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The immunopathological functions associated with human C1q are still growing in terms 
of novelty, diversity, and pathologic relevance. It is, therefore, not surprising that C1q is 
being recognized as an important molecular bridge between innate and adaptive immu-
nity. The secret of this functional diversity, in turn, resides in the elegant but complex 
structure of the C1q molecule, which is assembled from three distinct gene products: 
A, B, and C, each of which has evolved from a separate and unique ancestral gene 
template. The C1q molecule is made up of 6A, 6B, and 6C polypeptide chains, which 
are held together through strong covalent and non-covalent bonds to form the 18-chain, 
bouquet-of-flower-like protein that we know today. The assembled C1q protein displays 
at least two distinct structural and functional regions: the collagen-like region (cC1q) 
and the globular head region (gC1q), each being capable of driving a diverse range of 
ligand- or receptor-mediated biological functions. What is most intriguing, however, is 
the observation that most of the functions appear to be predominantly driven by the 
A-chain of the molecule, which begs the question: what are the evolutionary modifica-
tions or rearrangements that singularly shaped the primordial A-chain gene to become 
a pluripotent and versatile component of the intact C1q molecule? Here, we revisit and 
discuss some of the known unique structural and functional features of the A-chain, 
which may have contributed to its versatility.
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tHe cOMPLeX strUctUre OF c1q

C1q is the first subcomponent of the complement classical pathway. In addition to its complement 
activation mediated immune functions, it has a broad range of developmental homeostatic functions 
that are not dependent on its ability to activate the classical pathway [reviewed in Ref. (1)]. The 
functional versatility of C1q depends on several unique structural and functional properties (1–3). 
It is made up of three chains, A, B, and C, which are the product of three distinct genes, found highly 
clustered and aligned 5′⇒3′, in the same orientation, in the order A–C–B on a 24 kb stretch of DNA 
on chromosome 1p at position 36.12 (4, 5). Each chain contains an N-terminal collagen-like region 
and a C-terminal globular head region. There are 18 chains in the intact C1q molecule: 6A, 6B, 

Abbreviations: ghA, ghB, and ghC, globular heads of the A, B, and C chains of C1q, respectively; gC1q, the globular heads 
of C1q; cC1q, the collagen domain of C1q; gC1qR, receptor for gC1q; cC1qR, receptor for cC1q; CRT, calreticulin (another 
name for cC1qR).
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and 6C, which are arranged first as a single heterotrimeric strand 
comprising of A, B, and C, in which the A chain and B chain 
within the strand are covalently linked to each other, whereas the 
C-chain of one strand which is non-covalently associated with 
the AB dimer, nonetheless forms a covalent link with the C chain 
of a neighboring ABC strand to form an ABC-CBA doublet. 
Three such doublets are then held together with non-covalent 
bonds to give rise to the well-recognized hexameric structure of 
C1q. The globular “heads” of each ABC strand are linked via six 
collagen-like “stalks” to a fibril-like central region resulting in 
two unique structural and functional domains: the collagen-like 
region (cC1q) and the globular “heads” or domains (gC1q) (6, 7). 
Each of the gC1q domains is a heterotrimeric structure made up 
of each of the individual chains (ghA, ghB, and ghC). What has 
become apparently clear is the fact that each of the gh domains 
is capable of recognizing a gh-specific ligand independent of the 
other gh domains (3, 8, 9). Therefore, assuming that each of the 
gh domains recognizes a single target or ligand, the C1q molecule 
can recognize and bind simultaneously six individual molecular 
patterns, making it one of the most efficient, and versatile pattern 
recognition molecules.

The crystal structure of the heterotrimeric gC1q domain 
revealed a compact jellyroll β-sandwich fold similar to that 
of the multifunctional tumor necrosis factor (TNF) family of 
proteins (10, 11). This suggested that C1q not only diverged 
from a primordial ancestral gene template of the innate immune 
system that gave birth to the TNF-α and other C1q-like proteins, 
but also retained some of its ancestral “cytokine-like” functions  
(2, 10). Therefore, C1q could be considered as a prototype “com-
plekine,” i.e., complement protein with cytokine-like activity, 
which is capable of mimicking some, if not all, functions of the 
TNF family of proteins, including the induction of cytokines (IL-6 
and IL-8) and chemokines (e.g., MCP-1) that orchestrate a myriad 
of a rapidly expanding list of pathophysiological processes (12, 13).

There is also an abundance of clinical evidence, which shows 
that genetic deficiency in C1q is associated with a wide range of 
clinical syndromes closely related to SLE, with rashes, glomerulo-
nephritis, and CNS disease as well as other autoimmune diseases 
(14). In addition, C1q also can have a major role in tumor growth 
and progression (15–19). The role of C1q, being a part of tumor 
microenvironment, has appeared to be complex so far. In some 
reports, it has been shown to be protumorigenic (15–17), whereas 
there are recent reports of antitumor activities of C1q in the case 
of prostrate (18) and ovarian cancers (19).

Although individuals with congenital C1q deficiency constitute 
only a small cohort of patients, this strong association nonethe-
less implicates an important role for complement in general, and 
C1q in particular, in the development of SLE and other autoim-
mune diseases (20–24). What is perplexing, however, is the fact 
that among the C1q deficiencies, the A-chain of C1q should take 
center stage in significance as homozygous deficiency or muta-
tion in the A-chain is almost invariably associated with various 
diseases (20–24). The mutation in the A-chain is due to a homo-
geneous mutation in which the C to T transition in codon 186 of 
exon 2 results in Gln-to Stop (Q186X) substitution. The question 
is: what are the structural signatures that make the C1q-A chain 
such a powerful susceptibility biomarker of these diseases? It is 

worth noting that although the most prevalent mutation is the 
C1qA, Gln208X mutation, there are other mutations in B and C 
chains too (25).

strUctUrAL AND FUNctiONAL 
cHArActeristics OF tHe c1q A-cHAiN

The genes encoding the three chains of C1q are highly conserved 
from zebrafish to human. Phylogenetic analysis also intimates 
that the C1qA, C1qB, and C1qC may have originally been gen-
erated by gene duplications from a single copy of an ancestral  
C1qB gene, since the latter is found in the same branch as amphi-
oxus C1q, which is an earlier lower vertebrate than zebrafish (26). 
Furthermore, the IgG binding properties between fish and mam-
malian C1q show no difference since substitution of human C1q 
by fish C1q has the same activity, suggesting that the IgG or IgM 
recognizing properties have remained conserved throughout the 
evolutionary history (26, 27). However, more recent studies have 
shown that there is a preferential binding of the gC1q modules 
when it comes to IgG binding. Whereas the gC1qA (or ghA) 
module binds aggregated IgG and IgM in a similar manner, 
gC1qB (ghB) binds aggregated IgG in preference to IgM (28). 
The functional preferences of the gC1q domains, therefore, may 
reflect an evolutionary structural adaptation that resulted in 
recent history.

In an elegant and in depth review, Trinder et al. (29) analyzed 
the structural and functional correlates that distinguish the 
A-chain from the B- and C-chains. First, while the B and C chains 
are highly conserved, the A-chain is not. This fact alone should 
support the notion that the A-chain developed to be functionally 
adaptable throughout evolution. Second, various types of cells 
including macrophages and dendritic cells among a long list of 
others, synthesize the C1q molecule. The cell-associated molecule 
in turn, is anchored in the membrane via a 22 amino acid long 
leader peptide, which is found only in the A-chain (29). Third, 
the A-chain contains several antigen recognition sites (Figure 1), 
but in particular, possesses one major (aa 14–26) and one minor 
(aa 76–92) promiscuous region (29), which serve as a binding 
site for a wide range of non-immunoglobulin antigens including 
lipopolysaccharide, C-reactive protein (CRP), DNA, heparin, 
fibronectin, monosodium, urate crystals, amyloid P component, 
von Willebrand factor (30) as well as bacterial and mitochondrial 
membranes (29–42). Importantly, this A chain region has also 
been shown to bind specifically by SLE patients’ sera compared to 
serum derived from healthy control (43). Although recent studies 
have suggested that the interaction site for CRP is located in the 
gC1q rather than the cC1q (44–46), it is plausible to assume that 
certain molecules could actually bind to multiple regions of the 
A-chain. Regardless, these non-immunoglobulin antigens have 
been shown to activate the classical pathway by binding to the 
cC1q region of the A-chain rather than to the globular heads 
(29–42). In addition, the A-chain contains a collagen-type II-like 
sequence comprising of residues 26–34, which has been shown to 
suppress collagen type-II-induced arthritis in a mouse model (47). 
Interestingly, this same region is also predicted to be a potential 
MHC class II binding site (48). However, little is known about the 
significance of this finding but may have potential implications 
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FigUre 1 | The structural and functional correlates of the C1q A-chain. The intact C1q molecule is anchored to the cell membrane by a leader peptide in the A 
chain. The major and minor ligand bind sites as well as the putative MHC class II binding domain are highlighted. Although the major gC1qR-binding domain spans 
residues 155–164, unexpected sites in the promiscuous collagen domain spanning residues 14–26 and another at 76–92 have also been shown very recently [the 
figure is adapted from Ref. (29)].
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in autoimmunity and tolerance (48), especially since C1q has 
been shown to keep monocytes in a predendritic or immature 
phenotype, thus ensuring that unwarranted DC-driven immune 
response does not occur, a fact that is relevant to the development 
of SLE (49). Finally, although it is found only in the mouse, and 
not in the human C1q A-chain, the presence of an RGD sequence 
may also explain why human C1q still retains its ability to support 
adhesion of normal endothelial cells and fibroblasts (50–53) in a 
manner that is inhibited by an RGD peptide but not an RGE (51). 
Very recently, Agostinis et al. have shown that C1q can act as a 
bridge between hyaluronic acid (HA), an abundant matrix com-
ponent of the tumor microenvironment, and the HA receptor on 
tumor cells, i.e., CD44, thus inducing considerable proliferation 
of primary tumor cells derived from malignant pleural mesothe-
lioma (MPM) (17). Curiously, the A-chain of the globular region 
of C1q bound specifically and differentially to a range of LPS-free 
HA, leaving C-chain to liaise with MPM cells.

Thus, although it may be overly simplistic to suggest that the 
A-chain is the functional anchor of the C1q molecule, it appears to 
be clear that of the three chains, the A-chain has singularly under-
gone systematic and adaptable molecular evolution. Whether the 
selection of the A-chain to evolve as a master orchestrator of C1q 

functions was by design or serendipity, or whether the B- and 
C-chains are also undergoing similar evolution albeit at a much 
slower rate, are questions still for the future.
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