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Abstract.

In this paper we propose a new estimation method for binary quantile regres-

sion and variable selection which can be implemented by an iteratively re-weighted

least squares approach. In contrast to existing estimators, this method is compu-

tationally simple, guaranteed to converge to a unique solution and implemented

with standard software packages. We demonstrate our methods using Monte-Carlo

experiments and then apply the method to the widely used work-trip mode choice

data analysis. The results indicate that the proposed estimators work well in finite

samples.

Keywords: Adaptive lasso, binary regression, iteratively re-weighted least squares,

quantile regression, smoothed maximum score estimator, work-trip mode choice,

variable selection,

1



Binary QR & Var selection: New approach

1 Introduction

Applications of regression models for binary response are very common and mod-

els such as logistic regression and probit regression, are widely used in many fields.

However, these conventional binary regression models, focus on the estimation of the

conditional mean function, which is not always the prime interest for a researcher.

Also, they assume that the errors are independent of the regressors, which is rarely

the case in practice. Quantile regression (Koenker (2005)) extends the mean re-

gression model to conditional quantiles of the response variable and can provide

estimation for a family of quantile functions that describe the entire underlining

distribution of the response variable. Furthermore, quantile regression parameter

estimates are not biased by a location-scale shift of the conditional distribution of

the dependent variable. Quantile regression has been used by many researchers in

different fields and has also been extended to the analysis of censored data, count

data and proportions.

The potential benefits of binary quantile regression have been recognised by

several authors (e.g. Manski (1975), Horowitz (1992), Kordas (2006) and Benoit

and Van den Poel (2012)) who developed different estimation techniques for the

binary quantile regression model.

The general binary regression model is defined as:

y∗ = x′β + εi,

y = I{y∗ ≥ 0},
(1)

where, y∗i is a continuous, scalar latent variable, y is the observed binary outcome

of this latent variable, I(·) is the indicator function, x is a p×1 vector of explanatory

variables, β is a p×1 vector of parameters and ε is a scalar random error term. If the

distribution of ε conditional on x is known up to a finite set of parameters, β can be

estimated by different techniques, including maximum likelihood. If it is assumed

that ε has a Normal distribution then the binary probit model arises, whereas, if a

logistic distribution is assumed then the model (1) becomes the binary logit model.
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Specifying the distribution of ε a priori, will yield inconsistent estimators if the

distribution of ε is misspecified. A more flexible model is obtained by imposing only

one assumption on ε, the quantile restriction Qτ (εi|xi) = 0.

Let Qτ (y∗|x) denote the conditional quantile of the latent variable y∗ given x,

defined as:

Qτ (y∗|x) ≡ F−1y∗ (τ |x) ≡ x′β(τ),

where F (·) is the distribution function of the latent variable y∗ and τ ∈ [0, 1].

By the equivalence property to monotone transformations of the conditional

quantile function (Powell (1986)), the τ th conditional quantile function of the ob-

served variable yi in the model (1) can be expressed as:

Qτ (y|x) = I{x′β(τ) ≥ 0}. (2)

Binary quantile regression was first introduced by Manski (1975, 1985). In these

papers he introduced the Maximum Score Estimator (MSE), which requires very

weak assumptions on the relation of errors to regression variables and can accommo-

date for heteroscedasticity of unknown form. Estimates of the regression parameters

in model (1) can be obtained by:

β̂(τ) = arg max
{β:‖β‖=1}

n∑
i=1

[yi − (1− τ)]I{x′iβ(τ) ≥ 0}, (3)

where, (xi, yi, i = 1, ..., n) is a random sample of observation and 0 < τ < 1 is

the τ th regression quantile. Identification of β is only possible up to a scale, thus

to make estimation possible a scale normalisation is necessary. Manski (1975, 1985)

used the normalisation ||β|| = 1, where || · || denotes the Euclidean norm.

Manski (1985) provided the conditions under which the maximum score and

binary quantile regression estimators are consistent. However, this work faces im-

portant technical drawbacks in both optimising the objective function and inferring
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the regression parameters. The rate of convergence of β̂(τ) and its asymptotic dis-

tribution were derived by Cavanagh (1987). Kim and Pollard (1990) showed that

it is not asymptotically normal, but the estimator converges in distribution to the

maximum of a complicated multidimensional stochastic process. Furthermore, the

model is nonlinear in parameters thus its estimation is computationally more de-

manding than conventional linear quantile regression models. Delgado et al. (2001)

attempted to solve the problem by using sub-sampling methods to form confidence

intervals. They provided simulation evidence that suggests inconsistency of the

bootstrap, a result that was later proved by Abrevaya and Huang (2005).

The maximum score estimator has a slow rate of convergence and a complicated

asymptotic distribution because it is obtained by maximising a step function. To

remedy some of these shortcomings Horowitz (1992) developed a smoothed max-

imum score estimator (SMSE) under a linear median regression specification for

the latent variable in the binary model, which can be computed using standard

optimisation routines. Kordas (2006) extended this estimator to a family of con-

ditional quantile functions giving the opportunity for a complete understanding of

the conditional distribution of the latent response variable given covariates:

β̂smse(τ) = arg max
{β:|β1|=1}

n∑
i=1

[yi − (1− τ)]K

(
x′iβ(τ)

hn

)
(4)

where K is a smooth continuous function and hn is a sequence of real positive

constants converging to zero as the sample size increases. Identification of β up to

scale requires that x has at least one component whose probability distribution con-

ditional on the remaining components is absolutely continuous with respect to the

Lebesgue measure (Manski (1985)). To make estimation possible Horowitz (1992)

imposes the normalisation, |β1| = 1. This requires to arrange the components of x

appropriately, so that x1, satisfies this condition and accordingly, to re-arrange the

components of β so that β1 is the coefficient corresponding to x1. Kordas (2006)

discusses two possible normalisation methods ||β|| = 1 or |βp| = 1. In this work the

latter normalisation method was chosen.

4 4



Binary QR & Var selection: New approach

Horowitz’s approach is computationally simpler than the maximum score esti-

mator. Also, under stronger conditions than in Manski (1975, 1985), Horowitz’s

estimator converges at a faster rate and is asymptotically normally distributed.

Benoit and Van den Poel (2012) provided numerical evidence for the usefulness

of Bayesian quantile regression for binary response models based on the Asymmetric

Laplace distribution.

Although both the maximum score and smoothed maximum score estimators

have desirable asymptotic properties, they are difficult to implement in practice,

and most importantly, they do not necessarily guarantee convergence and a unique

solution. Specifically, the objective function in the maximum score estimator is

discontinuous (step-function) therefore it cannot be solved using a gradient-based

optimisation method, whereas, the objective function of the smoothed maximum

score estimator can have several local maxima, therefore stochastic search algo-

rithms are necessary to identify the global maximum (e.g. the simulated anneal-

ing algorithm suggested by Horowitz (1992)). Even though algorithms for solving

both the MSE and the SMSE are readily available these are not included in stan-

dard software packages. Furthermore, the non-standard structure of their objective

functions cannot always guarantee global convergence. These practical limitations

motivate the development of the estimator described in this chapter. An alterna-

tive estimation approach is proposed, based on a nonlinear asymmetrical weighted

loss function, which can be implemented by an iteratively reweighted least square

algorithm (IRLS). The IRLS algorithm is computationally simple and guarantees

convergence to a unique solution (Kokic et al. (1997)).

The remainder of the paper is organised as follows. Section 2 introduces the

Binary quantile regression, provides the asymptotic properties of the estimator and

describes the proposed estimation approach and the corresponding algorithm for

binary quantile regression. Section 3 introduces the method of variable selection via

the modern adaptive lasso technique and describes how this method can be imple-

mented in the framework of the binary quantile regression. An estimation approach
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and the algorithm for variable selection using a penalised binary quantile regres-

sion objective function are provided. Section 4 illustrates the proposed methods

through a Monte Carlo study and a real example. Concluding remarks are provided

in Section 5. Technical proofs can be found in the Appendix.

2 Binary quantile regression

The estimator in equation (3) can be viewed as a τ − quantile version of the

general linear binary quantile regression problem (Koenker and Bassett (1978)),

which is obtained by solving:

β̂(τ) = arg min
{β:|β1|=1}

Ru(x) (5)

where,

Ru(x) =

n∑
i=1

wi(τ)|yi − I{x′iβ(τ) ≥ 0}|

and

wi(τ) =

 τ if yi − I{x′iβ(τ) ≥ 0} ≥ 0;

(1− τ) if yi − I{x′iβ(τ) ≥ 0} < 0.

A smoothed version of the model (5) can be contracted by replacing the indica-

tor function with a smooth cumulative distribution function (cdf), K(·) (Horowitz

(1992)), such as:

β̂smse(τ) = arg min
{β:|β1|=1}

n∑
i=1

wi(τ)

∣∣∣∣yi −K (x′iβ(τ)

hn

)∣∣∣∣ (6)

where,

wi(τ) =

 τ if yi −K
(
x′iβ(τ)
hn

)
≥ 0;

(1− τ) if yi −K
(
x′iβ(τ)
hn

)
< 0.
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and K(·) satisfies the following properties,

K1 : |K(v) < M | for some finite M and v ∈ (−∞,∞)

K2 : limv→−∞K(v) = 0 and limv→∞K(v) = 1.
(7)

2.1 Estimation of the Smoothed Binary Quantile Regression Model

In this sub-section an alternative estimation approach for estimating binary

quantile regression models is developed, which is simple, is guaranteed to converge

to a unique solution and can be implemented with standard software packages.

In a recent paper, Blevins and Khan (2013) demonstrated that for binary data

the maximum score objective function in equation (5) is equivalent to the quadratic

loss objective function under the median restriction, i.e for w = 0.5. Since quantile

regression can be viewed as a generalisation of median regression, in this chapter

this work is extended to the estimation of binary regression quantiles using a non-

linear least asymmetric weighted squares (LAWS) approach. For any given quantile

the estimator in model (5) is mathematically equivalent to the nonlinear LAWS

estimator. Hence, the binary quantile regression objective function in equation (5),

under Kordas (2006) normalisation can be written as:

β̂laws(τ) = arg min
{β:|βp|=1}

n∑
i=1

wi(τ)
(
yi − I{x′iβ(τ) ≥ 0}

)2
(8)

where, β̂laws(τ) = (β̂′, 1)′ and

wi(τ) =
Ru (yi − I{x′iβ(τ) ≥ 0})
(yi − I{x′iβ(τ) ≥ 0})2

(9)

In the case of binary data it can be shown that equation (9) is equal to

wi(τ) =

 τ if yi − I{x′iβ(τ) ≥ 0} ≥ 0;

(1− τ) if yi − I{x′iβ(τ) ≥ 0} < 0.
(10)

The concept of LAWS was first introduced by Newey and Powell (1987), who

used the so-called regression expectiles to investigate the underlying conditional dis-

tribution. Recently LAWS re-gained interest in the context of semiparametric or
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geoadditive regression (see for example Schnabel and Eilers (2009) and Sobotka and

Kneib (2012)). Breckling and Chambers (1988) proposed a M-quantile regression

based on an asymmetric loss function and Jones (1994) showed that expectiles are

quantiles of a transformation of the original distribution. Nonparametric estimation

of regression expectiles was considered by Yao and Tong (1996) who used a kernel

method based on a locally linear fit. Compared to quantile regression, the LAWS

is reasonably efficient under normality conditions (Efron (1991)). Confidence inter-

vals for expectiles based on an asymptotic Normal distribution were introduced by

Sobotka et al. (2013).

2.2 Estimation Algorithm

The algorithm to estimate the model (8) is a nonlinear weighted least squares

algorithm. However, since the weights are determined by the residuals that vary

from iteration to iteration, a nonlinear IRLS approach is implemented.

To enable estimation, following Horowitz (1992), the standard Normal distribu-

tion, with cdf Φ(·) is taken as the Kernel density and a customary normalisation

βn = 1 is imposed. Then, the nonlinear binary regression estimator is obtained by

minimising the nonlinear smoothed LAWS function (slaws):

β̂slaws(τ) = arg min
{β:|βp|=1}

n∑
i=1

wi(τ)

(
yi − Φ

(
x′iβ(τ)

hn

))2

(11)

where, β̂slaws(τ) = (β̂′, 1)′ and

wi(τ) =

 τ if yi − Φ
(
x′iβ(τ)
hn

)
≥ 0;

(1− τ) if yi − Φ
(
x′iβ(τ)
hn

)
< 0.

(12)

The steps of the algorithm for fitting the binary quantile regression model are

described in Algorithm 1. These steps can be easily implemented using standard

software packages such as R or Stata.
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Algorithm 1 Binary quantile regression via nonlinear LAWS

1: Obtain an initial estimate of β by running standard nonlinear OLS regression.

2: Obtain an initial estimate of the residuals ε0i = yi − Φ

(
x′iβ̂(τ)
hn

)
.

3: Construct the weights, w0
i (τ) using equation (12) and estimate equation (11)

via nonlinear WLS regression.

4: Obtain new estimates of the residuals, ε1i = yi − Φ

(
x′iβ̂slaws(τ)

hn

)
.

5: Update the weights to obtain w1
i (τ) using equation (12).

6: Estimate equation (11) by nonlinear WLS regression.

7: Repeat steps 4 to 6 until convergence.

2.3 Asymptotic Properties

Regarding the asymptotic properties of the estimator, it can be shown that,

under the following assumptions, Theorem 1 can be established.

Assumption 1. The vectors (x′i, ε
′
i) are identically and independently distributed

random variables.

Assumption 2. Fεi(·) is a distribution function with F (0) = τ and Qτ (εi|xi) = 0

for τ ∈ (0, 1).

Assumption 3. βn ∈ B, the closure of an open convex set of <p−1.

Assumption 4. The support of xi is not contained in any proper linear subspace

of <p.

Assumption 5. The density function, fεi|xi(·) is positive in a neighborhood of 0.

Assumption 6. The weights wi(τ) are independent of the regression parameters.

Assumption 7. The n vectors xj , j = 1...p− 1 are independently distributed with

the first component of xi1 ≡ 1 for all i almost surely.

Assumption 8. 0 < P (yi = 1|xi) < 1 for almost every xi.

Theorem 1. (proof is provided in Appendix)

If hn → 0, then β̂(τ)− β0(τ)
p→ 0.

Furthermore, under regularity conditions identical to the ones in Horowitz (1992),

the estimator enjoys asymptotic properties similar to those of the maximum score
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estimator Manski (1975, 1985). In particular, the rate of convergence can be as fast

as the O(n−1/3) and it has a non-Gaussian limiting distribution.

The slower rate of convergence relative to the smoothed maximum score estima-

tor in Horowitz (1992) is due to a bias condition, where the bias of the estimator

converges at the rate of hn. This is in contrast to the rate of h2n for the smoothed

maximum score estimator. However, according to Blevins and Khan (2013) this

bias condition can be easily corrected, e.g. by using a different kernel function to

the Normal cdf, or via other bias-reducing mechanisms, such as jackknifing.

3 Variable Selection via Penalised Binary Quantile Re-

gression

Variable selection plays an important role in the model-building process. A com-

mon problem when constructing a predictive model is the large number of candidate

predictor variables. Identifying the smallest set of relevant variables has many ad-

vantages: (i) the process is cost-effective, usually simpler, and potentially faster, (ii)

it improves the prediction performance of the predictors (iii) knowledge about the

relevant variables can enhance the understanding of the underlying problem. Fur-

thermore, multicollinearity and overfitting are areas of concern when a large number

of independent variables are incorporated in a regression model.

The problem of overfitting also arises in quantile regression models. First,

Koenker (2004) developed a L1-regularisation quantile regression method to shrink

individual effects in longitudinal data towards a common value and Li and Zhu

(2008) considered the L1-norm (LASSO) regularised quantile regression. The lasso is

a regularised technique for simultaneous estimation and variable selection (Sobotka

et al. (2013)). Even though the lasso is generally able to provide consistent variable

selection and optimal prediction, scenarios exist in which the lasso selection cannot

be consistent.

To solve this problem Zou (2006) developed a new version of the lasso, the
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adaptive lasso. This is a weighted L1 penalty which allows different penalisation

parameters for different regression coefficients. The weights are determined by an

initial estimator, β̂(τ), e.g. the classical quantile regression estimator, and are used

to construct weights based on the importance of each predictor. The most important

advantage of the adaptive lasso is its oracle property, which estimators based on the

classical lasso do not enjoy. The oracle property requires that as the sample size

increases the coefficient of non-relevant terms approaches zero and the probability

of selecting the correct model goes to 1. Also, it requires that consistent model

selection does not come at the expense of efficiency: the asymptotic distribution

of the non-zero components of β̂ must be the same as the “oracle model”, when y

is regressed only on the relevant variables. Wu and Liu (2009) considered variable

selection through penalised quantile regression with adaptive lasso penalties in the

framework of a linear model.

It should be noted that in Bayesian terms, the lasso procedure can be interpreted

as a posterior mode estimate under independent Laplace priors for the regression

coefficients (Tibshirani (1996), Park and Casella (2008)). Based on this principle Li

et al. (2010) proposed a Bayesian regularized quantile regression model by assuming

that the model residuals come from the skewed Laplace distribution. The Laplace

distribution has the attractive property that it can be represented as a scale mixture

of normals with an exponential mixing density which leads to the development of a

hierarchical Bayesian interpretation of the Lasso, which can be easily estimate by

a Gibbs sampling algorithm. Benoit et al. (2013) extended this work to bayesian

lasso binary quantile regression.

In this section the modern adaptive lasso variable selection technique is extended

to Binary quantile regression, in the framework of the nonlinear LAWS approach.

Suppose that β̂(τ) is a consistent estimator of β(τ), the binary quantile regression

estimator in equation (5). Then the τ−quantile version of the adaptive lasso binary

quantile regression estimator, β̂
∗
, is given by:
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β̂
∗
(τ) = arg min

{β:|β1|=1}

n∑
i=1

wi(τ)
∣∣yi − I{x′iβ(τ) ≥ 0}

∣∣+ λn

p∑
j=1

wlassoj

∣∣βj∣∣ (13)

where, wi(τ) is defined in equation (10), wlasso = 1

|β̂(τ)|
is a known weights vector

(Zou (2006)) and λ is a nonnegative regularisation parameter which controls the level

of penalisation, with greater values implying more aggressive model selection. The

second term in equation (13) is the adaptive lasso binary quantile regression penalty

function, that is crucial for the success of the lasso.

3.1 Estimation Algorithm

In this sub-section the estimation approach to obtain the penalised binary quan-

tile regression estimator in equation (13) is presented. The approach is simple and

has the advantage of being implementable in standard software packages such as R

or Stata.

Like the estimator for non-penalised binary quantile regression, developed in

section 2, the estimator of the adaptive lasso binary quantile regression in equation

(13) is mathematically equivalent to the penalised nonlinear LAWS estimator given:

β̂
∗
adapt.lassolaws

(τ) = arg min
{β:|βp|=1}

n∑
i=1

wi(τ)
(
yi − I{x′iβ(τ) ≥ 0}

)2
+λn

p∑
j=1

wlassoj

∣∣βj∣∣
(14)

where, β̂laws(τ) is a consistent estimator of β(τ) in equation (8), wi(τ) is defined

as before, wlasso = 1

|β̂laws(τ)|
and λ is a nonnegative regularisation parameter.

Again, as in the non-penalised binary quantile regression estimator, to enable

estimation the Indicator function is replaced by the standard Normal kernel den-

sity, Φ(·). Then, the nonlinear adaptive lasso smoothed binary quantile regression

estimator is defined as:

12 12



Binary QR & Var selection: New approach

β̂
∗
adapt.lassoslaws

(τ) = arg min
{β:‖βp‖=1}

n∑
i=1

wi(τ)

(
yi − Φ

(
x′iβ(τ)

hn

))2

+λn

p∑
j=1

wlassoj

∣∣βj∣∣
(15)

where, wi(τ) is defined in equation (12), β̂slaws(τ), is a consistent estimator of

the binary quantile regression estimator in equation (11), wlasso = 1

|β̂slaws(τ)|
and λ

is a nonnegative regularisation parameter.

The estimator can be obtained by an iteratively re-weighted least square al-

gorithm (IRLS). The steps of the algorithm for fitting the adaptive lasso binary

quantile regression model are described in Algorithm 2.

Algorithm 2 Variable Selection via Penalised Binary quantile regression

1: Obtain an initial estimate for non-penalised binary quantile regression,

β̂slaws(τ), via Algorithm 1.

2: Calculate wlasso = 1

|β̂slaws(τ)|
.

3: Use the initial estimates β̂slaws(τ) to obtain an initial estimate of the residuals

ε0i = yi − Φ

(
x′iβ̂slaws(τ)

hn

)
.

4: Construct the initial weights, w0
i (τ) using equation (12).

5: Use wlasso and w0
i (τ) to optimise the objective function in equation (15) via

direct numerical optimisation.

6: Obtain new estimates of the residuals, ε1i = yi − Φ

(
x′iβ̂salaslaws(τ)

hn

)
.

7: Update the weights to obtain w1
i (τ) using equation (12).

8: Re-estimate equation (15) via direct numerical optimisation.

9: Repeat steps 6 to 8 until convergence.

Choice of λ

The selection of the tuning parameters λ should be based on a data-driven

approach to allow for increasing flexibility with the sample size. The most common

way for its selection is the method of K-fold cross-validation. This is a measure of the

out-of-sample estimation error under different configurations for tuning parameters,

without collecting additional data.
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The first step of the approach involves selecting a grid of candidate values for

λ and dividing the data into K roughly equal folds. For each candidate value of λ

the model is fitted K-1 times, each time leaving out one of the folds and the model

prediction error of computed using the Kth fold by:

Ek(λ) =
∑

i∈Kthfold

(
yi − ŷ(−i)(λ)

)2
, (16)

where, ŷ(−i)(λ) is the fitted value from the model that excludes the fold contain-

ing i.

This gives the cross-validation error

CV (λ) =
1

K

K∑
k=1

Ek(λ) (17)

The selected tuning parameter is the one that minimises the cross-validation

error.

3.2 Oracle properties

In this section we show that with the proper choice of λ ≡ λn above, the adaptive

lasso in (15) enjoys the oracle properties under the following technical conditions:

(i) Error assumption (cf Pollard (1991)): The regression errors {εi} in equation (1)

are independent and identically distributed, with τth quantile zero and a continuous,

positive density f(.) in a neighborhood of zero.

(ii) Let φ′(.) be the first derivative of the standard normal density or the second

derivative of standard normality cumulative function Φ(.). Let hn be the bandwidth

which exists a constant C > 0 and ν > 0, hn = Cn−1/(2ν+1). The design xi,

i = 1, ..., n satisfy limn→∞(
∑n

i=1 φ
′(xi)

′xix
′
i)φ
′(xi)/n = Σ, where Σ exists and is a

positive definite matrix. Denote the top-left q-by-q submatrix of Σ by ΣA and the

right-bottom (p - q)-by- (p - q) submatrix of Σ by ΣAc .

Theorem 2. (proof is provided in Appendix)

Let A = {j : βj 6= 0} and assume that |A| = q < p, then the true regression model
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depends only on a subset of x. Suppose that λn = o(
√
n) and λnn

(ν−1)/2 →∞, then

(i) β̂(adaptlasso) can identify the right subset model A.

(ii) β̂(adaptlasso) has the optimal estimation rate,

√
n

(
β̂(adaptlasso)− β(adaptlasso)

)
→ N(0, τ(1− τ)Σ−1A /f(0)2).

4 Numerical Experiments

In this section the proposed approach for binary quantile regression and vari-

able selection is demonstrated through two simulated and one real examples. The

first simulation example is carried out to examine the performance of the proposed

binary quantile regression estimator, using a nonlinear least asymmetric weighted

squares (LAWS) approach. The second simulation example demonstrates the pro-

posed approach for variable selection in binary quantile regression models. The

real example is based on the widely studied transport-choice dataset described in

Horowitz (1993). All programs were written and executed in the free statistical

package R.

4.1 Simulation Example 1 - Binary Quantile Regression

In the first simulation experiment the following model was considered for simu-

lating data:

y∗i = β0 + β1x1i + β2x2i + εi, (18)

where xpi ∼ N(0, 1), i = 1, ..., n and n = 500 and β = (−0.1,−1, 1).

For the model error εi the following three specifications were considered:

• a homoscedastic symmetric error specification: εi ∼ N(0, 1).

• a homoscedastic asymmetric error distribution: εi ∼ χ2(1), minus its median.

• a heteroscedastic error distribution: εi ∼ (2 + x1i)N(0, 1).
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[Table 1 about here.]

The model parameters were estimated using the proposed binary quantile re-

gression approach. For each case 150 Monte Carlo simulations were run. Table 1

summarises the estimated parameters and the standard errors for β0 and β1 un-

der all three error specifications1. The results of the analysis indicate that even

in a relatively small sample size the estimator works relatively well, especially in

the homoscedastic cases. Therefore, it can be concluded that the proposed binary

quantile regression estimator is a viable alternative to the smoothed maximum score

estimator given that its implementation simplicity does not come at the expense of

finite sample performance.

4.2 Simulation Example 2 - Variable Selection

In this sub-section the performance of the proposed penalised binary quantile

regression approach is investigated through a simulated example.

In this example data was simulated from the following regression model:

y∗i = x′iβ(τ) + εi, (19)

where xi ∼ N(0, 1), i = 1, ..., n, n = 200 and

β = (0.5, 1.5, 0, 0, 2, 0,−1, 1)

.

20 validation and 20 training and 200 testing observations were simulated from

the model and three homoscedastic and one heteroscedastic specifications for the

model error εi were considered,

• a homoscedastic symmetric error specification: εi ∼ N(0, 1)

• a Laplace distribution: εi ∼ Laplace(0, 1)

1The value of β2 has been normalised to 1.

16 16



Binary QR & Var selection: New approach

• a mixture of two Normal distributions: εi ∼ 0.1N(0, 1) + 0.9N(0, 9)

• a heteroscedastic error distribution: εi ∼ (2 + x1i)N(0, 1)

The model was fitted using the generated data set. The experiment was repeated

100 times. All the penalised quantile regression estimates were obtained via direct

numerical optimisation using the R function optim. The penalty parameter in lasso

λ was chosen using the a cross-validation method.

[Table 2 about here.]

In the analysis the estimated parameters were compared to the true parame-

ter values. For every data generating process the bias was calculated, which was

averaged over the 100 generated datasets from each scenario.

The results of the simulations are summarised in Table 2. It can be observed

that, in general, the proposed method performs well when comparing the estimates

β̂j with the true values βj as the majority of the estimated biases are around or

smaller than |0.1|.

4.3 Work-trip Mode-Choice Data Example

In order to assess the practical applicability of the proposed approach the method

was tested on a previously published maximum score dataset (Horowitz (1993)).

Mode choice modelling and prediction relate closely to transportation policies and

can be useful for estimating travel demand and for mitigating traffic congestion.

The dataset contains 842 observations sampled randomly from the Washington,

D.C. area transportation study for each of the following four dependent variables:

(i) the number of cars owned by traveller households, CARS, measured in car units;

(ii) the transit out-of-vehicle travel time minus automobile out-of-vehicle travel time,

DOVTT, measured in minutes; (iii) the transit in-vehicle travel time minus automo-

bile in-vehicle travel time, DIVTT, also measured in minutes; and (iv) the transit

17 17
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fare minus automobile travel cost, DCOST, measured in US dollars. The depen-

dent variable of the resulting binary choice model was CHOOSE, which equals to

1 if the car is used and 0 otherwise, representing the latent variable “willingness to

use a car”. All continuous variables were standardised to have zero mean and unit

standard deviation for better comparison with results in the literature. Scale nor-

malisation is achieved by setting the coefficient of DCOST equal to 1, as in Horowitz

(1993), to enable the comparison of the obtained results to previous research.

Table 3 provides estimates of the model parameters for the median case (τ = 0.5)

as well as a comparison with the results obtained by three different estimation

approaches, namely the smoothed maximum score estimator (Horowitz (1993)),

a mixed integer optimisation (MIP) method (Florios and Skouras (2008)) and a

Bayesian binary quantile regression (BBQR) approach based on the asymmetric

Laplace distribution (Benoit and Van den Poel (2012)).

[Table 3 about here.]

The analysis suggests that the results obtained by Horowitz (1993) are quite

different from the ones obtained by Florios and Skouras (2008), and Benoit and

Van den Poel (2012). According to Horowitz (1993), DCOST and CARS are the

most important variables influencing the work-trip mode choice, with DCOST being

by far the most important variable. In contrast, the results obtained by the other two

methods, which are very similar between them, show that the variable CARS is by

far the most important variable with the other variables having a small impact. The

difficulty in computing maximum score estimates, discussed in Section 1, has been

identified by many authors. In the context of computing estimators such algorithms

are problematic because the statistical properties of such procedures can differ from

those of exact estimates, e.g. as the ones provided by (Florios and Skouras (2008)).

The proposed LAWS approach delivers very similar estimates to the ones ob-

tained both under MIP and BBQR. Furthermore, the technique is able to provide a

more in-depth view of the relationship of the dependent variable and the covariates,
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as it allows to estimate the relationships at different parts of the distribution of

the response variable. Figure 1 illustrates the effect of covariates on the response

variable at 0.10, 0.25, 0.50 , 0.75 and 0.90 quantile levels. The solid line represents

the point estimates of the regression coefficients for the different quantiles and the

dotted lines represent the upper and lower levels of a 95% confidence interval.

[Figure 1 about here.]

These results indicate that the effect of CARS and DOVTT on the unobserved

willingness to take the car become stronger for higher conditional quantiles. This

means that the effect of these variables is not constant across various quantiles of

the latent variable. Specifically, commuters who have a low willingness to use the

car are less affected by the number of cars whereas commuters with high willingness

to use a car are more affected by the number of cars. Furthermore, commuters with

increasing willingness to use a car are more affected by increasing out-of vehicle

transportation time. In addition the results indicate that CARS is the most impor-

tant variable as it has three times higher effect than the second variable, followed by

the variable DCOST. The effect of DOVTT on the unobserved willingness to take

the car is much lower than both CARS and DCOST, whereas, the respective effect

of DIVTT is very small as compared to all the other variables.

5 Conclusions

In this paper an alternative estimation approach to binary quantile regression

and variable selection is proposed. The approach is based on a nonlinear asymmet-

rical weighted loss function which can be implemented by an iteratively reweighted

least square algorithm (IRLS). Existing algorithms for fitting quantile regression

models are not computational straight forward, hence they do not necessarily guar-

antee convergence and a unique solution. Also, due to their non-standard objective

functions they cannot be computed using standard software packages. The main ad-

vantage of the proposed approach is that the IRLS algorithm converge to a unique
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solution, whereas its computational simplicity makes it an attractive alternative to

conventional methods. The results of the simulation study indicate that the ease of

implementation does not come at the expense of finite sample performance.
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Appendix A

Proof of theorem 1

Proof. To establish consistency we use the results of Blevins and Khan (2013), who

applied the standard consistency theorem of Newey and McFadden (1994) (Theorem

2.1). The proof is similar to those in Manski (1985) and Horowitz (1992).

Let Sτ (β(τ)) = [(2Pr(y = 1|xi)− 1)− (1− 2τ)] I(x′iβ(τ) ≥ 0) be the popula-

tion score function. Under Assumptions 4 and 5, for any 0 < τ < 1, Sτ (β(τ)) ≤

Sτ (β0(τ)) with equality only if β(τ) = β0(τ) (Manski (1985)’s Lemma 3 and Corol-

lary 2).

As in Blevins and Khan (2013) the observations are iid by Assumption 1, com-

pactness of B is established by Assumption 3 and the objective function is a sample

average of bounded functions that are continuous in the parameters. Continuity of

the objective function follows from Assumption 5.

To establish consistency it is necessary to show that as n → ∞ the stochastic

objective function Sτ (β(τ)) converges in probability to a limit function Sτ (β0(τ)).

Since β̂(τ) maximises Sτ (β(τ)) by definition it follows that β̂(τ) − β0(τ)
p→ 0

(Amemiya (1985), Theorem 4.2.1).

Blevins and Khan (2013) proved that under the above assumptions Sτ (β(τ))
p→
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Sτ (β0(τ)) by showing that, under the assumption hn → 0 the component of the

limiting objective function that depends on β(τ) is

E
[
[1− 2(Pr(y = 1|xi))](I{x′iβ(τ) ≥ 0} − I{x′iβ0(τ) ≥ 0})

]
,

which is clearly 0 for β(τ) = β0(τ).

In a similar manner, under Assumption 6, the component of the limiting objec-

tive function that depends on β(τ) in this case is

E
[
[1− 2(Pr(y = 1|xi))− (1− 2τ)](I{x′iβ(τ) ≥ 0} − I{x′iβ0(τ) ≥ 0})

]
,

which is also clearly 0 for β(τ) = β0(τ). By the strict monotonicity of K(·) and

Assumptions 2, 4 and 5, it follows that this component is also strictly positive if

β(τ) 6= β0(τ) for all 0 < τ < 1. Therefore it is also minimised at β0(τ). Moreover,

let S∗n,τ denote the objective function in (8). Under Assumptions 3 and 7 by Lemma 4

of Horowitz (1992) |Sn,τ−S∗n,τ |
p→ 0 a.s. uniformly. Thus, consistency is established.

Proof of theorem 2

Proof. Let β = bbeta∗ + u√
n

. For a fixed 0 < τ < 1, based on (15) (15) (exactly

same inference based on equation (14))

consider

Γn(u) =

n∑
i=1

wi(τ)

(
yi − Φ

(
x′i(β

∗ + u√
n

)

hn

))2

+

+λn

p∑
j=1

wlassoj

∣∣∣∣β∗j +
uj√
n

∣∣∣∣ .
Let û(n) = argminuΓn(u), then û(n) =

√
n

(
β̂
∗
adapt.lassoslaws

(τ) − β∗
)
. Using the

Taylor expansion and let

H(n)(u) = Γn(u)− Γn(0),

then
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H(n)(u) = A
(n)
1 +A

(n)
2 +A

(n)
3 +A

(n)
4 ,

with

A
(n)
1 =

n∑
i=1

wi(τ)

(
yi − φ

(
x′iβ

∗

hn

)
x′iu√
n
u

A
(n)
2 =

1

2

n∑
i=1

wi(τ)φ′
(
x′iβ

∗

hn

)
u′
xix

′
i

n
u

A
(n)
3 =

λn√
n

p∑
j=1

ŵj
√
n

(
|β∗ +

uj√
n
| − |β∗j |

)

A
(n)
4 = n−3/2

n∑
i=1

wi(τ)
1

6
φ′′

(
x′iβ̃

∗

hn

)
(x′iu)3.

where φ() is the derivative function of Φ(.), β̃∗ is between β∗ and β∗ + u√
n

. Now

we show the asymptotic limit of each term.

First, note that wi(τ)(yi−φ
(
x′iβ

∗

hn

)
= ρτ (yiφ

(
x′iβ

∗

hn

)
), where ρτ (.) is the ‘check

function’ in quantile regression, so that the asymptotic limit of ρτ (yiφ

(
x′iβ

∗

hn

)
)

can be derived along the same line as that in linear and nonlinear quantile regres-

sion (Koenker, 2005; Oberhofer and Haupt, 2015). Then combining the central

limit theory and asymptotic normality of quantile regression, we have A
(n)
1 →d

u′N

(
0, τ(1− τ)Σ−1A /f(0)2

)
.

Second, for the termA
(n)
2 , note that wi(τ)φ′

(
x′iβ

∗

hn

)
xix′i
n →p τ(1−τ)Σ−1/f(0)2,

so A
(n)
2 →p

1
2τ(1− τ)u′Σ−1A u/f(0)2.

The limit property of A
(n)
3 follows standard discussion of adaptive lasso (the

proof of Theorem 2 of Zou (2006)):

λn√
n
ŵj
√
n

(
|β∗j +

uj√
n
| − |β∗j

)
→p


0 if βj 6= 0

0 if βj = 0if uj = 0

∞ if βj = 0if uj 6= 0.

The A
(n)
4 satisfies 6

√
nA

(n)
4 is bounded due to the exponential form of normalily

density and its derivatives.
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Therefore, by Slutsky’s theorem, we see that H(n)(u) →d H(u) for every u,

where

H(u) = τ(1− τ)u′AΣAuA − 2u′AWA

if uj = 0 for j /∈ A, and W = N

(
0, τ(1 − τ)Σ

)
. H(n) is convex and the unique

minimum of H

23 23



Binary QR & Var selection: New approach

References

Abrevaya, J. and Huang, J. (2005). On the bootstrap of the maximum score esti-

mator. Econometrica, 73(4):1175–1204.

Amemiya, T. (1985). Advanced econometrics. Harvard university press.

Benoit, D. F., Alhamzawi, R., and Yu, K. (2013). Bayesian lasso binary quantile

regression. Computational Statistics, 28(6):2861–2873.

Benoit, D. F. and Van den Poel, D. (2012). Binary quantile regression: a bayesian

approach based on the asymmetric laplace distribution. Journal of Applied Econo-

metrics, 27(7):1174–1188.

Blevins, J. R. and Khan, S. (2013). Local nlls estimation of semi-parametric binary

choice models. The Econometrics Journal, 16(2):135–160.

Breckling, J. and Chambers, R. (1988). M-quantiles. Biometrika, 75(4):761–771.

Cavanagh, C. (1987). Limiting behavior of estimators defined by optimization.

unpublished manuscript (Department of Economics, Harvard University).

Delgado, M., Rodrıguez-Poo, J., and Wolf, M. (2001). Subsampling inference in

cube root asymptotics with an application to manskis maximum score estimator.

Economics Letters, 73(2):241–250.

Efron, B. (1991). Regression percentiles using asymmetric squared error loss. Sta-

tistica Sinica, 1:93–125.

Florios, K. and Skouras, S. (2008). Exact computation of max weighted score esti-

mators. Journal of Econometrics, 146(1):86–91.

Horowitz, J. (1992). A smoothed maximum score estimator for the binary response

model. Econometrica: Journal of the Econometric Society, 60(3):505–531.

24 24



Binary QR & Var selection: New approach

Horowitz, J. (1993). Semiparametric estimation of a work-trip mode choice model.

Journal of Econometrics, 58(1):49–70.

Jones, M. (1994). Expectiles and m-quantiles are quantiles. Statistics & Probability

Letters, 20(2):149–153.

Kim, J. and Pollard, D. (1990). Cube root asymptotics. The Annals of Statistics,

18(1):191–219.

Koenker, R. (2004). Quantile regression for longitudinal data. Journal of Multivari-

ate Analysis, 91(1):74–89.

Koenker, R. (2005). Quantile regression, volume 38. Cambridge university press.

Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica: journal

of the Econometric Society, 46(1):33–50.

Kokic, P., Chambers, R., Breckling, J., and Beare, S. (1997). A measure of produc-

tion performance. Journal of Business & Economic Statistics, 15(4):445–451.

Kordas, G. (2006). Smoothed binary regression quantiles. Journal of Applied Econo-

metrics, 21(3):387–407.

Li, Q., Xi, R., Lin, N., et al. (2010). Bayesian regularized quantile regression.

Bayesian Analysis, 5(3):533–556.

Li, Y. and Zhu, J. (2008). L1-norm quantile regression. Journal of Computational

and Graphical Statistics, 17(1):163–185.

Manski, C. (1975). Maximum score estimation of the stochastic utility model of

choice. Journal of Econometrics, 3(3):205–228.

Manski, C. (1985). Semiparametric analysis of discrete response:: Asymptotic prop-

erties of the maximum score estimator. Journal of Econometrics, 27(3):313–333.

Newey, W. K. and McFadden, D. (1994). Large sample estimation and hypothesis

testing. Handbook of econometrics, 4:2111–2245.

25 25



Binary QR & Var selection: New approach

Newey, W. K. and Powell, J. L. (1987). Asymmetric least squares estimation and

testing. Econometrica: Journal of the Econometric Society, 55(4):819–847.

Park, T. and Casella, G. (2008). The bayesian lasso. Journal of the American

Statistical Association, 103(482):681–686.

Powell, J. (1986). Censored regression quantiles. Journal of econometrics, 32(1):143–

155.

Schnabel, S. K. and Eilers, P. H. (2009). Optimal expectile smoothing. Computa-

tional Statistics & Data Analysis, 53(12):4168–4177.

Sobotka, F., Kauermann, G., Schulze Waltrup, L., and Kneib, T. (2013). On confi-

dence intervals for semiparametric expectile regression. Statistics and Computing,

23(2):135–148.

Sobotka, F. and Kneib, T. (2012). Geoadditive expectile regression. Computational

Statistics & Data Analysis, 56(4):755–767.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of

the Royal Statistical Society. Series B (Methodological), pages 267–288.

Wu, Y. and Liu, Y. (2009). Variable selection in quantile regression. Statistica

Sinica, 19(2):801.

Yao, Q. and Tong, H. (1996). Asymmetric least squares regression estimation: A

nonparametric approach. Journal of nonparametric statistics, 6(2-3):273–292.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American

statistical association, 101(476):1418–1429.

26 26



Binary QR & Var selection: New approach

Table 1: Simulation Example 1 - Estimated Parameters and (Standard Deviations)

Normal Heteroscedastic Asymmetric

τ β0 β1 β0 β1 β0 β1
0.10 -1.21 -0.97 -2.09 -1.90 -0.52 -1.01

(0.05) (0.05) (0.11) (0.12) (0.03) (0.04)

0.25 -0.66 -0.91 -1.1 -1.36 -0.33 -0.99
(0.04) (0.05) (0.06) (0.09) (0.03) (0.04)

0.50 -0.09 -0.89 0.01 -0.83 -0.02 -0.94
(0.03) (0.04) (0.04) (0.05) (0.03) (0.04)

0.75 0.48 -0.90 0.96 -0.49 0.61 -0.86
(0.04) (0.04) (0.05) (0.05) (0.04) (0.05)

0.90 1.01 -0.94 1.87 -0.27 1.54 -0.87
(0.05) (0.05) (0.08) (0.07) (0.07) (0.06)
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Table 2: Simulation Example 2 - Estimated Bias for Model Parameters

τ β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6
Normal (0,1)

0.10 0.30, 0.09 0.03 -0.004 0.05 -0.02 -0.03
0.25 0.08 0.03 -0.0009 -0.02 0.04 -0.01 -0.04
0.5 -0.05 0.01 -0.02 -0.03 0.008 -0.02 0.009
0.75 -0.09 -0.02 -0.01 0.007 0.07 -0.03 -0.04
0.90 -0.26 0.099 0.008 0.003 0.11 -0.007 -0.06

Laplace(0, 1)
0.10 0.08 0.08 0.04 0.05 0.09 -0.004 -0.04
0.25 -0.01 -0.08 -0.07 -0.01 -0.08 0.009 0.001
0.5 -0.003 -0.03 -0.04 -0.04 -0.02 -0.02 -0.03
0.75 0.06 0.02 -0.07 -0.06 0.04 -0.1 -0.11
0.90 -0.07 -0.12 -0.08 -0.11 -0.09 -0.03 -0. 13

Normal mixture
0.10 0.34 0.09 -0.01 -0.04 0.20 -0.009 -0.09
0.25 0.18 0.06 -0.01 0.02 0.09 -0.004 -0.06
0.5 -0.04 0.0008 -0.04 -0.01 0.02 -0.03 -0.04
0.75 -0.18 0.04 -0.03 -0.01 0.04 -0.03 -0.08
0.90 -0.35 0.02 -0.04 -0.04 0.09 -0.02 -0.06

Heteroscedastic model
0.10 0.05 0.40 0.06 -0.08 0.09 -0.05 -0.06
0.25 0.12 0.05 0.02 0.005 -0.22 -0.01 0.08
0.50 -0.29 -0.22 -0.03 -0.06 -0.17 -0.04 -0.02
0.75 0.03 0.03 -0.05 -0.07 0.01 -0.09 0.10
0.90 -0.10 -0.03 -0.09 0.16 0.13 -0.0002 -0.17
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Table 3: Mode-Choice Data: Model Parameters Estimates

AUTHOR INTERCEPT CARS DOVTT DIVTT DCOST Method
Horowitz (1993) -0.276 0.052 0.011 0.005 1 MSCORE
Florios and Skouras (2008) 5.122 3.916 0.962 0.401 1 MIP
Benoit and Van den Poel(2012) 4.825 3.375 1.018 0.282 1 BBQR
Current study -1.493 3.545 0.455 0.274 1 LAWS
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Figure 1: Mode-choice Dataset: Quantile Curves for Model Parameters
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