
0278-0062 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2016.2550624, IEEE
Transactions on Medical Imaging

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. ?, NO. ?, MONTH 2016 1

Multispectral Photoacoustic Imaging Artifact
Removal and Denoising Using Time Series

Model-Based Spectral Noise Estimation
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Abstract—The aim of this study is to solve a problem of
denoising and artifact removal from in-vivo multispectral pho-
toacoustic imaging when the level of noise is not known a
priori. The study analyzes Wiener filtering in Fourier domain
when a family of anisotropic shape filters is considered. The
unknown noise and signal power spectral densities are estimated
using spectral information of images and the autoregressive of
the power 1 (AR(1)) model. Edge preservation is achieved by
detecting image edges in the original and the denoised image
and superimposing a weighted contribution of the two edge
images to the resulting denoised image. The method is tested
on multispectral photoacoustic images from simulations, a tissue-
mimicking phantom, as well as in-vivo imaging of the mouse, with
its performance compared against that of the standard Wiener
filtering in Fourier domain. The results reveal better denoising
and fine details preservation capabilities of the proposed method
when compared to that of the standard Wiener filtering in Fourier
domain, suggesting that this could be a useful denoising technique
for other multispectral photoacoustic studies.

Index Terms—Photoacoustic imaging, artifact removal, denois-
ing, Wiener filtering, Fourier domain, PSD estimation, AR(1)
model.

I. INTRODUCTION

MULTISPECTRAL photoacoustic imaging (PAI) is well-
known to be prone to various noise and artifacts. A type

of noise in multispectral PAI may be similar to that present
in hyperspectral imaging (HSI) such as pattern noise due to
calibration error [1], while another type of noise, such as
additive electronic noise, comes from system thermal noise
or electromagnetic interference [2]. Multispectral PAI artifacts
can be due to motion or image reconstruction. Motion-based
artifacts arise due to movement of an object such as breathing
or heart beat [3]. Reconstruction-based artifacts can arise
due to limited angle issues in backprojection reconstruction
algorithms. For instance, spatial undersampling can lead to
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streak artifacts during image reconstruction due to limited
number of elements in the transducer array. In these contexts,
denoising multispectral PAI and removing artifacts is a crucial
procedure for further image processing and analysis such as
image segmentation, spectral unmixing or co-registration.

Great effort has been made to reduce reconstruction-based
artifacts in multispectral PAI by making modifications to
the reconstruction algorithms. For example, Paltauf et.al. [5]
proposed special weight functions for direct, non-iterative back
projection that reduces artifacts in multispectral PAI. Ma et.al.
[6] introduced the mean-back-projection-iteration algorithm
which minimizes the error between the observed signal and
the signal calculated from the reconstructed image. Dean-Ben
et.al. [4] proposed another weighted back-projection algorithm
based on the estimation of acoustic scatterers distribution
within the imaged object. In the work of Yao et. al. [7] total
variation maximization (TVM) regularization was used in image
reconstruction step. In the work of Wang et.al. [8] a constraint
on image consistency was added to TVM approach, while
in the work of Prakash et.al. [9] basis pursuit approach with
sparsity-inducing L1 regularization was used instead of TVM.

However, only reconstruction-based artifacts are targeted
and in most cases artifacts are not removed completely but
only reduced to a certain extent. Moreover, noise is not always
guaranteed to be suppressed by the reconstruction-based artifact
removal methods. It is known that, if the imaging system
is tomographic, reconstruction algorithms and, especially,
improved variations of them, are able to suppress noise to
some level through the superposition of projection signals in the
image domain (see [2]). However, in non-tomographic systems,
the suppression does not give good results. Also, total variation
regularization based on TVM or sparsity regularization based
on L1 works well only when the true image is, in fact, sparse or
has low variation. As a result, this works well for many phantom
data as usually phantoms are specially constructed to be sparse
and containing only a few absorbers (such as in the works of
[9] and [8], where sparse phantoms were selected to test the
algorithm). However, it is not so clear why this should always
apply to in-vivo multispectral photoacoustic imaging, especially
to those cases, where complex tissue structures are imaged with
high variation. Therefore, if the mulstispectral photoacoustic
image does not comply with the required assumptions, it is
highly likely that some amount of information will be lost after
using TVM or L1 related methods.

As for denoising, it is highly likely that, as in the case for
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HSI, a small image ROI obtained from multispectral PAI can
be well approximated by a few pixels. Therefore, a wide range
of HSI denoising methods could be applied to fit multispectral
PAI domain, especially methods based on low rank assumption
(see, e.g. [10], [11], [12]). However, many of them depend
on local or global dictionary learning and cannot guarantee
artifact removal that are hardly distinguished from image edges.
Therefore, only a specific class of HSI denoising methods that
target some common characteristics of both noise and artifacts
could be of any improvement of overall image quality from
multispectral PAI.

In this work, we are interested in removing white noise and
artifacts from in-vivo multispectral PAI, where the level of
noise and artifacts is not known a priori, and we will refer
to them simply as noise, though, keeping in mind the very
different nature they might have. We propose an analytical
method based on Wiener filtering in the Fourier domain, where
only Gaussian-like filters having an anisotropic elliptical shape
are considered prior to minimizing MSE, and regularization is
controlled by the two parameters of the filter.

In Wiener filtering, a filter is constructed to minimize the
mean squared error (MSE) between the observed and denoised
images. However, a crucial assumption of Wiener filtering is
that the power spectral densities (PSDs) of noise and signal
are known a priori or can be well estimated. While many
PSD estimation methods exist in literature, they are usually
applicable to time series data and not images. Therefore, image
modality-specific assumptions have to be made so that PSDs of
noise and signal could be estimated using tools for time series
data. In the work of Kamel et.al. [13] autoregressive modeling
was used to estimate noise in a 2D image based on spatial
pixel dependence, while in the work of Seghouane et.al. [14]
autoregressive modeling was used to estimate noise based on
temporal pixel dependence in functional magnetic resonance
imaging (fMRI). In this work, we use the autoregressive
power 1 (AR(1)) model to estimate noise based on spectral
pixel dependence in multispectral PAI. We demonstrated how
estimates of noise and signal PSDs can be analytically derived,
tested the method on phantom data as well as in-vivo mouse
images and found that it is superior than the standard Wiener
filtering in Fourier domain.

This work is organized as follows. In Section II we present
the model and assumptions used. In Section III we give a
brief introduction to the problem of Wiener deconvolution,
solution of which in a special case gives us the well-known
standard Wiener filtering in Fourier domain. In Section IV we
describe the proposed method. Finally, in Section V we present
the results of the proposed method on purely simulated data,
phantom and in-vivo data, which are then compared to those
of the standard Wiener filtering in Fourier domain. We end
the work with a brief discussion in Section VI. The proof of
analytical derivation of the noise power spectral density (PSD)
is provided in Appendix.

II. MODEL AND ASSUMPTIONS

Suppose we are given a mean-corrected multispectral pho-
toacoustic image YM×N×B , where M ×N is the number of
spatial coordinates and B is the number of spectral bands. We

assume that at each spatial location (i, j), the following model
holds:

yij = xij + vij , (1)

where y is the observed pixel, x is the true signal and
v ∼ N(0, σ2) is noise. Since the original multispectral
photoacoustic image has intensity values in interval [0; 1], we
use mean corrected multispectral PAI so that noise would be
zero-centered. We assume that noise is independent of signal.
We also assume that at each image background location (i, j, k),
where k denotes spectral band, the following relation holds:

yijk = b0 + byij(k−1) + vijk,

where b0, b are AR(1) model parameters, and yi,j,k is the
(i, j, k)th pixel of the mean-corrected image Y . Finally, we
assume that noise occurs with high frequencies and signal
occurs with low frequencies, meaning that the signal has smooth
intensity changes and the most dramatic intensity changes are
caused by noise.

III. STANDARD WIENER FILTERING

In Wiener deconvolution, the following model is considered:

Y = h ∗X + V, (2)

where X and V are not observable random functions of time,
i.e. X = X(t), V = V (t), X is independent of V , the expected
value of V is zero, h is the known so-called blurring filter and
∗ denotes convolution. In Fourier domain, model (2) becomes

F (Y ) = F (h)F (X) + F (V ),

where F is a mapping from functional domain to the frequency
(or, in other words, Fourier) domain. The goal of Wiener
deconvolution is to guess what X(t) with all t is, given
observations Y (t) with all t. That guess is the estimate
X̂(t) = (g ∗Y )(t) with some function g. Therefore, the aim is
to estimate F (g) which is the function of coordinate λ in the
frequency domain. The criteria of Wiener is that with every
λ ∈ R, F (g)(λ) needs to minimize the following functional:

ε(F (g)) = E|F (X)(λ)− F (X̂)(λ)|2

= E|F (X)(λ)− F (g)(λ)F (Y )(λ)|2.
(3)

Note that | · | here denotes the absolute value of a complex
number: if z2 is a complex number then |z|2 is the real
nonnegative number.

It is a well known fact (see, e.g. [15]) that the F (g) that
minimizes the cost function (3) is of the form

F (g) =
F (h)∗s

|F (h)|2s+ n
, (4)

where s = E|F (X)|2 is the so-called signal power spectral
density (PSD) and n = E|F (V )|2 is the so-called noise PSD,
z∗ = x − iy with x, y ∈ R and zz∗ = (x + iy)(x − iy) =
x2 + y2 = |z|2.

Let λij denote the spatial position in the frequency domain.
We can see that our model (1) can be regarded as Wiener
deconvolution with unit blurring filter h. Then at every position
λij we can use the same Fourier domain estimate (4)
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F (g)(λij) =
s(λij)

s(λij) + n(λij)
(5)

which minimizes the following cost function:

ε(F (g)) =
M∑
i=1

N∑
j=1

E|F (X)(λij)− F (g)(λij)F (Y )(λij)|2.

(6)
We will refer to filter (5) as to the standard Wiener filtering in
Fourier domain.

IV. PROPOSED METHOD

A. Filter Form

We note that using standard Wiener filtering in Fourier
domain (5) does not help us to remove high frequency
components which we assume to be noise. To account for
this, we construct the following filter:

F (g)(λij) = e−((i−cx)2/γ1+(j−cy)2/γ2). (7)

Note that (if γ1 6= γ2) filter (7) is an anisotropic elliptical
filter which is centered at position λcxcy = (cx, cy) and whose
parameters γ1, γ2 control the two radii of an ellipse. Note
that in practice we always set λcx,cy to be the center of the
frequency domain of an image and therefore cx, cy are known
and the filter F (g) is fully determined by the two raddi γ1, γ2.

There are four extreme cases: (a) both γ1, γ2 tend to ∞; (b)
both γ1, γ2 tend to 0; (c) γ1 tends to 0, γ2 tends to ∞ and
(d) γ1 tends to ∞ and γ2 tends to 0. In the case (a) the filter
F (g) at every position λij tends to 1 and the cost function
(6) reduces to

∑M
i=1

∑N
j=1 nij . In the case (b) F (g) tends to

0 for all λij , except the λcxcy , where it still equals 1. There,
the cost function (6) reduces to

∑M
i=1

∑N
j=1E|F (X)(λij)−

F (Y )(λcxcy ))|2. In the case (c) the cost function (6) reduces
to
∑M
i=1

∑N
j=1E|F (X)(λij) − e−1F (Y )(λicy ))|2. On the

other hand, in the case (d) the cost function (6) reduces to∑M
i=1

∑N
j=1E|F (X)(λij) − e−1F (Y )(λcxj))|2. Minimizing

(6) with filter of the form (7) does not give a trivial solution
because the optimal point might be achieved somewhere in the
middle of these four extreme cases. Therefore, the proposed
method gives us a plausible solution.

B. Estimating γ1, γ2

Since filter F (g) is fully determined by the parameters γ1, γ2,
the cost function (6) is actually ε(γ1, γ2), that is, a function of
γ1, γ2. Obviously, we search for such γ1, γ2 so that the cost
function (6) is minimized. We can expand this as

ε(γ1, γ2) =
M∑
i=1

N∑
j=1

[
E|(1− F (g)(λij))F (X)(λij)

− F (g)(λij)F (V )(λij)|2
]

=
M∑
i=1

N∑
j=1

[
E[(1− F (g)(λij))F (X)(λij)

− F (g)(λij)F (V )(λij)]×
× [(1− F (g)(λij))F (X)(λij)− F (g)(λij)F (V )(λij)]

∗]

=
M∑
i=1

N∑
j=1

[
(1− F (g)(λij))

2E|F (X)(λij)|2

+ F (g)(λij)
2E|F (V )(λij)|2

]
=

M∑
i=1

N∑
j=1

[(
1− e−((i−cx)2/γ1+(j−cy)2/γ2)

)2
sij+ (8)

+ e−2((i−cx)2/γ1+(j−cy)2/γ2)nij

]
,

where sij = E|F (X)(λij)|2, nij = E|F (V )(λij)|2 are the
so-called power spectral densities (PSDs) of signal and noise,
respectively. Denote ai = (i− cx)2/γ1 and aj = (j− cy)2/γ2.
For ai = aj = 0, i.e. when i = cx, j = cy, any γ1, γ2 are
optimal. For ai 6= 0, aj 6= 0, we cannot solve (8) analytically
and we use computer to minimize this non-convex function.

C. Estimating PSDs

The remaining major challenge is the estimation of PSDs s
and n. Studies that considered deconvolution problem roughly
fall into two categories: (a) the ones that used clean images
and added simulated noise in which case s and n were known
exactly (see, e.g. [16], [17]); (b) the ones that estimated them
using some method (such as Welch’s method, periodigram,
averaging, taking median from a set of samples (see, e.g. [18],
[19]), making assumption that signal or noise are distributed
equally across samples. There are also studies that considered
autoregressive modeling to estimate noise from an image. For
these studies, it is usual to treat as samples the spatial pixels in
a 2D image (see, e.g. [13]), or temporal pixels in different 2D
bands of a 3D temporal image, such as functional magnetic
resonance imaging (fMRI) (see, e.g. [14]). However, at first
look, none of the above strategies fits the denoising problem in
multispectral PAI. First of all, the actual s and n are unknown.
Secondly, we have only one sample (that is, image) but it is not
a temporal image, that is, different bands do not correspond
to different time. Moreover, using autoregressive modeling on
spatial information of a 2D band would not work in our case
because pixels are not functions of spatially neighboring pixels.
Therefore, the task to give good estimates of s and n is not a
straightforward one.

We note, that in order to estimate s and n, it is enough to
estimate one of them and the sum s+ n. Then the second one
can be found by subtracting the first from the sum.

1) Estimating s+n

The first task of estimating s+n is much easier. We propose
to exploit spectral information and treat each spectral band
of the multispectral photoacoustic image as a sample. Then,
for a fixed position λij , we have the following set of samples:
{F (y)1(λij), . . . , . . . , F (y)B(λij)}, where λij denotes the po-
sition (i, j) in the frequency domain, F (y)k(λij), k = 1, . . . , B
is the Fourier transform of a pixel y at position (i, j, k) and
B is the number of spectral bands. We note that

s+ n = E|F (X)|2 + E|F (V )|2

= E|F (X) + F (V )|2 = E|F (Y )|2,

where the second equation holds because signal is assumed to
be independent of noise and the third equation holds because
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of our model. In practice we need to estimate s+ n for each
position λij and the true expectation is replaced by sample
average. This leads to the following estimation:

ŝ+ n =
1

B

B∑
k=1

|F (y)k(λij)|2. (9)

2) Estimating n

Now what is left to do, is to estimate s or n. In this work
we will estimate n. The standard methods to estimate PSD of
noise are usually applied to time series data, where we have,
say, n observations of time yt1 , . . . ytn , and each observation
is directly related to the previous one. The standard model for
time series is the autoregressive power p (AR(p)) model:

yti = b0 +

p∑
i=1

biyti−p
+ εti , (10)

where ti, i = 1, . . . , n denote time points, εti ∼ N(0, σ2) is the
noise term at the time point ti and b0, . . . , bp are the parameters
of the AR(p) model. While model (10) is a standard model for
time series, it is not straightforward how this could be applied
to image domain. If we treated each pixel as an observation,
this would mean that each pixel in an image is a function of
spatially neighboring pixels. This was assumed, for example,
in the work of Kamel et.al. [13] but this may not hold for
multispectral PAI. To be able to apply AR model to our case
here we make the assumption about pixel dependence not on
spatially neighboring pixels but on spectrally neighboring ones
instead:

yijk = b0 + byij(k−1) + vijk, (11)

where yijk is the background pixel of a mean-corrected
multispectral photoacoustic image at position (i, j, k), vijk
is the noise at position (i, j, k) and b0, b are parameters of the
model. Here i = 1, . . . ,M, j = 1, . . . , N, k = 1, . . . , B. We
note that (11) is autoregressive power 1 (AR(1)) model. If (11)
holds in spatial domain, it holds also in frequency domain and
we have

F (y)k(λij) = c0 + cF (y)k−1(λij) + F (v)k(λij), (12)

where λij denotes the position (i, j) in frequency domain,
F (y)k(λij), k = 1, . . . , B denotes the Fourier transform of
yijk and c0 = F (b0), c = F (b).

PROPOSITION 4.1: Let F (y)0(λij) = 1. Then the ML
estimate of n is

n̂ =
1

2MNB

M∑
i=1

N∑
j=1

B∑
k=1

|F (y)k(λij)− cF (y)k−1(λij)− ĉ0|2 ,

(13)
where

ĉ0 =
1

MNB

M∑
i=1

N∑
j=1

B∑
k=1

[F (y)k(λij)− cF (y)k−1(λij)] .

The proof is provided in Appendix.
The estimate ŝ(λij) is then calculated by setting

ŝ(λij) = max( ̂(s+ n)(λij)− n̂(λij), 0), (14)

where ̂(s+ n)(λij) is as defined by (9).

D. Preserving Edges

Even though edge preservation is not the main focus of
this work, it is important that edges are preserved in the
denoised image. Here, we apply a simple approach to edge
preservation. After image is denoised, the MATLAB built-in
function edge(‘canny’) is used to detect image edges. Since
the denoised image is noise-free, it is able to detect true
image edges and automatic built-in parameter value search
give promising results. The 3D edge map is then created,
from which we can obtain two copies of edge pixels: one
from the original image and one from the denoised image. We
then set edge pixels of the final image as the following affine
combination of the two copies:

Xedge = woldY
edge
old + wnewY

edge
new ,

where Xedge is a 3D tensor containing edge pixel values in the
final image, Y edgeold is a 3D tensor containing edge pixel values
in the original image and Y edgenew is a 3D tensor containing edge
pixel values in the denoised image. The weights wold, wnew
are probabilistic weights, i.e. 0 ≤ wold, wnew ≤ 1 and wold +
wnew = 1. The weight wnew is selected to minimize the
following non-convex cost function:

ŵnew = arg min
wnew

MRMSE(Xwnew
)

SNR2(Xwnew
)
,

where Xwnew
is the final 3D image, depending on the weight

wnew and MRMSE, SNR2 measures are as defined in Results
Section V. The conceptual illustration of the proposed method
is displayed in Figure 1.

V. RESULTS

A. Quality Measures

The method was compared with the standard Wiener filtering
in Fourier domain described in Section IV, where the filter
of the form (5) was applied, using the same estimates (13)
and (14) as for the proposed method. Since both methods
should enhance signal-to-noise ratio (SNR), one of the quality
measures was also SNR, defined in two ways. The first way
is the most popular while working with the [0, 1] gray-scale
images. For a given 2D spectral band Xk, k = 1, . . . , B, it is
calculated as:

SNR1(Xk) = 10 log10

X̄k

σ2
,

where X̄k = 1
MN

∑M
i=1

∑N
j=1Xijk is the mean of the kth

spectral band Xk and σ2 is the variance of the noise. We
estimated σ2 as the variance of the image background and we
used the MATLAB built-in function imfreehand to extract the
background. The mean value over the spectral bands is also
reported and named as MSNR1:

MSNR1(X) =
1

B

B∑
k=1

SNR1(Xk),

where X is a 3D image. The second definition of signal-to-
noise ratio is based on our proposal. For a given 3D image X
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Fig. 1. Conceptual illustration of the proposed method. First, the AR(1) model parameter c is estimated from the original 3D image resulting in the estimation
of depending parameter c0 and estimates of signal and noise PSDs. Then, using estimated PSDs, the filter shape parameters γ1, γ2 are estimated and the
filter with an anisotropic elliptical shape is constructed. Using this filter, the filtering of original image is done in Fourier domain and noise is removed. The
3D edge map is then constructed using the denoised image. Using this edge map, the optimal weight wnew is found. Using this edge map, two copies of
edge pixels are extracted together with their weights (one copy from the denoised image and one copy from the original image) and a combination of affine
transformations is used to calculate the final version of edge pixels. Finally, the image edges in the denoised image are replaced with the final version of edges
and final image is obtained.

it is calculated as

SNR2(X) =
1

MN

M∑
i=1

N∑
j=1

ŝ(λij)

n̂(λij)
,

where ŝ, n̂ are the proposed estimates of s and n, respectively.
The difference between MSNR1 and SNR2 is that in MSNR1

signal estimation is based on spatial information, while in
SNR2 signal is estimated using spectral information.

To test the similarity of denoised images to the original
image, two measures were taken. First measure is a relative
mean-squared error defined as

RMSE(Xk) =
||Yk −Xk||F
||Yk||F

,

where Yk and Xk are the kth spectral band of the original and
final denoised images, respectively. The mean RMSE value is
also reported and named MRMSE:

MRMSE(X) =
1

B

B∑
k=1

RMSE(Xk).

The second similarity measure that we used is the so-called
structured similarity (SSIM), the long detailed description of

which can be found in [20]. The default values of parameters
were used, except that for the image intensity range which was
set to be [0; 1]. The mean SSIM value is also reported and
named MSSIM:

MSSIM(X) =
1

B

B∑
k=1

SSIM(Xk).

B. Multispectral PAI Parameters and Computational Cost

The MSOT system, inVision 128 (iThera Medical GmbH,
Neuherberg, Germany) was used to acquire all phantom and
in-vivo images [21]. The phantom is made of polyurethane,
cylindrical in shape with a diameter of 2 cm, which is specially
designed to mimic the shape, size and optical properties of the
mouse. Typical wavelength-dependent absorption and reduced
scattering coefficient values of the internal organs of a mouse at
800 nm are approximately 0.7 cm−1 and 8 cm−1 respectively,
according to literature [22]. The laser excitation is provided
by an optical parametric oscillator (OPO) laser and falls in the
near-infrared range from 650 to 980 nm, while the ultrasound
detection is achieved by a ring-shaped 128-element transducer
array spanning a circular arc of 270o with a central frequency
of 5 MHz. This gives a in-plane spatial resolution of around
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Visual comparison of the proposed and standard Wiener methods in terms of the capability to remove white noise with different noise levels. (a)-(c)
Visual comparison and MRMSE for 0%, 10% and 25% noise level, respectively. (d)-(f) MSE over spectral bands comparison for 0%, 10% and 25% noise level,
respectively.

150 µm. Each of the transverse 2D image slices formed from
the laser pulses are stacked to form a 3D tomographic image.
Image reconstruction is then performed using a model-based
approach for offline analysis.

For all three types of data: simulated data, phantom data
and in-vivo data, the AR(1) model parameter c was found
by maximizing the convex log-likelihood function L(σ2, c0, c)
using unconstrained minimization with a starting value equal
to 0 and 10−15 precision. Since minimization with MATLAB
built-in functions supports only real parameter values, the
minimization procedure was divided into two steps, one for the
real part of the parameter and the second for its complex part.
Then ĉ0, n̂, ŝ were calculated and reported for each image sep-
arately. The cost function (8) was minimized using constrained
minimization with lower bound equal to [0, 0] for [γ1, γ2], the
starting value equal to [1, 1] and 10−15 precision. The weight
wnew was calculated by using constrained minimization with
lower bound equal to 0, upper bound equal to 1, the starting
value equal to 0.5 and the 10−3 precision.

The method, when performed on a Mac computer with 1.8
GHz Intel Core i5 processor and 4GB memory, takes less than
2 minutes to solve the three minimization problems. Within
these 2 minutes, around 1.6 s, on average, is for estimating
the AR(1) model parameter c with 10−15 precision, around
2.6 s, on average, is for estimating filter parameters γ1, γ2
with 10−15 precision, and the rest of the time is for estimating
wnew with 10−3 precision. Time measurements are based on
an average image size of 500× 500× 9 pixels.

C. Simulated Data

To investigate the smearing and white noise removal ca-
pabilities of the proposed method, we used purely simulated
multispectral PA data which mimics the optical properties of
biological tissue. For this, we used constructed absorption and
scattering dictionaries based on in-vivo data [23] of the main
absorbers: Hb, HbO2, melanin, water and fat, as well as the
main scattering media: brain, skin, breast, bone and fatty tissues
(see Figure 3).

(a) (b)

Fig. 3. Absorption and scattering dictionaries used for simulated data.

These absorption and scattering spectral signatures were then
weighted by simulated weights which followed non-negativity
and sum-to-one constraints to obtain the original object. The
multispectral PA data was then simulated using a meshing
method presented in [24] with 160801 nodes, 160000 elements,
1600 sources and 1600 detectors. The grid size of the solution
was set to 100× 100. The resulting ‘observed’ image was of
dimensions 100× 100× 5, where the number 5 represents the
number of spectral bands (400 nm, 450 nm, 500 nm, 550 nm
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and 600 nm) chosen, based on spectral differentiation among
the absorbers in Figure 3.

To investigate both smearing effects and white noise removal
capabilities of the proposed method, we added different
Gaussian noise levels to the original observed image. Usually,
in-vivo multispectral photoacoustic images suffer from low-
level noise [24] but it has been stated in [7] that noise level
in a multispectral photoacoustic image could be as high as
20%. Therefore, our investigation concentrated on 0%, 10%
and 25% Gaussian noise levels. The summary statistics for
parameter estimates are provided in Table I together with the
quality measures and visual comparison in Figure 2.

TABLE I
SUMMARY STATISTICS FOR SIMULATED DATA

Noise level (%) 0 10 25
ĉ 0.2702 + 0.1554i 0.1373− 0.2392i −0.0840− 0.2691i
ĉ0 −0.0548− 0.0315i −0.0271 + 0.0473i 0.0171 + 0.0548i

Mean ŝ 2.5209 3.0241 8.7007
Mean n̂ 1.3198 2.4213 7.8414
γ̂1 257.2687 346.4 2.06 ∗ 103

γ̂2 253.2458 327.33 2.06 ∗ 103

ŵnew 0.0038 0.0996 0.1989

As we can see from Table I, in all cases the AR(1) model
parameter ĉ < 1 which proves the point that the background of
the simulated multispectral photoacoustic image, when mean-
corrected, can be successfully considered as a stationary process.
Also, the estimated signal-to-noise ratio decreases when the
noise level increases, which indicates that the proposed SNR
estimation is valid. We can see from Figure 2 (a) and (d) that in
presence of no noise, both the proposed method and standard
Wiener method suffers from smearing effects. However, we
can see that the smearing effects of the proposed method are
nearly 2.5 times smaller than those of the standard Wiener one
(MRMSE=4.54 for the proposed filter versus MRMSE=11.12
for the standard Wiener filter). In fact, the stronger smearing
effects of the standard Wiener method can be visually discerned
(see, for example, Figure 2 (a), line 3, column 5). In the
presence of 10% noise, both methods substantially improve
the quality of the image with the proposed method performing
about 2 times better than the standard Wiener filter. In the
presence of 25% noise, the quality of the image improved by
both filters is very similar, with the standard Wiener method
performing slightly better on the last spectral band.

In addition, we also performed similar experiments to
investigate the capabilities of both methods to remove white
noise in the presence of much higher noise levels. Figure 4
summarizes such findings.

It turns out, that up to about 2% noise level, both filters suffer
from smearing effects, with the proposed method always having
smaller smearing effects than those of the standard Wiener
method. More interestingly, the standard Wiener method starts
performing better than the proposed method with the noise level
greater than about 25%. These findings allow us to conclude
that the choice of the filter depends on the prior knowledge
of the noise level present in an image: the proposed method
for noise level up to 25% and the standard Wiener method for
the noise level greater than 25%. Therefore, since in in-vivo
multispectral PAI the noise level is known not to exceed 25%

of the image intensity, the proposed denoising method is a
better choice.

Fig. 4. Comparison of white noise removal capabilities of the proposed
method and standard Wiener method.

D. Phantom Data

The proposed method (7) was tested on MSOT phantom
image which consisted of 10 spectral bands ranging from 650
nm to 750 nm. Typical wavelength-dependent absorption and
reduced scattering coefficient values of the internal organs of
a mouse at 800 nm are approximately 0.7 cm-1 and 8 cm-1
respectively, according to literature. The summary statistics
are provided in Table II together with the quality measures in
Table III. The performance of quality measures SNR1,MSE and
SSIM across 10 spectral bands is shown in Figure 5. Figure
6 displays the visual performance of the proposed method
for both background and object areas in the image. A more
zoomed-in view of the original image, image denoised using
the standard Wiener filtering in Fourier domain as well as
the image denoised using the proposed method is provided in
Figure 7.

As we can see from Table II, the AR(1) model parameter
ĉ ≈ 0.54 + 0.54i which proves the point that the background
of the MSOT phantom image, when mean-corrected, can be
successfully considered as a stationary process which is an
intrinsic assumption of Wiener filtering and which is needed
to justify the use of AR(1) model. We can also see that γ̂1 is
very similar to γ̂2 which indicates that nearly round shape of
the filter was favored by the algorithm. This means that the
filter is nearly proportional to that of the standard Gaussian
filter. Nevertheless, we can see from Table III that the proposed
method outperforms the standard Wiener filtering in Fourier
domain in terms of all the quality measures.

Moreover, as we can see from Figure 5, the proposed method
outperforms the standard Wiener filtering not only on average
but continuously across different spectral bands. Figure 6
clearly shows that the background of the image is substantially
smoothed (see sub-figure (a), surface plots) when using the
proposed method, while the important edges in the image are
preserved (see sub-figure (b), edge plots). A reader can take a
more zoomed-in look at this in Figure 7.
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(a) (b) (c)

Fig. 5. SNR1, MSE and SSIM values for phantom data across 10 spectral bands.

(a) (b)

Fig. 6. Visual performance of the proposed method on phantom data. (a) Performance for background. (b) Performance for object. The edges in local patches
are detected with MATLAB built-in function edge and default parameter values. Surface plots of background and object patches (the location of which is
marked by a yellow square) are also included. Note that only the first spectral band is displayed, for simplicity.

TABLE II
SUMMARY STATISTICS FOR

PHANTOM DATA

ĉ 0.5443 + 0.5373i
ĉ0 −0.0540− 0.0533i

Mean ŝ 4.2107
Mean n̂ 2.0187
γ̂1 1.3121 ∗ 103

γ̂2 1.007 ∗ 103

ŵnew 0.2541

TABLE III
EVALUATION MEASURES. THE

HIGHER MSNR1 , SNR2 ,
MSSIM VALUES, THE BETTER.
THE LOWER MRMSE VALUE,

THE BETTER. THE BEST RESULTS
ARE MARKED IN BOLD

Measure Image Value
MSNR1 original 23.0838
MSNR1 standard Wiener 23.3918
MSNR1 proposed 24.5689
SNR2 original 2.0858
SNR2 standard Wiener 2.4413
SNR2 proposed 2.5406
MRMSE standard Wiener 0.2251
MRMSE proposed 0.2202
MSSIM standard Wiener 0.6995
MSSIM proposed 0.7094

E. In-Vivo Data

The proposed method (7) was also tested on in-vivo MSOT
images of mouse body, liver and brain. In-vivo MSOT images
consisted of 7 spectral bands, ranging from 740 nm to 900
nm, for mouse body, 9 spectral bands, ranging from 680 nm to
900 nm, for mouse liver, and 10 spectral bands, ranging from
680 nm to 900 nm, for mouse brain. The summary statistics
are provided in Table IV together with the quality measures in

Table V.

Fig. 7. Visual performance of the proposed method on phantom image.

The performance of quality measures SNR1,MSE and SSIM
across spectral bands is displayed in Figure 9. Figure 10 is for
visual performance of the proposed method for both background
and object areas in the image. A more zoomed-in view of the
original image, image denoised using standard Wiener filtering
in Fourier domain as well as the image denoised using the
proposed method is provided in Figure 8.

As we can see from Table IV, the AR(1) model parameter
ĉ ≈ 0.39 + 0.4i for mouse body, ĉ ≈ 0.88 + 0.85i for mouse
liver and ĉ ≈ 0.67+0.67i for mouse brain, which again proves
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the point that the backgrounds of in-vivo multispectral pho-
toacoustic images, when mean-corrected, can be successfully
considered as stationary processes. We can see that again nearly
round shape of the filter was favored by the algorithm. This
indicates that the edges of in-vivo mouse images are distributed
similarly to those of the phantom image which justifies the
suitability of the phantom for this study. We can see from
Table V that the proposed method slightly outperforms the
standard Wiener filtering in Fourier domain in terms of all the
quality measures and for all three types of images. Moreover,
we can see from Figure 9 that better performance is visible
more or less across different spectral bands. Similarly as for
phantom data, Figure 10 clearly shows that the background
of the image is substantially smoothed (see sub-figures (a),
(c), (d), both surface and edge plots) when using the proposed
method, while the important edges in the object are preserved
(see sub-figures (b), (d), (f), especially edge plots). A reader
can take a more zoomed-in look at this in Figure 8.

TABLE IV
SUMMARY STATISTICS FOR In-Vivo DATA

Mouse body Mouse liver Mouse brain
ĉ 0.3910 + 0.4021i 0.8763 + 0.8497i 0.6715 + 0.6683i
ĉ0 −0.0557− 0.0573i −0.1034− 0.1003i −0.0686− 0.0683i

Mean ŝ 28.3599 373.0694 75.5633
Mean n̂ 12.7495 61.2683 23.7770
γ̂1 1.6378 ∗ 103 1.5227 ∗ 103 1.3059 ∗ 103

γ̂2 1.4643 ∗ 103 1.7377 ∗ 103 1.3107 ∗ 103

ŵnew 0.0248 0.0318 0.0834

TABLE V
EVALUATION RESULTS. THE HIGHER MSNR1, SNR2,MSSIM VALUES,

THE BETTER. THE LOWER MRMSE VALUE, THE BETTER. THE BEST
RESULTS ARE MARKED IN BOLD

Measure Image Mouse body Mouse liver Mouse brain
MSNR1 original 25.1408 26.1307 27.7497
MSNR1 standard Wiener 25.1833 26.3477 28.1611
MSNR1 proposed 25.3576 26.5282 28.3412
SNR2 original 2.2244 6.0891 3.1780
SNR2 standard Wiener 2.3138 6.1591 3.3177
SNR2 proposed 2.3145 6.1623 3.3245
MRMSE standard Wiener 0.0426 0.0349 0.0298
MRMSE proposed 0.0364 0.0293 0.0273
MSSIM standard Wiener 0.9331 0.9155 0.8879
MSSIM proposed 0.9453 0.9276 0.8917

VI. DISCUSSION

In this work, the problem of artifact removal and denoising of
multispectral photoacoustic images was considered. This study
focused towards in-vivo images, where the level of noise is
not known a priori. The regularized Wiener filtering in Fourier
domain was applied, where only a family of filters having an
anisotropic elliptical shape was considered and regularization
was achieved by the two radii of an ellipse. Although in the
presented experiments nearly round filter shapes were favored,
the method remains flexible and can be applied to the cases,
where edges are distributed mostly along one of the two axis
in the frequency domain.

To estimate power spectral densities of both noise and
signal, the autoregressive power 1 (AR(1)) model was adopted
that exploits the spectral information of multispectral PAI.
Minimizing the negative log-likelihood function of the unknown

parameters c0, c of the AR(1) model for all experiments gave
estimates of c less than 1. According to the general theory of
autoregressive models, this indicates that the signal is stationary
and justifies our choice of using the AR(1) model. An important
point to note is that one needs to mean-correct a multispectral
photoacoustic image before applying the AR(1) model. By
doing this, noise can be guaranteed to be zero-centered and
the mean trend can be successfully removed from an image.

The filter preserved image edges by creating the edge images
of the original and the denoised image and superimposing a
weighted contribution of the two edge images to the resulting
final image. Probabilistic weights were used. The motivation
behind using this method was that (a) it can be applied in a post-
processing step, since it is impossible to track edge coordinates
when the edge map undergoes Fourier transformation; (b)
it is easy to implement, with low computational cost; (c)
sufficient edge preservation results were obtained already with
this method. However, we do acknowledge that more advanced
edge preservation methods exist and edge enhancement or
preservation is, in fact, a separate research area. Therefore,
finding the best edge preserving method that would achieve
the best denoising results when combined with our proposed
method remains out of the scope for this work.

Another important point to note is that only high-frequency
noise can be successfully removed by this method and low-
frequency noise that is hardly differentiable from an object will
remain. Therefore, for limited-angle artifacts, only the high-
frequency components of them will be removed. An interesting
follow-up study would be to treat the filter centers as additional
parameters, or to increase the number of ellipses in the filter
to more than one. In this way, multiple regions of noise and
artifacts could be captured without relying on the assumption
that they occur only in high frequency regions. However, we
leave this for future investigations.

In addition, we work with reconstructed images in the
frequency domain. In this way, we reduce the time spent in
algorithmic computations, as compared to that in the signal
domain. This has been demonstrated in the work of Yao et.al.
[7], where many CPUs were used for parallel computation of
their proposed reconstruction algorithm. Moreover, working in
the image domain is beneficial as we are able to exploit the
relations between pixels in a spatial 2D space. Without doubt,
the proposed algorithm can be applied to the signal domain
as well or in other words, to data obtained before the image
reconstruction step. To achieve this, a filter needs to be simply
modified to fit 1D cases. We note, however, that working in
a 1D space is an easier option because an elliptical shape is
not possible for 1D space and only a ball-shaped filter could
be used (a ‘ball’ in R is simply an interval). This means that
we do not exploit spatial relations when working in the signal
domain.

In this work we demonstrated that the proposed method has
better denoising and fine details preservation capabilities when
compared to those of the standard Wiener filtering in Fourier
domain which suggests that this could be a useful denoising
technique for other in-vivo multispectral photoacoustic studies
and that the method offers room for further improvement and
extension towards other imaging modalities as well.
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Fig. 8. Visual performance of the proposed method for mouse liver image. ‘1’ denotes stomach and ‘2’ denotes spinal cord.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9. SNR1, MSE and SSIM measures across different spectral bands. (a)-(c) Mouse body. (d)-(f) Mouse liver. (g)-(i) Mouse brain.



0278-0062 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2016.2550624, IEEE
Transactions on Medical Imaging

KAZAKEVICIUTE et al.: MULTISPECTRAL PAI ARTIFACT REMOVAL AND DENOISING USING TIME SERIES MODEL-BASED SPECTRAL NOISE ESTIMATION 11

(a) (b)

(c) (d)

(e) (f)

Fig. 10. Visual performance of the proposed method. (a)-(b) Mouse body. (c)-(d) Mouse liver. (e)-(f) Mouse brain. (a), (c), (e) The performance for image
background. (b), (d), (f) The performance for image object. The edges in a small local background patch are detected with MATLAB built-in function edge
and default parameter values. Surface plots of background and object patches (the location of which is marked by a yellow squares) are also included. Note
that only the first spectral band of each image is displayed, for simplicity.
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APPENDIX
PROOF OF PROPOSITION 4.1

If (12) holds and F (y)0(λij) = 1, we have the following:

F (y)1(λij) = c0 + c+ F (v)1(λij),

F (y)2(λij) = c0 + cF (y)1(λij) + F (v)2(λij),

...
F (y)k(λij) = c0 + cF (y)k−1(λij) + F (v)k(λij),

...
F (y)B(λij) = c0 + cF (y)B−1(λij) + F (v)B(λij).

Then

F (v)1(λij) = F (y)1(λij)− c− c0,
F (v)2(λij) = F (y)2(λij)− cF (y)1(λij)− c0,

...
F (v)k(λij) = F (y)k(λij)− cF (y)k−1(λij)− c0,

...
F (v)B(λij) = F (y)B(λij)− cF (y)B−1(λij)− c0.

Now we exploit the assumption that at each position (i, j, k)
noise vijk is distributed normally with mean 0 and variance
σ2. This implies that we add some relation between different
time series, assuming that noise across different time series has
the same variance. We construct the log-likelihood function:

logL(σ2, c0, c) = −MNB log(2πσ2)

− 1

2σ2

M∑
i=1

N∑
j=1

B∑
k=1

|F (y)k(λij)− cF (y)k−1(λij)− c0|2 .

We can estimate σ2 by maximizing the log-likelihood, i.e. by
minimizing the negative log-likelihood:

σ̂2 = arg min
σ2

[
− logL(σ2, c0, c)

]
= arg min

σ2

[
MNB log(2πσ2)

+
1

2σ2

M∑
i=1

N∑
j=1

B∑
k=1

|F (y)k(λij)− cF (y)k−1(λij)− c0|2
]
.

We calculate the derivative:

∂
[
− logL(σ2, c0, c)

]
∂σ2

=
MNB

σ2

− 1

2(σ2)2

M∑
i=1

N∑
j=1

B∑
k=1

|F (y)k(λij)− cF (y)k−1(λij)− c0|2 .

Setting this to 0 we get

MNB

σ2
=

=
1

2(σ2)2

M∑
i=1

N∑
j=1

B∑
k=1

|F (y)k(λij)− cF (y)k−1(λij)− c0|2 ,

(15)

σ̂2 =

=
1

2MNB

M∑
i=1

N∑
j=1

B∑
k=1

|F (y)k(λij)− cF (y)k−1(λij)− c0|2 .

(16)

However, c0 can be expressed via c as

ĉ0 = arg min
c0

[− logL(σ2, c0, c)].

Let’s denote F (y)k(λij) − cF (y)k−1(λij) − c0 = U + iV ,
where U is the real part and V is the imaginary part of the
complex number. Similarly, let c0 = A+ iB. Then the partial
derivatives are

∂
[
− logL(σ2, c0, c)

]
∂A

=
1

σ2

M∑
i=1

N∑
j=1

B∑
k=1

U,

∂
[
− logL(σ2, c0, c)

]
∂B

=
1

σ2

M∑
i=1

N∑
j=1

B∑
k=1

iV.

Equating these to zero we get

1

σ2

M∑
i=1

N∑
j=1

B∑
k=1

U = 0, ,
1

σ2

M∑
i=1

N∑
j=1

B∑
k=1

iV = 0.

If these are equal to 0, their sum are also equal to zero and
we get

1

σ2

M∑
i=1

N∑
j=1

B∑
k=1

(U + iV ) = 0,

M∑
i=1

N∑
j=1

B∑
k=1

[F (y)k(λij)− cF (y)k−1(λij)− c0] = 0,

M∑
i=1

N∑
j=1

B∑
k=1

[F (y)k(λij)− cF (y)k−1(λij)] = MNBc0,

ĉ0 =
1

MNB

M∑
i=1

N∑
j=1

B∑
k=1

[F (y)k(λij)− cF (y)k−1(λij)] .

(17)

We note that estimating n is equivalent to estimating σ2 because
n(λij) = V ar|F (V )(λij)| = σ2. Therefore,

n̂ =
1

2MNB

M∑
i=1

N∑
j=1

B∑
k=1

|F (y)k(λij)− cF (y)k−1(λij)− ĉ0|2 ,

where ĉ0 is as defined in (17).
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