ing facial localizing and correction techniques is undergone.

This is to obtain accurate and consistent facial parts. This

process is broken down into 4 stages: 1). Obtain the 2D

texture and depth maps from the textured 3D facial scans,

which is followed by using facial landmark localization on

to the 2D textured faces to generate 49 facial landmarks;

2). Correct the rotation of each face to be fixed at a 0
degree angle; 3). Resize all the faces within the image spatial

dimensions to provide consistency across all the samples;

4). Create bounding boxes for each facial part using the

normalized facial landmarks and the normalized texture and

depth images of the face. These are cropped out and resized

to have spatial dimensions of 64 × 64 pixels. Since facial

texture image and depth image have been well-aligned, all

the 4 stages conducted on the texture image can also be

applied to the depth image.

1) Facial Landmark localization: 2D texture face images

are created by projecting each textured 3D facial scan into a

2D regular grid domain using the mapping and interpolation

techniques in [8]. Following this, 49 2D facial landmarks are

generated on the 2D texture face images using a protocol

called Incremental Parallel Cascade of Linear Regressors

(iPar-CLR [18]). These facial landmarks are able to be

transferred to the 3D textured face space as the one-to-

one correspondence.The facial landmarks for the 3D face

space also have a one-to-one correspondence to the 3D

geometry of the face, making the alignment between the

two the same. The 2D depth maps as well as the transferred

landmarks are captured by projecting the landmark aligned

textured 3D face scans into the same 2D regular grid domain

as 2D texture face images. The iPar-CLR technique used

for the landmark generation is based on the Supervised

Descent Method [22], [23], which has been updated for

parallelization and allow incremental updates when given

new samples. The outcome from this technique produces

a set of facial landmarks P = {P1, P2, ..., P49} for each

facial image as shown in Fig. 2, where each point can be

represented as an x and y coordinate Pi = xi, yi.
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Figure 2. A sample face with the facial pre-processing applied. Facial
landmarks are annotated on the face, along with the number for each point
and bounding boxes containing each facial part.

2) Facial Rotation Correction: The rotation correction is

achieved by calculating and reducing the angle between two

lines. The first line l1 goes vertically up the face within the

image, starting from a central point close to the middle of

the face, to a point that reaches the top of the forehead.

The second line l2 is based on the same central point, but

goes vertically up the spatial image at 0 degrees rather than

the face. The angle between the two lines determine how

much the face is rotated. To produce the first line, two facial

landmarks can be used to produce a straight line that cuts

the face. These are: the point at top of the mouth (P35)

as the central point, and a point that can be generated in-

between the inner eyebrows points P5 and P6. As most of the

face is symmetrical across a vertical plane, the chosen facial

landmarks provide a good reference point across all the

samples. P50 represents the point in-between the eyebrows

(P5 and P6), which is calculated in eq. 1.

P50 = (x50, y50) =

(
x6 − x5

2
,
x6 − x5

2

)
(1)

The angle α can then be calculated between line l1 and

the image norm l2 following eq. 2, 3 and 4. Once the angle

α is calculated, the whole image is rotated around point P35

to make α = 0deg.

l1 = (x50 − x35, y50 − y35) (2)

l2 = (0, y50 − y35) (3)

α = cos−1

(
lT1 l2

||l1|| × ||l2||
)

(4)

Figure 3. Extracted mouth parts with happy, neutral and fear expressions.

3) Facial Resizing: Resizing the face to match the same

size across all of the samples can be tricky. It cannot be

guaranteed between different subjects as their face shape

may vary. However, it should be possible to achieve for

each expression from the same subject. This is done by

measuring a distance between two points on the face that

do not move between expressions. Then, if all the following

samples are resized to produce the same distance between

the same points, the face should ideally become the same

size. Two points that can be used are the inner eye corners

P23 and P26. This is preferred over the inner eyebrows points

P5 and P6 as the eyes are more towards the center of the

face. The euclidean distance d23,26 in eq. 5 measures the

distance between both inner eye points.

d23,26 =

√(
x26 − x23

)2
+

(
y26 − y23

)2 (5)

Initially, a reference distance for the inner eye distance is

required that can be used on all the samples. This can be

determined by taking the mean value of a random batch of

faces. Each sample can then have its face scaled bigger or

smaller until its distance matches the reference distance.

4) Facial Parts Extraction: Once the face are aligned and

resized correctly, the facial parts can be extracted. Here,

four key facial parts including the Eyebrows, Eyes, Mouth

and Nose are considered. This is achieved by creating a

bounding box around each facial part using the relevant

facial landmarks, as demonstrated in Fig. 2. The size of the

walls for each bounding box is increased by approximately

5-10 pixels, to ensure that each facial part is fully inside each

bounding box. Each image is cropped with its respective

bounding boxes to separate the facial parts, and producing

four new images per sample.

Not all facial parts are the same in size across all the

samples. Therefore, another processing step is taken to resize

all the parts into 64× 64× 3 images. Fig. 3 shows sample

images of the Mouth after all the processing techniques. The

Happy, Neutral and Fear expressions are presented from the

same subject.

C. Fusion of Deep Facial Parts Features

CNNs is used to train and extract deep features from the

facial part images. An existing pre-trained CNN (VGG-M)

is exploited for extracting robust features of the whole face

and facial parts. These features are further trained through

a fine-tuning process, learning a deep fusion network to

469



interconnect these pre-trained features with feedback using

the facial expression information.

The deep fusion network is made up of a sequence of

convolution, ReLU and pooling layers. The design approach

is different to the DF-CNN [9], by individually learning

the depth and texture images. This way is chosen to get

a deeper understanding of the two modalities, which can

then be fused at a later stage using the SVM classifier. The

initial convolution layer FC6 connects all of the pre-trained

features 6× 6× 512× 4 (4 facial parts) into a 1× 1× 4096
dense layer. This layer has the job of fusing the various facial

parts together into a single 4096 dimensional representation.

This is then followed by a ReLU layer, and another dense

layer of 1×1×2048 (FC7). This will provide a compressed

feature representation of the fused facial parts that can be

utilized for classification. Finally, there is a 1× 1× 6 layer

to provide the prediction for the deep fusion network, from

which a SoftMax layer is used to generate the loss for back-

propagation. The deep fusion network feature is denoted as

VGG-M-DF, and the pre-trained VGG-M feature is denoted

as VGG-M-FC7.

IV. EXPERIMENTAL RESULTS

The following experiments are based on understanding

how facial parts can be utilized for better discrimination

between facial expressions. Deep learning techniques will

also be implemented to learn from the face and the extracted

facial parts. This is to study and apply recent technologies

and advancements of machine learning, demonstrating how

they can process facial expressions.

In addition, we have also extracted two hand-crafted

features for comparison. In particular, the Histograms of

Oriented Gradients (HOG) [24] and Uniform Local Binary

Patterns (ULBP) [25] features are extracted from each facial

part, as well as the whole face, from both texture and depth

images. For the deep learning based tests that use the whole

face or just a single facial part, the framework that simply

uses a single branch in parts (a) and (b) in Fig. 1. The deep

fusion part (c) will have only have a single feature map

set (6 × 6 × (1 × 512) at the Conv5 layer. For the hand-

crafted feature tests, the hand-crafted features are extracted

directly from the images in part (a), and parts (b),(c) and (d)

are skipped. Early feature fusion is applied to all the hand-

crafted features from each facial part, along with the PCA

for dimensionality reduction. Finally, the nonlinear SVM

classifier is used for the expression classification.

A. BU-3DFE Database

The BU-3DFE database [26] was created by a research

group from Binghamton University. The BU-3DFE database

contains a total of 2500 samples made up from 100 subjects.

For each subject, there are 4 samples for each of the 6

basic expressions (i.e. Angry, Disgust, Fear, Happy, Sad and

Surprise), along with a single sample of the subject’s neutral

face. The 4 samples per expression represent the levels of

intensity for that expression, which goes from mild to strong.

B. Experimental Protocol and Parameters Setting

The experiments are implemented using a publicly avail-

able deep learning toolbox called MatConvNet [27]. For fair

comparison, the widely used protocol is used. It involves

running 100 tests using 60 random subjects out of the 100

available, with the highest 2 intensities for each of the 6

prototypical expression. That comes to a total of 720 samples

per facial modality for each test. Each test will use 10-fold

cross-validation in a subject independent manner (no sample

from a subject in the training set will be found in the testing

set). SVM with a polynomial kernel is set up for multi-class

classification. The remaining 40 subjects are used for the

fine-tuning process as in [9]. For the network training of the

fine-tuning process, the hyper-parameters are set as follows:

• Batch Size = 12;

• Learning rate = 0.0002 which slowly decreases to

0.00002 over 150 epochs;

• Momentum = 0.9;

• Weight Decay (regularization) = 0.0001;

• Nesterovs Momentum Update [28] is used;

• Stochastic Gradient Descent is used as the learning

optimizer;

With the following pre-processing techniques applied:

• Mean image is subtracted across all samples only when

the Conv5 feature is extracted;

• Data is augmented to flip each image horizontally;

• Network weights are randomly initialized using

Xavier’s improved method [29].

After the deep fusion subnet training completes 150 epochs,

the epoch in which to retain the network parameters will be

based on the lowest validation error. If there are multiple

lowest validation errors, then the higher epoch is selected.

C. Experimental Results

The experiment in Table I is based on using the framework

on the facial parts and the whole face. Hand-crafted features

are also tested on the facial parts and the whole face, for

comparison with the deep learning approaches. The tests are

based on features that are extracted from the texture images,

depth images, with a following set of tests on the fusion of

both sets of features.

Based on the results, starting with the tests on the whole

face, the best performance is produced using the deep

fusion network VGG-M-DF when fusing both texture and

depth cues. The worst performance is produced using the

VGG-M-FC7 feature without any subnet for fine-tuning,

demonstrating how the deep CNN features can be improved

when the parameters are further tuned for the application.

When evaluating the depth cues of the whole face, the hand-

crafted features have shown better performances compared
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Table I
AVERAGE RECOGNITION RATE OF 100 TESTS USING 10-FOLD

CROSS-VALIDATION FOR THE HAND-CRAFTED AND DEEP FEATURES

EXTRACTED FROM THE WHOLE FACE AND THE FUSED FACIAL PARTS.

Feature Texture Depth Both

Whole
Face

VGG-M-FC7 77.96% 77.43% 81.21%

VGG-M-DF 81.77% 79.91% 85.58%

HOG 79.79% 81.10% 84.04%

ULBP 78.49% 78.80% 81.89%

Facial
Parts

VGG-M-FC7 83.76% 75.72% 84.40%

VGG-M-DF 86.27% 81.39% 88.54%

HOG 85.03% 81.47% 86.01%

ULBP 84.39% 81.83% 86.89%

Table II
AVERAGE RECOGNITION RATE OF 100 TESTS USING 10-FOLD

CROSS-VALIDATION FOR THE DEEP FEATURES CAPTURED FROM THE

INDIVIDUAL FACIAL PARTS.

Feature Facial Part Texture Depth Both

VGG-M-DF

Eyebrows 42.79% 42.03% 45.50%

Eyes 50.25% 47.47% 54.74%

Mouth 78.71% 75.06% 81.94%
Nose 54.01% 49.03% 56.90%

to the texture cues. The depth cues can be considered to

do a better job in highlighting the facial deformations that

occur within the face compared to the texture cues. However,

for the deep features, this had the opposite effect where the

texture cues has yielded better results. This may be due to

the depth images only containing a single channel, whereas

the pre-trained networks are trained on 3 channels that are

the RGB channels. The quality of the extracted deep feature

will not be its best due to the lack of color information.

The results for the facial parts show a big improvement

over using the whole face, for both deep learning and hand-

crafted approaches. Nearly all the different feature sets have

had an increase in performance switching to facial parts,

with the best performing feature as VGG-M-DF on the

facial parts, using the texture and depth fusion to achieve

a performance of 88.54% recognition rate. The biggest

improvement is of 5.9% when comparing ULBP on the

whole texture image of the face and facial parts.

In all the tests with all features, there is a clear indication

that fusing the texture and depth cues provides significant

improvements. This demonstrates that they have character-

istics that complement each other.

Table II is an evaluation of each individual facial part

using the deep fusion framework. However, to test each

facial part individually, Conv5 ignores the concatenation

of the facial parts and just considers the VGG features

from each individual facial part. The findings suggest the

most expressive part of the face is the mouth, which is the

facial part that can physically move the most. The texture

Table III
COMPARISON AGAINST OTHER WORKS BASED ON AVERAGING 100

TESTS OF 10-FOLD CROSS-VALIDATION

Feature Domain Accuracy
Berretti et al. [6] 3D 77.54%

Gong et al. [5] 3D 76.22%

Lemaire et al. [7] 3D 76.61%

Soyel et al. [30] 3D 67.52%

Wang et al. [3] 3D 61.79%

Yang et al. [31] 3D 84.80%

Zeng et al. [32] 3D 70.93%

Zhen et al. [33] 3D 84.50%

Li et al. [8] 2D+3D 86.32%

Li et al. [9] 2D+3D 86.86%

ULBP Facial Parts 2D+3D 86.89%

VGG-M-DF Facial Parts 2D+3D 88.54%

cues have performed better than the depth cues, which is

the consequence of the lack of color channels from the

depth images. However, the fusion of both texture and depth

representations has provided a significant boost for each

facial part, with the best performance of 81.94%.

Table III shows the performance comparison against other

state-of-the-art methods that follow the same strict and fair

protocol. In terms of accuracy, the VGG-M-DF feature on

the facial parts has provided a new state-of-the-art perfor-

mance, with an increase of 1.86% over the works by Li

et al. [9]. When incorporating deep learning techniques,

using a deep fusion subnet to learn the contributions of the

facial parts has demonstrated that connections can be made

between them at different stages, and not just from the raw

images. When looking at the domains used by others, 3D has

shown to be very popular. But when 3D is combined with

2D information, the best performances come from there.

V. CONCLUSIONS AND FUTURE WORKS

The works in this paper presents a novel strategy to

automatically obtain accurate facial parts, and fuse them

together in an effort to jointly learn their contributions

through a deep fusion subnet. In general, the introduction of

using isolated facial parts showed a clear-cut improvement

over nearly every test taken when compared to using the

whole face. The proposed deep fusion subnet showed a

significant increase to the overall performance over hand-

crafted techniques using the facial parts and the whole face.

For the hand-crafted features, the performance based on

facial parts was also better than that produced by whole face.

It demonstrates again that our proposed accurate facial parts

extraction method is the key for performance improvement.

Not only this, but the use of 2D and 3D information through

texture and depth maps showed a consistent improvement

when early fusion is applied via feature concatenation.
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Based on these findings, further improvements can be

made through the use of other face alignment and parts ex-

traction techniques. Moreover, a better deep learning system

can be designed to work with CNNs that are pre-trained for

facial expression recognition.
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