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Abstract

Analysis of massive datasets is challenging owing to limitations of computer primary memory. Composite quantile
regression (CQR) is a robust and efficient estimation method. In this paper, we extend CQR to massive datasets and
propose a divide-and-conquer CQR method. The basic idea is to split the entire dataset into several blocks, applying
the CQR method for data in each block, and finally combining these regression results via weighted average. The
proposed approach significantly reduces the required amount of primary memory, and the resulting estimate will be
as efficient as if the entire data set was analyzed simultaneously. Moreover, to improve the efficiency of CQR, we
propose a weighted CQR estimation approach. To achieve sparsity with high-dimensional covariates, we develop a
variable selection procedure to select significant parametric components and prove the method possessing the oracle
property. Both simulations and data analysis are conducted to illustrate the finite sample performance of the proposed
methods.

Keywords: Massive dataset; Divide and conquer; Composite quantile regression; Variable selection.

1. Introduction

In recent years, statistical analysis of massive data sets has become a subject of increased interest. Datasets grow
in size in part because they are increasingly being collected by ubiquitous information sensing mobile devices, remote
sensing technologies, and wireless sensor networks, among others. It is not uncommon that databases have hundreds
of fields, billions of records and terabytes of information. For instance, Wal-mart handled more than 140 million
customer transactions per week in 2014, and Facebook had 1.55 billion monthly active users in the third quarter of
2015. However, the number of observations that can be stored in primary memory is often restricted. The available
memory, though large, is finite. Many computing environments also limit the maximum array size allowed and this
can be much smaller and even independent of the available memory. Therefore, the surge of massive data presents
challenges to both computer scientists and statisticians in terms of data storage, computation, and statistical analysis.

Notwithstanding that new statistical thinking and methods are needed for massive data sets, our focus is on fitting
standard statistical models to massive data sets whose size exceeds the capacity of a single computer. There are two
major challenges in analyzing massive data sets: 1) the data can be too big to be held in a computer’s memory;
and 2) the computing task can take too long to wait for the results. These barriers can be approached either with
newly developed statistical methodologies or computational methodologies. Some statisticians have made important
contributions and are pushing the frontier. Examples are subsampling based approaches (Liang et al. 2013; Kleiner et
al. 2014; Ma et al. 2015) and divide and conquer approaches (Lin and Xi 2011; Chen and Xie 2014; Schifano et al.
2016); see Wang et al. (2015) for a review.

In this paper, we consider a divide and conquer approach for massive data sets. “Divide and conquer” (or “divide
and recombine”, or “split and conquer”, or “split and merge”), in particular, has become a popular approach for the
analysis of large complex data. The approach is appealing because the data are first divided into subsets and then
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numeric and visualization methods are applied to each of the subsets separately. The divide and conquer approach
culminates by aggregating the results from each subset to produce a final solution. Our task is to investigate whether
the combined overall result can be as good as the result obtained from analyzing the entire dataset. Recently, Fan et
al. (2007) considered a divide and conquer algorithm for the linear model based on least square method. Lin and Xi
(2011) developed a computation and storage efficient algorithm for estimating equations in massive data sets using
a divide and conquer algorithm. Schifano et al. (2016) extended the work of Lin and Xi (2011) to online updating
for stream data. Chen and Xie (2014) considered a divide and conquer approach for generalized linear models where
both the sample size and the number of covariates are large. Xu et al. (2017) proposed a novel block average quantile
regression method for massive dataset.

Existing estimation procedures for massive data sets were built on either least squares or quantile regression meth-
ods. However, the least squares method is sensitive to outliers and does not perform well when the error distribution
is heavily skewed. The quantile regression method is an obvious alternative to the least squares. However, the relative
efficiency of the quantile regression can be arbitrarily small when compared with the least squares.

In contrast to the above methods, the composite quantile regression (CQR) was first proposed by Zou and Yuan
(2008) for estimating the regression coefficients in the classical linear regression model. Zou and Yuan (2008) showed
that the relative efficiency of the CQR estimator compared with the least squares estimator is greated than 70%
regardless of the error distribution. Furthermore, the CQR estimator could be more efficient and sometimes arbitrarily
more efficient than the least squares estimator. Based on CQR, Kai et al. (2010) proposed the local polynomial
CQR estimators for estimating the nonparametric regression function and its derivative. Kai et al. (2011) studied
semiparametric CQR estimates for the semiparametric varying-coefficient partially linear model. For other references
about CQR method see Tang et al. (2012, 2015), Jiang et al. (2012, 2013, 2014, 2015, 2016a, 2016b, 2018), Ning and
Tang (2014), Zhang et al. (2016), Tian et al. (2016), Zhao et al. (2017) and so on. These nice theoretical properties
of CQR in linear regression motivate us to consider CQR method for massive datasets. Furthermore, we study the
construction of confidence intervals and hypothesis tests.

The CQR method is a sum of different quantile regressions with equal weights. Intuitively, equal weights are
not optimal in general, and hence Jiang et al. (2012) proposed a weighted CQR (WCQR) estimation. The WCQR
is augmented using a data-driven weighting scheme. With the error distribution unspecified, the WCQR estimators
share robustness from quantile regression and achieve nearly the same efficiency as the oracle maximum likelihood
estimator for a variety of error distributions including the normal, mixed-normal, Student’s t, Cauchy distributions,
etc. Moreover, by comparing asymptotic relative efficiency theoretically and numerically, the WCQR method all
outperforms the CQR method; only when the error density is logistic or close to logistic distribution, standard CQR
has good performance compared with weighted CQR (see Zhao and Lian, 2016). Thus, we also consider WCQR
method for massive datasets.

In practice, it is common to have a large number of candidate predictor variables available, and they are included in
the initial stage of modeling for the consideration of removing potential modeling bias (Fan and Li, 2001). However,
it is undesirable to keep irrelevant predictors in the final model since this makes it difficult to interpret the resultant
model and may decrease its predictive ability. In the regularization framework, many different types of penalties
have been introduced to achieve variable selection. The L1 penalty was used in the LASSO proposed by Tibshirani
(1996) for variable selection. Fan and Li (2001) proposed a unified approach via nonconcave penalized least squares
regression, which simultaneously performs variable selection and coefficient estimation. By using adaptive weights for
penalizing different coefficients in the LASSO penalty, Zou (2006) introduced the adaptive LASSO and demonstrated
its oracle properties. Zou and Yuan (2008) studied the LASSO for CQR (CQR-LASSO). The CQR-LASSO is robust
and performs nearly like a CQR-oracle model selector. Therefore, we consider CQR-LASSO to study model selection
for massive datasets. Model selection with a fixed number of parameters has been widely pursued in the last decades.
However, to reduce possible modeling biases, many variables are introduced in practice. Fan and Peng (2004), Lam
and Fan (2008) and Fan and Lv (2011) advocated that, in most model selection problems, the number of parameters
should be large and grow with the sample size. We allow the number of parameters to depend on the sample size
under some certain conditions. We consider data sets as extraordinarily large (massive datasets), if they do not fit
into a single computer. We propose a divide and conquer approach to solve the problem and illustrate it using the
aforementioned CQR-LASSO method. However, since each selection variable is estimated from a different subset of
data, the set of non-zero elements of parameters can differ. To obtain a combined estimator, we use a majority voting
method (Meinshausen and Buhlmann, 2010; Shah and Samworth, 2013; and Chen and Xie, 2014) to estimate the true
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nonzero set.
In this paper, we consider CQR, WCQR and variable selection for massive datasets based on divide and conquer

approach. We make the following three major contributions:
(1) Xu et al. (2017) proposed a novel block average quantile regression method for massive dataset. Their method

requires a strong assumption that the covariance matrixes of each block are equal, and the number of blocks is fixed.
Zhao et al. (2017) proposed a CQR method for massive datasets which is simple average CQR results in each block.
However, their estimator requires on a strong assumption that the number of sub-datasets K is of order O(nr) where
r < 1/3 and n is the sample size of sub-datasets. We developed two methods: divide-and-conquer CQR (DC-CQR)
and divide-and-conquer WCQR (DC-WCQR). DC-CQR (or DC-WCQR) is a form of weighted average of CQR (or
WCQR) results in each block, which is asymptotically equivalent to the estimator obtained from analyzing the entire
data without additional conditions. Moreover, the order of K = o

(
n1/2

min
(
log log nmin

)−3/2
)

in Theorem 2.1 is higher
than the order of K in Zhao et al. (2017).

(2) We study the construction of confidence intervals and hypothesis tests.
(3) We study an effective and robust variable selection procedure based on the DC-WCQR method to select

significant parametric components in the linear model.
The paper is organized as follows. In Section 2, we introduce the composite quantile procedure for massive

datasets. In Section 3, the weighted composite quantile regression method is proposed. The variable selection method
is developed in Section 4. A numerical implementation is introduced in Section 5. Both simulation examples and the
application on real data are given in Section 6 to illustrate the proposed procedures. Final remarks are given in Section
7. All technical proofs are deferred to the Appendix.

2. Composite quantile regression

In the section, we propose the divide-and-conquer CQR (DC-CQR) method for massive datasets. The standard
CQR method is first reviewed.

2.1. Standard CQR method

In this paper, we consider the following linear model

yi = x⊤i β0 + εi, i = 1, . . . ,N, (2.1)

where yi is the univariate response, xi is a vector of p-dimensional covariates, β0 is the unknown parameter, εi is
independent and identically distributed unknown random error. Zou and Yuan (2008) proposed CQR method to
estimate β0 as follows

(b̂1, . . . , b̂Q, β̂
CQR) = arg min

(b1,...,bQ,β)

Q∑
q=1

N∑
i=1

ρτq
{
yi − bq − x⊤i β

}
, (2.2)

where ρτq (r) = τqr − rI(r < 0), q = 1, . . . ,Q, are Q check loss functions with 0 < τ1 < . . . < τQ < 1 and b̂q is the
estimator of bτq , bτq is the τq quantile of εi, q = 1, . . . ,Q.

Remark 2.1. In general, given Q, one can use the equally spaced quantiles at τq = q/(Q+ 1) for q = 1, . . . ,Q, see
Zou and Yuan (2008). Moreover, we can use redefined AIC or BIC criteria (Tian et al, 2016) to select Q as follows

AIC(Q) =
2
N

RS Q +
2
N

(2Q + p − 1), Q = 1, . . .Qmax,

BIC(Q) =
2
N

RS Q +
log(N)

N
(2Q + p − 1), Q = 1, . . .Qmax,

where Qmax is a possible upper bound and RS Q =
∑Q

q=1
∑N

i=1 ρτq {yi − b̂q − x⊤i β̂
CQR} is the residual sum of the estimated

CQR model. The resulting optimal value of Q is the smallest redefined AIC or BIC values.
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2.2. DC-CQR method for massive datasets

It is infeasible to solve the optimization problem in (2.2), when the sample size N is too large. Our work builds
upon the approach of Lin and Xi (2011) and Chen and Xie (2014) who introduced dividing the dataset into several
blocks with each are containable in the computer’s memory. We then implement the standard CQR method on data
in each subset and combine the results. Concretely, we now show that DC-CQR method can be obtained using the
following three key steps.

Step 2.1: Without loss of generality, the entire data set is partitioned into K subsets, so that the kth subset contains
nk observations: (xk,i, yk,i), i = 1, . . . , nk;

Step 2.2: Apply standard composite quantile regression on data within each subset, and obtain the estimators
β̂CQR

k , k = 1, . . . ,K, using the methodology in solving equation (2.2);
Step 2.3: The combined estimator DC-CQR method, as a weighted average of β̂CQR

k , k = 1, . . . ,K, is

β̂DC−CQR =

 K∑
k=1

X⊤k Xk

−1 K∑
k=1

X⊤k Xkβ̂
CQR
k ,

where Xk = (xk,1, . . . , xk,nk )
⊤.

Remark 2.2. The size of
(
X⊤k Xk, β̂

CQR
k

)
is p2 + p, so we only need to save K(p2 + p) numbers, which achieves

very efficient compression since both K and p are far less than N in practice.

2.3. Asymptotic normality of the resulting estimator

To establish the asymptotic properties of the proposed estimators, the following technical conditions are imposed.
C1. C = limN→∞

1
N X⊤X is a positive definite matrix, where X = (X⊤1 , . . . ,X

⊤
K)⊤.

C2. The error ε has cumulative distribution function F(·) and density f (·). The density f (·) is positive and
continuous at the τq-th quantile bτq .

Theorem 2.1. Suppose the sample size of the kth subset is nk = O(N/K), k = 1, . . . ,K, and that nmax/nmin = O(1).
Assume that Conditions C1 and C2 are satisfied and K = o

(
n1/2

min
(
log log nmin

)−3/2
)
, then

√
N(β̂DC−CQR − β0)

L−→ N
(
0,C−1R1

)
, (2.3)

where nmax = max1≤k≤K nk, nmin = min1≤k≤K nk,
L−→ stands for convergence in distribution, and

R1 =

∑Q
q,q′=1 min(τq, τq′ )

(
1 −max(τq, τq′)

)
[∑Q

q=1 f (bτq )
]2 .

Remark 2.3. Conditions C1 and C2 are basically the same conditions for establishing the asymptotic normality
of quantile regression (Koenker, 2005).

Remark 2.4. The limiting distribution of β̂DC−CQR in (2.3) is that of β̂N in Theorem 2.1 from Zou and Yuan (2008),
where the entire data is analyzed. Thus, the DC-CQR estimator is asymptotically equivalent to the corresponding
estimator using the full datasets.

Remark 2.5. It is shown in Theorem 2.1 that the resulting estimate is robust to the choice of the block size K and
subsets size nk, k = 1, . . . ,K. Thus K and nk are chosen so that the estimation of β0 can be easily handled within each
block.

2.4. Estimation of the asymptotic variance

One can see from (2.3) that the asymptotic variance involves the density of the errors f (·) and bτq , q = 1, . . . ,Q.
In practice, the error density f (·) and bτq are generally unknown. We can use kernel estimation

1
N

N∑
i=1

Kh (ε̂i − ·)
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to estimate f (·), where Kh(·) = K(·/h)/h, K(·) is a kernel function, and h is a selected bandwidth. The estimator
b̂q of bτq is the sample τq-quantile of {ε̂i, i = 1, . . . ,N}, where ε̂i = yi − x⊤i β̂

DC−CQR. Therefore, we can obtain the
estimation of f (bτq ) by f̂ (b̂q) for q = 1, . . . ,Q. When the available computer memory is much smaller than N, sorting
{ε̂i, i = 1, . . . ,N} becomes impossible. To overcome the difficulty, Li et al. (2013) proposed an approach to estimate
population parameters from a massive data set. Their method reduces the required amount of primary memory, and
the resulting estimate is as efficient as if the entire data set is analyzed simultaneously. However, their method is
available under the condition that all subsets are of equal size. Now we extend the method of Li et al. (2013) to
different subset size.

Suppose that s1, . . . , sN is an independent and identically distributed sample from population G. We are interested
in estimating parameter θ(G) of the population. In the same way as in Section 2.2, the entire data set is partitioned
into K subsets, so that the kth subset contains nk observations. We use the same estimation method for each block.
Denote by θ̂k the resulting estimate based on the subsets in the kth block. We estimate θ(G) by weighted averaging of
θ̂k, that is

θ̂N =
1
N

K∑
k=1

nkθ̂k. (2.4)

Denote by θ̂ the estimator based on all samples. Suppose that
√

N(θ̂ − θ) L−→ N
(
0, σ2

0

)
as N → ∞. Thus

√
nk(θ̂k − θ)

L−→ N
(
0, σ2

0

)
as nk → ∞. This implies that

√
N(θ̂N − θ) =

1
√

N

K∑
k=1

nk

(
θ̂k − θ

) L−→ N
(
0, σ2

0

)
.

This implies that the resulting estimator θ̂N is as efficient as θ̂. In other words, the resulting estimate is as efficient as
if all data were simultaneously used to compute the estimate.

By the form of (2.4), we can estimate bτq , q = 1, . . . ,Q, as follows

b̂q =
1
N

K∑
k=1

nkb̂q,k, (2.5)

where b̂q,k is the sample τq-quantile of {ε̂k,i, i = 1, . . . , nk} and ε̂k,i = yk,i − x⊤k,iβ̂
DC−CQR. Moreover, the weighted

combined estimator of f (·) is given by

f̂N(·) = 1
N

K∑
i=1

nk f̂k(·), (2.6)

where f̂k(·) = 1
nk

∑nk
i=1 Khk

(
ε̂k,i − ·

)
, k = 1, . . . ,K, are kernel density estimation with each subset. Thus, by (2.3),(2.5)

and (2.6), N
(
X⊤X

)−1 R̂1 is a consistent estimate of the covariance matrix of estimator β̂DC−CQR, where

R̂1 =

∑Q
q,q′=1 min(τq, τq′ )

(
1 −max(τq, τq′)

)
[∑Q

q=1 f̂ (b̂q)
]2 . (2.7)

Remark 2.6. The bandwidth selection is taken by hk =
(

nk
N

)1/5
h∗k as selected by Li et al. (2013), where h∗k is select-

ed as 0.9× 1.06×σk × n−1/5
k and σk is the standard deviation of error variable, and we can use σ̂k = std(ε̂k,1, . . . , ε̂k,nk )

to estimate σk, where std is the sample standard deviation.

2.5. Confidence intervals and hypothesis testing

Based on Theorem 2.1 and (2.7), N
(
X⊤X

)−1 R̂1 is a consistent estimate of the covariance matrix of estima-
tor β̂DC−CQR. We first construct univariate confidence intervals and multivariate confidence regions. Denote σ̂2

j =
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N
(
X⊤X

)−1
j j R̂1. A confidence interval (CI) at a confidence level 1 − α for a component β0, j of the true parameter is

defined as

CI j =

[
β̂DC−CQR

j −
σ̂ j√

N
Φ−1(1 − α/2), β̂DC−CQR

j +
σ̂ j√

N
Φ−1(1 − α/2)

]
,

where Φ(·) is the standard normal cumulative distribution function. Furthermore, for a finite set L ⊂ {1, . . . , p}, we
define a confidence region (CR) at a confidence level 1 − α as

CRL =

{
β0,L ∈ R|L| : R̂−1

1

(
β̂DC−CQR

L − β0,L

)⊤
X⊤L XL

(
β̂DC−CQR

L − β0,L

)
≤ qχ2

|L|(1 − α)
}
,

where qχ2
|L|(1 − α) is the 1 − α quantile of the the chi-square distribution with |L| degrees of freedom and |L| is the

cardinality of L.
Theorem 2.1 can also be used to test significance of variables. For a component j ∈ {1, . . . , p}, we test

H1
0 : β0, j = 0 versus H1

1 : β0, j , 0,

and we have under H1
0 , ∣∣∣∣√Nβ̂DC−CQR

j /σ̂ j

∣∣∣∣ ≤ Φ−1(1 − α/2),

with probability 1 − α. We also test simultaneous significance as follows. For a finite set L ⊂ {1, . . . , p}, we test

H2
0 : β0, j = 0 f or all components j ∈ L versus H2

1 : β0, j , 0 f or at least one component j ∈ L,

and we have under H2
0 ,

R̂−1
1

(
β̂DC−CQR

L

)⊤
X⊤L XLβ̂

DC−CQR
L ≤ qχ2

|L|(1 − α),

with probability 1 − α.

3. Weighted composite quantile regression

Note that the CQR method uses the same weight for different quantile regression models. Jiang et al. (2012, 2016)
considered weighted CQR to estimate β0 in model (2.1) by minimizing

Q∑
q=1

N∑
i=1

wqρτq {yi − bq − x⊤i β},

where w = (w1, . . . ,wQ)⊤ is a vector of weights and the components in the weight vector w are allowed to be negative,

since
{∑N

i=1 ρτq (yi − bq − x⊤i β)
}Q

q=1
may not be positively correlated. As in Jiang et al. (2016), under mild assumptions,

the asymptotic variance of the estimator is

C−1

 Q∑
q=1

wq f (bτq )


−2 Q∑

q,q′=1

wqwq′ min(τq, τq′ )
(
1 −max(τq, τq′)

)
.

Thus, the optimal weight wopt, which minimizes the asymptotic variance of the estimator, is

wopt = cΩ−1f,

for any constant c , 0; since c is no effect, we take c = 1, where f =
(

f (bτ1 ), . . . , f (bτQ )
)⊤

and Ω is a Q × Q

matrix with the (q, q′) element Ωqq′ = min(τq, τq′ )
(
1 −max(τq, τq′)

)
. Furthermore, the usual nonparametric density

estimation methods, such as kernel smoothing based on estimated residual ε̂i = yi − x⊤i β̂
CQR, can provide a consistent

estimation f̂ of f. The ŵ = Ω−1 f̂ is a nonparametric estimator of wopt, where f̂ can be obtained by (2.5) and (2.6) in
Section 2.4.
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3.1. DC-WCQR method for massive datasets
It can be seen that we must obtain the estimation b̂q of bτq , q = 1, . . . ,Q to get the optimal weight wopt. Thus, we

use a two step WCQR estimation procedure (Zhao and Lian, 2016) to reduce the computational complexity. In the
first step, we use the standard CQR to get the root-n consistent estimators b̂q of bτq , q = 1, . . . ,Q. In the second step,
these intercepts are plugged into the weighted functional and we only solve for β,

β̂WCQR = arg min
β

Q∑
q=1

N∑
i=1

ŵqρτq

{
yi − b̂q − x⊤i β

}
. (3.1)

For the massive data, we establish the DC-WCQR method as follows.
Step 3.1: Without loss of generality, the entire data set is partitioned into K subsets, and that the kth subset contains

nk observations: (xk,i, yk,i), i = 1, . . . , nk;
Step 3.2: For each subset, we first use the standard CQR to get the estimators b̂q and ŵq of bτq and wq for

q = 1, . . . ,Q, respectively. Secondly, apply standard weighted composite quantile regression on data with b̂q and ŵq,
q = 1, . . . ,Q, and obtain the estimators β̂WCQR

k , k = 1, . . . ,K using the methodology in solving equation (3.1);
Step 3.3: The combined estimator DC-WCQR method, as a weighted average of β̂WCQR

k , k = 1, . . . ,K, is

β̂DC−WCQR =

 K∑
k=1

X⊤k Xk

−1 K∑
k=1

X⊤k Xkβ̂
WCQR
k .

3.2. Asymptotic normality of the resulting estimator
To reveal the merits of the proposed DC-WCQR method, we now establish the asymptotic normality of β̂DC−WCQR.
Theorem 3.1. Under the same conditions as in Theorem 2.1, we have

√
N(β̂DC−WCQR − β0)

L−→ N
(
0,C−1

(
f⊤Ω−2f

)−1
)
. (3.2)

Remark 3.1. The limiting distribution of β̂DC−WCQR in (3.2) is that of β̂N in Theorem 2 from Jiang et al. (2016),
where the entire data is analyzed. Thus, the DC-WCQR estimator is asymptotically equivalent to the corresponding
estimator using the full data sets. Moreover, as for the results in Jiang et al. (2016), the WCQR method achieves
nearly the same efficiency as the maximum likelihood estimator.

3.3. Confidence intervals and hypothesis testing

By (3.2), N
(
X⊤X

)−1
(
f̂⊤Ω−2f̂

)−1
is a consistent estimate of the covariance matrix of estimator β̂DC−WCQR. Denote

σ̃2
j = N

(
X⊤X

)−1
j j

(
f̂⊤Ω−2f̂

)−1
. Thus, based on Theorem 3.1, we can construct confidence intervals and hypothesis

testing as follows.

CI j =

[
β̂DC−WCQR

j −
σ̃ j√

N
Φ−1(1 − α/2), β̂DC−WCQR

j +
σ̃ j√

N
Φ−1(1 − α/2)

]
,

CRL =

{
β0,L ∈ R|L| :

(
β̂DC−WCQR

L − β0,L

)⊤
X⊤L XL

(
f̂⊤Ω−2f̂

) (
β̂DC−WCQR

L − β0,L

)
≤ qχ2

|L|(1 − α)
}
.

To test
H1

0 : β0, j = 0 versus H1
1 : β0, j , 0,

and we have under H1
0 , ∣∣∣∣√Nβ̂DC−WCQR

j /σ̃ j

∣∣∣∣ ≤ Φ−1(1 − α/2),

with probability 1 − α. To test

H2
0 : β0, j = 0 f or all components j ∈ L versus H2

1 : β0, j , 0 f or at least one component j ∈ L,

and we have under H2
0 , (

β̂DC−WCQR
L

)⊤
X⊤L XL

(
f̂⊤Ω−2 f̂

)
β̂DC−WCQR

L ≤ qχ2
|L|(1 − α),

with probability 1 − α.
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4. Variable selection

The adaptive LASSO (see Zou, 2006) can be viewed as a generalization of the LASSO penalty. Basically the idea
is to penalize the coefficients of different covariates at a different level by using adaptive weights. Suppose the dataset
of size N is divided into K subsets, and that the kth subset has nk observations (xk,i, yk,i), i = 1, . . . , nk. The adaptive
LASSO penalized weighted composite quantile regression estimator (PWCQR) for the kth subset, k = 1, . . . ,K ,
denoted by β̂PWCQR

k , is the minimizer of the following function

Q∑
q=1

nk∑
i=1

ŵqρτq

{
yk,i − bq − x⊤k,iβ

}
+ nkλk

p∑
j=1

∣∣∣β j

∣∣∣∣∣∣∣β̂DC−WCQR
j

∣∣∣∣2 , (4.1)

where λk is a nonnegative regularization parameter and ŵq is defined in Section 3. Under the setup, the penalized
estimator β̂PWCQR

k has the oracle property, see Theorem 6 in Jiang et al. (2012). Denote by Âk =
{
j : β̂PWCQR

k, j , 0
}

the

set of non-zero elements of β̂PWCQR
k . Since each β̂PWCQR

k is estimated from a different subset of data, the Âk can differ,
k = 1, . . . ,K. To obtain a combined estimator of β0 from β̂PWCQR

k , k = 1, . . . ,K, we use a majority voting method to
estimate the true nonzero set A∗ = { j : β0 j , 0}. We take

Â∗ =

 j :
K∑

k=1

I
(
β̂PWCQR

k, j , 0
)
> d

 ,
as the set of selected variables of the combined estimator, where d ∈ [0,K) is a prespecified threshold and I is the
indicator function. The theoretical development suggests that the choice of a fixed threshold, does not affect the
asymptotic results, see Meinshausen and Bühlmann (2010), Shah and Samworth (2013) and Chen and Xie (2014). In
Section 6, we use d = K/2 as selected by Chen and Xie (2014).

Take B = diag(v1, . . . , vp) to be the p × p voting matrix with v j = 1, if
∑K

k=1 I
(
β̂PWCQR

k, j , 0
)
> d and 0 otherwise,

and let A = BÂ∗ be the p × |Â∗| selection matrix, where BÂ∗ stands for an p × |Â∗| sub-matrix of B formed by columns,
whose indices are in Â∗. Our combined estimator as a weighted average of β̂PWCQR

k , k = 1, . . . ,K, is

β̂DC−PWCQR = A

 K∑
k=1

A⊤{X⊤k Xk}A
−1 K∑

k=1

A⊤{X⊤k Xk}AA⊤β̂PWCQR
k .

We show that the adaptive LASSO penalized WCQR estimator enjoys the oracle properties of the WCQR-oracle. For
any indices set S , denote by β̂S a |S | × 1 vector formed by the elements of β̂, whose indices are in S . The result allows
p to depend on the sample size N. To stress dependence on the sample size, we rewrite p as pN .

Theorem 4.1 (Consistency). Under the same conditions as in Theorem 3.1. If p3
N K/N → 0, λmax

√
N/K → 0 as

N → ∞, then ∥∥∥β̂DC−PWCQR − β0

∥∥∥ = Op

( √
pN K/N

)
,

and β̂DC−PWCQR
Ā∗

= 0, where λmax = max{λ1, . . . λK} and Ā∗ is the complement of the true zero set { j : β0, j = 0}.
Theorem 4.2 (Asymptotic normality). Under the same conditions as in Theorem 4.1. If λmin

(
NK−1 p−1

N

)(γ+1)/2 →
∞, for some γ > 0 and min1≤ j≤A∗ |β0, j|/(λmax

√
N/K)→ ∞ as N → ∞, then

√
N

(
β̂DC−PWCQR

A∗ − β0,A∗
) L−→ N

(
0,C−1

A∗
(
f⊤Ω−2f

)−1
)
,

where λmin = min{λ1, . . . λK}.
Remark 4.1. The limiting distribution of β̂DC−PWCQR

A∗ in Theorem 4.2 is that of β̂N in Theorem 6 from Jiang et
al. (2012), where the entire data is analyzed. Thus, the DC-PWCQR estimator is asymptotically equivalent to the
corresponding estimator using the full datasets.

Remark 4.2. For the penalized WCQR estimators, one has to select tuning parameters λk, k = 1, . . . ,K. Many
selection criteria such as cross validation (CV), generalized cross validation (GCV), BIC and AIC selection can be
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used. Wang et al. (2007a) pointed out that the GCV approach tends to produce overfitted models even as the sample
size goes to infinity. For this reason, Wang et al. (2007b) developed a BIC-type selection criterion, which motivates
us to consider the following BIC criterion

BIC(λk) = log

 Q∑
q=1

nk∑
i=1

ŵqρτq

{
yk,i − b̂PWCQR

q − x⊤k,iβ̂
PWCQR

} + d fλk log(nk)/nk,

where b̂PWCQR
q is the minimizer of (4.1), and d fλk is the number of nonzero coefficients in β̂PWCQR as a simple estimate

for the degrees of freedom, see Zou et al. (2007). We can select λ̂k = arg minλk BIC(λk), for k = 1, . . . ,K.

5. Numerical implementation

DC-CQR, DC-WCQR and DC-PWCQR estimations need to solve convex programming problems of (2.2), (3.1)
and (4.1). Similar to idea in Wu and Liu (2009), we can modify the optimization problem (2.2) and (3.1) to the
following constrained linear programming problem:

min
Q∑

q=1

N∑
i=1

ŵq

(
τqξiq + (1 − τq)ζiq

)
,

sub ject to ξiq − ζiq = yi − bq − x⊤i β,

ξiq ≥ 0, ζiq ≥ 0,

q = 1, . . . ,Q, i = 1, . . . ,N, (5.1)

when ŵ is the estimation of wopt, (5.1) is equal to (3.1), and (5.1) is equal to (2.2) under ŵ ≡ 1.
Given fixed tuning parameter λ1, . . . , λK and β̂DC−WCQR, the minimization problem (4.1) can also be casted into a

constrained linear programming problem as follows:

min
Q∑

q=1

N∑
i=1

ŵq

(
τqξiq + (1 − τq)ζiq

)
+

p∑
j=1

nkλk

|β̂DC−WCQR
j |2

φ j,

sub ject to ξiq − ζiq = yi − bq − x⊤i β,

ξiq ≥ 0, ζiq ≥ 0, q = 1, . . . ,Q, i = 1, . . . ,N,

φ j ≥ β j, φ j ≥ −β j, j = 1, . . . , pN . (5.2)

The linear programming problem (5.1) and (5.2) can be easily achieved by using optimization software, for exam-
ple, optimization toolbox in Matlab.

6. Numerical studies

In this section, we first use Monte Carlo simulation studies to assess the finite sample performance of the proposed
procedures and then demonstrate the application of the proposed methods with a real data analysis. Tian et al. (2016)
proposed redefined AIC and BIC to select number of composite quantiles Q. However, the performances of CQR
method with different Q are very similar in their the simulation part. Moreover, Zou and Yuan (2008) recommended
Q = 19 for linear model. Therefore, we choose Q = 19 as a compromise between estimation and computation
efficiency of the CQR method and let the equally spaced quantile levels be τq = q/20, q = 1, . . . , 19. All programs are
written in Matlab and our computer has a 2.4GHz Pentium processor and 4G memory.
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6.1. Example for estimation procedure

In this section, we study the performances of DC-CQR and DC-WCQR method. Furthermore, we include four
competitors in our comparison:

(1) the least square method (LS): β̂LS =
(∑K

k=1 X⊤k Xk

)−1 ∑K
k=1 X⊤k Yk, see Draper and Smith (1998);

(2) the least absolute deviation method (LAD): β̂LAD = 1
K

∑K
k=1 β̂

LAD
k , where β̂LAD

k = arg minβ
∑nk

i=1

∣∣∣yi − x⊤i β
∣∣∣,

k = 1, . . . ,K, see Xu et al (2017);
(3) it is noted that the CQR estimator degenerates to the median regression estimator when Q = 1 (DC-CQR1);
(4) the aggregated CQR estimator with Q = 19 (ACQR19): β̂ACQR19 = 1

K
∑K

k=1 β̂
CQR19
k , see Zhao et al (2017).

We conduct a simulation study with N = 100, 000 and the data are generated from model (2.1), where β0 =

(β0,1, β0,2, β0,3, β0,4, β0,5)⊤ = (−2,−1, 0, 1, 2)⊤. In our simulation, we consider three error distributions for ε: standard
normal distribution (N(0,1)), a t distribution with 3 degrees of freedom (t(3)) and a Chi-square distribution with 5
degrees of freedom (χ2(5)), and two cases of X.

Case 1: X follows a multivariate normal distribution: N(0,Σ) with correlation matrix Σi j = 0.5i− j for 1 ≤ i, j ≤ 5.
Case 2: Xi, i = 1, . . . , 5, follows a mixture distribution: N(0, 1), N(0, 2), N(0, 3), N(0, 4), N(0, 5), U(0, 1), U(0, 2),

U(0, 3), U(0, 4), U(0, 5) and each distribution contains N/10 observations.
All of the simulations are run for 100 replicates. Three block numbers are considered: K = 1, 10, 100, and each

subset contains equal observations. The bias, absolute bias and standard deviations of parameters are summarized in
Table 1 and Table 2. From Tables 1 and 2, one can see that DC-CQR19 and DC-WCQR19 are close to the true value,
because the bias and absolute bias are all very small. Furthermore, Tables 3-5 depict the root-mean squared errors
(RMSE) and mean absolute deviation (MAD) of the estimate β̂ to assess the accuracy of proposed methods comparing
with others methods,

RMS E =

√√√
1
5

5∑
j=1

(β̂ j − β0 j)2, MAD =
1
5

5∑
j=1

∣∣∣β̂ j − β0 j

∣∣∣ .
From Tables 3-5, the following conclusions can be drawn:
(i) The LS is the most efficient and DC-WCQR19 is very close to LS under standard normal error distribution. For

other error distributions, DC-WCQR19 is consistently superior to the other five methods.
(ii) The DC-CQR and DC-WCQR methods perform well when comparing the resulting estimator with entire data

estimator.
(iii) One can see from Table 3-5 under Case 1 that the results of LAD are close to DC-CQR1 and the results of

ACQR19 are close to DC-CQR19. The reason is that under Case 1, limn1→∞ X⊤1 X1/n1 = . . . = limnK→∞ X⊤KXK/nK ,
thus

β̂DC−CQR =

 K∑
k=1

X⊤k Xk

−1 K∑
k=1

X⊤k Xkβ̂
CQR
k −→ 1

K

K∑
k=1

β̂CQR
k .

When X follows Case 2, DC-CQR1 and DC-CQR19 are better than LAD and ACQR19, respectively.

6.2. Example for confidence intervals and hypothesis testing

In this example, we first study the coverage probability (C.P.) of the interval estimate and the length of the confi-
dence interval (Length) for CQR and WCQR methods:

C.P. = P
(
β̂i −

σ̂ j√
N
Φ−1(1 − α/2) ≤ β0,i ≤ β̂i +

σ̂ j√
N
Φ−1(1 − α/2)

)
,

Length =
σ̂ j√

N
Φ−1(1 − α/2),

where β̂i and σ̂ j are defined in Section 2 and 3. Theoretically, C.P. is approximately equal to 1 − α. For a given
confidence level 1 − α, Length depends on the standard error of the estimate, thus a shorter interval is preferred. All
the settings are the same as in Example 6.1. Since the results are similar for all β0,i’s, only the results on β0,3 = 0 is
reported here. Table 6 lists the C.P. and Length (α = 0.05) with 100 simulation runs for various error distributions. It
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can be seen that the C.P.s of CQR and WCQR are all around the nominal level (0.95), and the Lengths demonstrate
WCQR is more efficient than CQR under all three noise conditions.

Next, we consider the test probability (T.P.) and P-value under H0 : β0,3 = 0 for CQR and WCQR methods:

T.P. = P
(∣∣∣∣√Nβ̂DC−CQR

j /σ̂ j

∣∣∣∣ ≤ Φ−1(1 − α/2)
)
= C.P.,

P − value = 2P
(
X̄ >

∣∣∣∣√Nβ̂DC−CQR
j /σ̂ j

∣∣∣∣) ,
where X̄ is a random variable which follows a standard normal distribution. Theoretically, T.P. is approximately equal
to 1 − α. For a significance level α, because of β0,3 = 0, under H0 : β0,3 = 0, the P-value should be larger than α.
Table 4 also lists the T.P. (α = 0.05) and P-value with 100 simulation runs for various error distributions. It can be
seen that the T.P.s of CQR and WCQR are all around the nominal level (0.95), and P-values are all larger than α, thus
we should accept the original hypothesis H0.

6.3. Example for variable selection

In this example, we consider the model (2.1) with β0 = (−2,−1, 0, 1, 2, 0, 0, 0, 0, 0)⊤, and the covariate vector X
follows a multivariate normal distribution: N(0,Σ) with correlation matrix Σi j = 0.5i− j for 1 ≤ i, j ≤ 10. Other settings
are the same as those in Example 6.1.

To assess the performance of variable selection procedures for the parametric component, we consider the gener-
alized mean square error (GMSE), as defined in Kai et al. (2011).

GMS E(β̂) = (β̂ − β0)⊤E(X⊤X)(β̂ − β0).

For each procedure, we calculate the relative GMSE (RGMSE), which is defined to be the ratio of GMSE of a selected
final model to that of the un-penalized estimate under the full model.

RGMS E = GMS E(β̂DC−WCQR)/GMS E(β̂DC−PWCQR).

In addition, we calculated model selection sensitivity (the number of truly selected variables divided by the true
model size) and model selection specificity (the number of truly removed variables divided by the number of noise
variables). The simulation results are shown in Table 7. According to RGMS E in Table 7, the DC-PWCQR estimators
performed better than DC-WCQR estimators. In all cases, the DC-PWCQR estimators had good model selection
results with high model selection sensitivity and specificity that were similar to those of the penalized estimators
analyzing the full dataset.

6.4. Real data example: airline on-time data

The airline on-time performance data from the 2009 ASA Data Expo (http://stat-computing.org/dataexpo/2009/the-
data.html) is used as a case study. The data is publicly available and has been used for demonstration with massive
data by Wang et al. (2015) and Schifano et al. (2016). It consists of flight arrival and departure details for all com-
mercial flights within the USA, from October 1987 to April 2008. About 12 million flights were recorded with 29
variables. Due to the over long computing time, only the data of 2007 for N = 7, 275, 288 observations with complete
data is considered.

We considered arrival delay (ArrDelay) as a continuous variable by modeling log(ArrDelay−min(ArrDelay)+1),
denoted as Y , as a linear function of departure hour (rang 0 to 24), distance (in 1000 miles), night flight (1 if departure
between 8 p.m. and 5 a.m., 0 otherwise), and weekend flight (1 if departure occurred during the weekend, 0 otherwise).
This model was also studied by Schifano et al. (2016).

We estimate the above regression model using LS, LAD, DC-CQR1, ACQR19, DC-CQR19, DC-WCQR19 and
DC-PWCQR19 methods. For the purpose of comparison, we evaluate the performance of these estimators based on
their out-of-sample prediction. In particular, we estimate the above regression model based on 5,108,211 data. We
use a subset size of nk = 510, 821 for k = 1, . . . , 9, and n10 = 510, 822. Then, we use the estimated coefficients to
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construct forecast of the other 2,167,077 data. We compare both the mean squared prediction error (MSE) and the
mean absolute deviation (MAD) of the predictions,

MS E =
1
n

∑
i

(Yi − Ŷi)2,MAD =
1
n

∑
i

|Yi − Ŷi|,

where Ŷi is the fitted value of Yi, i = 1, . . . , n, and here n = 2, 167, 077. The MSE and MAD of seven methods are
given in Table 8. DC-PWCQR19 method shows that the coefficient of departure hour should be zero. The results of
MSE are very close to different methods. The results of MAD show that the performs of DC-PWCQR19 method are
the best except LAD.

7. Conclusion

In the linear model, we developed a divide-and-conquer composite quantile regression method for massive data
sets. The proposed approach significantly reduces the required amount of primary memory, and the resulting estimates
were as efficient as if the entire data set was analyzed simultaneously. Moreover, to improve the efficiency of CQR, we
proposed a weighted CQR estimation approach. To achieve sparsity with high-dimensional covariates, we provided a
variable selection procedure to select significant parametric components.

The methods in this article were designed for small to moderate covariate dimensionality p, but large N. The use
of de-biasing technique for ultra-high dimensional data (p is larger than N) is an interesting consideration, see Van de
Geer et al.(2014) and Zhao et al. (2015).
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Appendix

Proof of Theorem 2.1. Let
√

nk(β̂CQR
k − β0) = unk and

√
nk(b̂CQR

q,k − bτq ) = vnk ,q, where b̂CQR
q,k is the minimizer of

(2.2) for the kth subset. Then (vnk ,1, . . . , vnk ,Q,unk ), k = 1, . . . ,K, are the minimizer of the following criterion:

Lnk =

Q∑
q=1

nk∑
i=1

{
ρτq

(
εi − bτq − [vq + x⊤k,iu]/

√
nk

)
− ρτq

(
εi − bτq

)}
, k = 1, . . . ,K,

To apply the identity (Knight, 1998)

ρτ(x − y) − ρτ(x) = y{I(x < 0) − τ} +
∫ y

0
{I(x ≤ z) − I(x ≤ 0)}dz.

Thus, we rewrite Lnk as follows:

Lnk =

Q∑
q=1

nk∑
i=1

vq + x⊤k,iu√
nk

[I(εi < bτq ) − τq]

+

Q∑
q=1

nk∑
i=1

∫ [vq+x⊤k,iu]/
√

nk

0

[
I(εi ≤ bτq + t) − I(εi ≤ bτq )

]
dt

≡
Q∑

q=1

nk∑
i=1

vq + x⊤k,iu√
nk

[I(εi < bτq ) − τq] +
Q∑

q=1

B(q)
nk ,
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where B(q)
nk =

∑nk
i=1

∫ [vq+x⊤k,iu]/
√

nk

0 [I(εi ≤ bτq + t) − I(εi ≤ bτq )]dt. Then, we have

E[B(q)
nk ] =

nk∑
i=1

∫ [vq+x⊤k,iu]/
√

nk

0
[F(bτq + t) − F(bτq )]dt

=
1
nk

nk∑
i=1

∫ [vq+x⊤k,iu]

0

√
nk[F(bτq + t/

√
nk) − F(bτq )]dt

→1
2

f (bτq )(vq,u⊤)
[

1 0
0 Ck

]
(vq,u⊤)⊤.

Var[B(q)
nk ] =

nk∑
i=1

E
∫ [vq+x⊤k,iu]/

√
nk

0
([I(εi ≤ bτq + t) − I(εi ≤ bτq )] − [F(bτq + t) − F(bτq )])dt

2

≤
nk∑

i=1

E
∣∣∣∣∣∣
∫ [vq+x⊤k,iu]/

√
nk

0
([I(εi ≤ bτq + t) − I(εi ≤ bτq )] − [F(bτq + t) − F(bτq )])dt

∣∣∣∣∣∣


× 2

∣∣∣∣∣∣vq + x⊤k,iu√
nk

∣∣∣∣∣∣ ≤ 4E[B(q)
nk ]

max1≤i≤nk |vq + x⊤k,iu|√
nk

→ 0.

Hence, B(q)
nk

P−→ 1
2 f (bτq )(vq,u⊤)

[
1 0
0 Ck

]
(vq,u⊤)⊤. Thus it follows that

Lnk

P−→
Q∑

q=1

nk∑
i=1

vq + x⊤k,iu√
nk

[I(εi < bτq ) − τq] +
1
2

Q∑
q=1

f (bτq )(vq,u⊤)
[

1 0
0 C

]
(vq,u⊤)⊤.

Since Lnk is a convex function, then following Knight (1998) and Koenker (2005), we have

Ck ·
√

nk

(
β̂CQR

k − β0

)
=

 Q∑
q=1

f (bτq )


−1

· 1
√

nk

nk∑
i=1

x⊤k,i

Q∑
q=1

[
I(εi < bτk ) − τk

]
+ Rnk ,

where Ck = limnk→∞
1
nk

X⊤k Xk, and following Bahadur (1966), we can obtain O
(
n−1/4

k (log log nk)3/4
)
. Since Xi is

independent for i = 1, . . . ,N, X⊤X =
∑K

k=1 X⊤k Xk and K = o
(
n1/2

min
(
log log nmin

)−3/2
)
, we can obtain

1
√

N

K∑
k=1

X⊤k Xk

(
β̂CQR

k − β0

) L−→ N (0,CR1) .

Therefore, using the DC-CQR estimator, we have

√
N

(
β̂DC−CQR

k − β0

)
=
√

N

 K∑
k=1

X⊤k Xk

−1 K∑
k=1

X⊤k Xk

(
β̂CQR

k − β0

)
=

∑K
k=1 X⊤k Xk

N

−1

· 1
√

N

K∑
k=1

X⊤k Xk

(
β̂CQR

k − β0

)
=

(
X⊤X

N

)−1

· 1
√

N

K∑
k=1

X⊤k Xk

(
β̂CQR

k − β0

) L−→ N
(
0,C−1R1

)
.

This completes the proof.
Proof of Theorem 3.1. Let

√
nk(β̂WCQR

k − β0) = u∗nk
and
√

nk(b̂WCQR
q,k − bτq ) = v∗nk ,q, where b̂CQR

q,k is the minimizer
of (3.1) for the kth subset. Then (v∗nk ,1

, . . . , v∗nk ,Q
,u∗nk

), k = 1, . . . ,K, are the minimizer of the following criterion:

L∗nk
=

Q∑
q=1

nk∑
i=1

ŵq

[
ρτq

(
εi − bτq − [v∗q + x⊤k,iu

∗]/
√

nk

)
− ρτq

(
εi − bτq

)]
, k = 1, . . . ,K.
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We rewrite Lnk as follows:

L∗nk
=

Q∑
q=1

nk∑
i=1

v∗q + x⊤k,iu
∗

√
nk

ŵq[I(εi < bτq ) − τq]

+

Q∑
q=1

ŵq

nk∑
i=1

∫ [vq+x⊤k,iu
∗]/
√

nk

0

[
I(εi ≤ bτq + t) − I(εi ≤ bτq )

]
dt

≡
Q∑

q=1

nk∑
i=1

v∗q + x⊤k,iu
∗

√
nk

ŵq[I(εi < bτq ) − τq] +
Q∑

q=1

ŵqB∗(q)
nk ,

whereB∗(q)
nk =

∑nk
i=1

∫ [v∗q+x⊤k,iu
∗]/
√

nk

0 [I(εi ≤ bτq + t) − I(εi ≤ bτq )]dt. Then, we have

E[B∗(q)
nk ] =

nk∑
i=1

∫ [v∗q+x⊤k,iu
∗]/
√

nk

0
[F(bτq + t) − F(bτq )]dt

=
1
nk

nk∑
i=1

∫ [vq+x⊤k,iu
∗]

0

√
nk[F(bτq + t/

√
nk) − F(bτq )]dt

→1
2

f (bτq )(v∗q,u
∗⊤)

[
1 0
0 Ck

]
(v∗q,u

∗⊤)⊤.

Var[B∗(q)
nk ] =

nk∑
i=1

E
∫ [v∗q+x⊤k,iu

∗]/
√

nk

0
([I(εi ≤ bτq + t) − I(εi ≤ bτq )] − [F(bτq + t) − F(bτq )])dt

2

≤
nk∑

i=1

E
∣∣∣∣∣∣
∫ [v∗q+x⊤k,iu

∗]/
√

nk

0
([I(εi ≤ bτq + t) − I(εi ≤ bτq )] − [F(bτq + t) − F(bτq )])dt

∣∣∣∣∣∣


× 2

∣∣∣∣∣∣v∗q + x⊤k,iu
∗

√
nk

∣∣∣∣∣∣ ≤ 4E[B∗(q)
nk ]

max1≤i≤nk |v∗q + x⊤k,iu
∗|

√
nk

→ 0.

Hence, B∗(q)
nk

P−→ 1
2 f (bτq )(v∗q, u∗⊤)

[
1 0
0 Ck

]
(v∗q,u∗⊤)⊤. Thus it follows that

L∗nk

P−→
Q∑

q=1

nk∑
i=1

v∗q + x⊤k,iu
∗

√
nk

ŵq[I(εi < bτq ) − τq] +
1
2

Q∑
q=1

ŵq f (bτq )(v∗q,u
∗⊤)

[
1 0
0 Ck

]
(v∗q,u

∗⊤)⊤.

Since L∗nk
is a convex function, then following Knight (1998), Koenker (2005) and Bahadur (1966), we have

Ck ·
√

nk

(
β̂WCQR

k − β0

)
=

 Q∑
q=1

ŵq f (bτq )


−1

· 1
√

nk

nk∑
i=1

x⊤k,i

Q∑
q=1

ŵq
[
I(εi < bτk ) − τk

]
+ O

(
n−1/4

k (log log nk)3/4
)
.

Therefore, using the DC-WCQR estimator, we have

√
N

(
β̂DC−WCQR

k − β0

)
=
√

N

 K∑
k=1

X⊤k Xk

−1 K∑
k=1

X⊤k Xk

(
β̂WCQR

k − β0

)
=

∑K
k=1 X⊤k Xk

N

−1

· 1
√

N

K∑
k=1

X⊤k Xk

(
β̂WCQR

k − β0

)
=

(
X⊤X

N

)−1

· 1
√

N

K∑
k=1

X⊤k Xk

(
β̂WCQR

k − β0

) L−→ N
(
0,C−1

(
f⊤Ω−2f

)−1
)
.
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This completes the proof.
Proof of Theorem 4.1. From Theorem 5 of Jiang et al. (2012), for each subsets nk, k = 1, . . . ,K, we have∥∥∥β̂PWCQR

k − β0
∥∥∥ = Op

( √
pN/nk

)
,

and by the condition nk = O(N/K), we can obtain∥∥∥β̂PWCQR
k − β0

∥∥∥ = Op

( √
pN K/N

)
.

When N is large enough, we have Âk = A∗ for all subsets and Â∗ = A∗. In this case, β̂DC−PWCQR
Ā∗

= 0 then

∥∥∥β̂DC−PWCQR − β0
∥∥∥ =

∥∥∥∥∥∥∥∥A

 K∑
k=1

A⊤{X⊤k Xk}A
−1 K∑

k=1

A⊤{X⊤k Xk}AA⊤
(
β̂PWCQR

k − β0

)∥∥∥∥∥∥∥∥
≤ Op

( √
pN K/N

)
.

Proof of Theorem 5.1. By the form of β̂DC−PWCQR, Âk = A∗ for all subsets and Â∗ = A∗, we have

β̂DC−PWCQR
A∗ =

 K∑
k=1

X⊤k,A∗Xk,A∗

−1 K∑
k=1

X⊤k,A∗Xk,A∗ β̂
PWCQR
k,A∗ .

By Theorem 6 of Jiang et al. (2012) and by using the techniques of the proof of Theorem 3.1, we can proof the
Theorem 5.1.
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Table 1: The average bias (standard deviation) of coefficients. (10−2)
ε X K Methods β0,1 β0,2 β0,3 β0,4 β0,5

N(0,1) Case 1 K=1 DC-CQR19 0.0507 (0.3691) -0.0937 (0.4126) 0.1690 (0.3483) 0.1204 (0.3028) -0.1507 (0.3596)
DC-WCQR19 0.0633 (0.3843) -0.1213 (0.3947) 0.1607 (0.3281) 0.0996 (0.3272) -0.1553 (0.3745)

K=10 DC-CQR19 0.1075 (0.2146) 0.0732 (0.3447) 0.0029 (0.4960) 0.0535 (0.2220) -0.0519 (0.2657)
DC-WCQR19 0.0701 (0.2008) 0.0836 (0.3682) -0.0035 (0.5913) 0.0771 (0.2223) -0.0694 (0.2864)

K=100 DC-CQR19 -0.0562 (0.3720) 0.1467 (0.4864) -0.0521 (0.4633) 0.1392 (0.3490) -0.1066 (0.3348)
DC-WCQR19 -0.0411 (0.3791) 0.1181 (0.4843) -0.0247 (0.4227) 0.0801 (0.3697) -0.0869 (0.3408)

Case 2 K=1 DC-CQR19 0.0906 (0.3476) -0.0824 (0.2440) 0.0237 (0.1498) -0.0435 (0.2207) -0.0142 (0.1490)
DC-WCQR19 0.1083 (0.3557) -0.1005 (0.2514) -0.0022 (0.1487) -0.0103 (0.1977) -0.0313 (0.1402)

K=10 DC-CQR19 0.0530 (0.2493) 0.1792 (0.3162) 0.0344 (0.2823) 0.1771 (0.1068) -0.0424 (0.3776)
DC-WCQR19 -0.0062 (0.2131) 0.1441 (0.2636) 0.0031 (0.2138) 0.1285 (0.0890) -0.0743 (0.3337)

K=100 DC-CQR19 0.1196 (0.3021) 0.0181 (0.2366) 0.1062 (0.2537) 0.1124 (0.2457) -0.0525 (0.1355)
DC-WCQR19 0.0575 (0.2666) -0.0418 (0.1870) 0.0432 (0.2363) 0.0479 (0.1947) -0.0861 (0.0808)

t(3) Case 1 K=1 DC-CQR19 0.0999 (0.4197) -0.1275 (0.5426) 0.1550 (0.2697) -0.1239 (0.3644) 0.0651 (0.5703)
DC-WCQR19 0.1163 (0.4369) -0.1309 (0.5035) 0.1354 (0.2975) -0.1149 (0.3594) 0.0859 (0.5143)

K=10 DC-CQR19 0.0222 (0.4155) 0.0394 (0.3826) 0.3391 (0.3802) -0.2128 (0.5193) -0.0866 (0.6786)
DC-WCQR19 -0.0140 (0.3734) 0.0882 (0.3337) 0.2245 (0.3912) -0.1314 (0.5580) -0.1017 (0.6750)

K=100 DC-CQR19 -0.1446 (0.6234) -0.1579 (0.6916) 0.1658 (0.5568) 0.0631 (0.4875) -0.0532 (0.3585)
DC-WCQR19 -0.1499 (0.5561) -0.1234 (0.6059) 0.1317 (0.4984) 0.0631 (0.5281) -0.0366 (0.3973)

Case 2 K=1 DC-CQR19 0.0062 (0.2837) -0.0309 (0.2472) 0.0056 (0.2012) -0.0827 (0.2014) 0.0086 (0.2921)
DC-WCQR19 0.0383 (0.2718) -0.0267 (0.2407) -0.0031 (0.2039) -0.1104 (0.1554) 0.0018 (0.2779)

K=10 DC-CQR19 -0.2371 (0.3156) 0.0278 (0.4198) -0.1019 (0.3707) -0.1795 (0.2839) -0.0407 (0.3637)
DC-WCQR19 -0.1461 (0.2116) 0.0871 (0.3279) -0.0384 (0.2961) -0.0537 (0.3166) 0.0402 (0.2796)

K=100 DC-CQR19 -0.5647 (0.2239) -0.4681 (0.3424) -0.5673 (0.3311) -0.4232 (0.2615) -0.3951 (0.3831)
DC-WCQR19 -0.2410 (0.2231) -0.1231 (0.3202) -0.2695 (0.3065) -0.0916 (0.2221) -0.0259 (0.2791)

χ2(5) Case 1 K=1 DC-CQR19 0.0023 (0.8998) 0.2578 (1.1780) -0.1102 (1.2520) 0.1129 (0.9846) -0.4624 (1.1949)
DC-WCQR19 -0.1708 (0.7041) 0.1627 (0.8415) -0.0267 (0.5486) 0.2247 (0.7281) -0.5244 (1.1771)

K=10 DC-CQR19 0.1413 (0.7054) -0.3281 (0.7803) 0.0588 (1.0212) 0.2581 (1.0325) -0.1482 (1.3243)
DC-WCQR19 0.4099 (0.6574) -0.2484 (0.8631) -0.0114 (0.5191) 0.2100 (0.7918) 0.1625 (0.6933)

K=100 DC-CQR19 -0.1119 (1.0410) 0.0889 (0.9194) -0.3875 (1.1497) -0.2194 (0.8035) -0.0275 (0.9936)
DC-WCQR19 -0.1237 (0.6555) 0.0357 (1.0025) -0.3008 (1.0426) 0.1429 (0.7106) -0.0428 (0.9181)

Case 2 K=1 DC-CQR19 -0.2228 (0.2986) 0.0307 (0.4965) 0.2576 (0.5331) -0.0459 (0.4782) -0.2346 (0.4632)
DC-WCQR19 -0.1429 (0.4885) 0.0759 (0.3751) 0.1706 (0.4112) -0.2486 (0.4227) -0.0389 (0.3446)

K=10 DC-CQR19 0.0143 (0.8062) 0.1418 (1.0016) 0.1078 (0.8279) 0.0807 (0.9426) 0.1216 (1.1651)
DC-WCQR19 -0.0653 (0.3995) 0.0926 (0.5791) 0.0233 (0.3316) -0.0208 (0.5100) 0.0855 (0.5751)

K=100 DC-CQR19 0.6875 (0.7310) 0.1316 (0.5766) -0.0255 (0.4717) 0.4189 (0.5127) 0.2956 (0.7259)
DC-WCQR19 0.3191 (0.4351) -0.0092 (0.2806) -0.1741 (0.3507) 0.2275 (0.4356) 0.1336 (0.5231)
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Table 2: The average absolute bias (standard deviation) of coefficients. (10−2)
ε X K Methods β0,1 β0,2 β0,3 β0,4 β0,5

N(0,1) Case 1 K=1 DC-CQR19 0.2632 (0.2492) 0.2849 (0.2996) 0.2928 (0.2403) 0.2021 (0.2498) 0.2869 (0.2512)
DC-WCQR19 0.2827 (0.2516) 0.3076 (0.2589) 0.2517 (0.2567) 0.2150 (0.2583) 0.3257 (0.2217)

K=10 DC-CQR19 0.2019 (0.1167) 0.2765 (0.1995) 0.3947 (0.2701) 0.1630 (0.1515) 0.1727 (0.2012)
DC-WCQR19 0.1614 (0.1297) 0.3124 (0.1870) 0.4729 (0.3181) 0.1964 (0.1148) 0.1837 (0.2234)

K=100 DC-CQR19 0.2796 (0.2437) 0.3774 (0.3305) 0.3466 (0.3016) 0.2647 (0.2616) 0.2811 (0.2021)
DC-WCQR19 0.2872 (0.2422) 0.3857 (0.3043) 0.3027 (0.2879) 0.2816 (0.2449) 0.2978 (0.1755)

Case 2 K=1 DC-CQR19 0.2611 (0.2328) 0.1820 (0.1739) 0.1078 (0.1008) 0.1707 (0.1358) 0.1251 (0.0710)
DC-WCQR19 0.2706 (0.2413) 0.1918 (0.1832) 0.1221 (0.0746) 0.1463 (0.1241) 0.1066 (0.0902)

K=10 DC-CQR19 0.1848 (0.1653) 0.2376 (0.2701) 0.2181 (0.1678) 0.1771 (0.1068) 0.3059 (0.2014)
DC-WCQR19 0.1758 (0.1054) 0.2192 (0.1979) 0.1750 (0.1080) 0.1358 (0.0760) 0.2809 (0.1727)

K=100 DC-CQR19 0.2467 (0.1988) 0.2018 (0.1052) 0.2220 (0.1487) 0.2191 (0.1451) 0.1046 (0.0962)
DC-WCQR19 0.2340 (0.1179) 0.1615 (0.0891) 0.1957 (0.1240) 0.1657 (0.0998) 0.0872 (0.0796)

t(3) Case 1 K=1 DC-CQR19 0.3059 (0.2886) 0.4344 (0.3207) 0.2348 (0.1954) 0.2742 (0.2574) 0.4578 (0.3116)
DC-WCQR19 0.3255 (0.2969) 0.3986 (0.3098) 0.2439 (0.2069) 0.2874 (0.2282) 0.3954 (0.3147)

K=10 DC-CQR19 0.2952 (0.2763) 0.2992 (0.2205) 0.3950 (0.3147) 0.4456 (0.3153) 0.5019 (0.4347)
DC-WCQR19 0.2812 (0.2276) 0.2786 (0.1837) 0.3557 (0.2617) 0.4583 (0.3117) 0.4764 (0.4636)

K=100 DC-CQR19 0.5439 (0.2884) 0.6013 (0.3230) 0.4583 (0.3275) 0.3172 (0.3609) 0.3060 (0.1663)
DC-WCQR19 0.4824 (0.2750) 0.5099 (0.3085) 0.4134 (0.2790) 0.3339 (0.3993) 0.3181 (0.2165)

Case 2 K=1 DC-CQR19 0.2190 (0.1651) 0.1797 (0.1621) 0.1702 (0.0912) 0.1760 (0.1172) 0.1923 (0.2105)
DC-WCQR19 0.2037 (0.1715) 0.1668 (0.1668) 0.1723 (0.0927) 0.1468 (0.1172) 0.2005 (0.1805)

K=10 DC-CQR19 0.2892 (0.2629) 0.3698 (0.1586) 0.3075 (0.2094) 0.2898 (0.1518) 0.3127 (0.1596)
DC-WCQR19 0.1813 (0.1788) 0.2726 (0.1828) 0.2331 (0.1702) 0.2772 (0.1343) 0.2207 (0.1608)

K=100 DC-CQR19 0.5647 (0.2239) 0.5088 (0.2704) 0.5673 (0.3311) 0.4232 (0.2615) 0.4610 (0.2899)
DC-WCQR19 0.2954 (0.1318) 0.2744 (0.1889) 0.3039 (0.2684) 0.1827 (0.1469) 0.2371 (0.1273)

χ2(5) Case 1 K=1 DC-CQR19 0.6802 (0.5437) 1.0100 (0.5728) 1.0058 (0.6761) 0.8602 (0.4020) 1.0246 (0.7063)
DC-WCQR19 0.5698 (0.4092) 0.6527 (0.5139) 0.4266 (0.3156) 0.6403 (0.3615) 1.0812 (0.6263)

K=10 DC-CQR19 0.5397 (0.4428) 0.5846 (0.5905) 0.7915 (0.5921) 0.7929 (0.6645) 1.0197 (0.7892)
DC-WCQR19 0.6113 (0.4514) 0.7426 (0.4481) 0.4238 (0.2645) 0.6406 (0.4690) 0.6014 (0.3289)

K=100 DC-CQR19 0.8096 (0.6078) 0.7034 (0.5517) 0.9288 (0.7281) 0.6111 (0.5332) 0.7862 (0.5489)
DC-WCQR19 0.4832 (0.4327) 0.8089 (0.5287) 0.8366 (0.6402) 0.5875 (0.3797) 0.7725 (0.4264)

Case 2 K=1 DC-CQR19 0.3213 (0.1722) 0.3973 (0.2688) 0.4343 (0.3851) 0.3433 (0.3163) 0.4156 (0.2894)
DC-WCQR19 0.3975 (0.2929) 0.3011 (0.2154) 0.3399 (0.2703) 0.3261 (0.3594) 0.2649 (0.2060)

K=10 DC-CQR19 0.5879 (0.5158) 0.7566 (0.6241) 0.6658 (0.4536) 0.6908 (0.6046) 0.9551 (0.6001)
DC-WCQR19 0.3082 (0.2425) 0.4756 (0.3058) 0.2443 (0.2104) 0.3890 (0.3041) 0.5114 (0.2201)

K=100 DC-CQR19 0.8307 (0.5411) 0.4409 (0.3685) 0.3803 (0.2500) 0.5064 (0.4159) 0.5409 (0.5467)
DC-WCQR19 0.4263 (0.3170) 0.2092 (0.1737) 0.3545 (0.1303) 0.3174 (0.3678) 0.4305 (0.2958)
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Table 3: The mean of RMSE and MAD (standard deviation) when ε ∼ N(0, 1). (10−2)
X Methods K=1 K=10 K=100

RMSE Case 1 LS 0.3488 (0.1633) 0.3488 (0.1633) 0.3488 (0.1633)
LAD 0.4872 (0.2037) 0.4863 (0.2274) 0.4898 (0.2224)
DC-CQR1 0.4884 (0.2042) 0.4852 (0.2287) 0.4757 (0.1977)
ACQR19 0.3686 (0.1595) 0.3699 (0.1578) 0.3723 (0.1545)
DC-CQR19 0.3686 (0.1595) 0.3697 (0.1599) 0.3686 (0.1603)
DC-WCQR19 0.3592 (0.1563) 0.3594 (0.1562) 0.3597 (0.1558)

MAD Case 1 LS 0.3675 (0.1535) 0.2753 (0.1336) 0.2347 (0.1191)
LAD 0.4954 (0.2521) 0.3470 (0.1790) 0.3201 (0.0931)
DC-CQR1 0.4909 (0.2558) 0.3418 (0.1778) 0.3184 (0.1171)
ACQR19 0.3835 (0.1814) 0.2632 (0.1256) 0.2667 (0.1035)
DC-CQR19 0.3835 (0.1814) 0.2616 (0.1276) 0.2577 (0.1107)
DC-WCQR19 0.3819 (0.1552) 0.2767 (0.1334) 0.2417 (0.0980)

RMSE Case 2 LS 0.2004 (0.0697) 0.2004 (0.0697) 0.2004 (0.0697)
LAD 0.2531 (0.0839) 0.4793 (0.1831) 0.4883 (0.1936)
DC-CQR1 0.2584 (0.0814) 0.3282 (0.0984) 0.3203 (0.1062)
ACQR19 0.2087 (0.0719) 0.4402 (0.1238) 0.4383 (0.1340)
DC-CQR19 0.2087 (0.0716) 0.2662 (0.0892) 0.2695 (0.0777)
DC-WCQR19 0.2055 (0.0708) 0.2145 (0.0726) 0.2149 (0.0737)

MAD Case 2 LS 0.1689 (0.0566) 0.1616 (0.0637) 0.1936 (0.0623)
LAD 0.1944 (0.0466) 0.3872 (0.1477) 0.3726 (0.1240)
DC-CQR1 0.1955 (0.0499) 0.2514 (0.1170) 0.2993 (0.1228)
ACQR19 0.1758 (0.0345) 0.3912 (0.1233) 0.3934 (0.0886)
DC-CQR19 0.1758 (0.0345) 0.2228 (0.0933) 0.2634 (0.0984)
DC-WCQR19 0.1739 (0.0406) 0.1722 (0.0689) 0.1993 (0.0791)

Table 4: The mean of RMSE and MAD (standard deviation) when ε ∼ t(3). (10−2)
X Methods K=1 K=10 K=100

RMSE Case 1 LS 0.6781 (0.1716) 0.6781 (0.1716) 0.6781 (0.1716)
LAD 0.5259 (0.0721) 0.5152 (0.0796) 0.5327 (0.1182)
DC-CQR1 0.5240 (0.0694) 0.5195 (0.1015) 0.5262 (0.0849)
ACQR19 0.4847 (0.1225) 0.4860 (0.1228) 0.4867 (0.1292)
DC-CQR19 0.4847 (0.1225) 0.4863 (0.1229) 0.4864 (0.1180)
DC-WCQR19 0.4783 (0.1330) 0.4778 (0.1336) 0.4790 (0.1338)

MAD Case 1 LS 0.5197 (0.1802) 0.5288 (0.1870) 0.4790 (0.1005)
LAD 0.3752 (0.1419) 0.4032 (0.0740) 0.4209 (0.1325)
DC-CQR1 0.3756 (0.1363) 0.3839 (0.0695) 0.4399 (0.1064)
ACQR19 0.3563 (0.1290) 0.3258 (0.0747) 0.3586 (0.1103)
DC-CQR19 0.3563 (0.1290) 0.3274 (0.0749) 0.3644 (0.1081)
DC-WCQR19 0.3414 (0.1379) 0.3071 (0.0845) 0.3578 (0.1189)

RMSE Case 2 LS 0.3539 (0.1216) 0.3539 (0.1216) 0.3539 (0.1216)
LAD 0.2752 (0.1032) 0.5008 (0.1962) 0.5031 (0.1921)
DC-CQR1 0.2801 (0.1023) 0.3583 (0.1256) 0.3629 (0.1273)
ACQR19 0.2504 (0.0847) 0.5371 (0.1863) 0.5702 (0.1884)
DC-CQR19 0.2504 (0.0847) 0.3317 (0.1047) 0.3577 (0.1272)
DC-WCQR19 0.2425 (0.0851) 0.2540 (0.0782) 0.2932 (0.0814)

MAD Case 2 LS 0.2531 (0.0926) 0.2501 (0.0809) 0.3239 (0.0851)
LAD 0.2234 (0.0756) 0.4678 (0.1745) 0.5380 (0.2383)
DC-CQR1 0.2289 (0.0732) 0.3338 (0.1091) 0.3181 (0.1097)
ACQR19 0.1753 (0.0299) 0.4498 (0.1197) 0.4037 (0.1684)
DC-CQR19 0.1753 (0.0299) 0.2630 (0.1258) 0.5084 (0.1126)
DC-WCQR19 0.1897 (0.0282) 0.2197 (0.0971) 0.2777 (0.0714)
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Table 5: The mean of RMSE and MAD (standard deviation) when ε ∼ χ2(5). (10−2)
X Methods K=1 K=10 K=100

RMSE Case 1 LS 2.1899 (0.7643) 2.1899 (0.7643) 2.1899 (0.7643)
LAD 19.484 (3.8009) 9.9637 (3.4820) 5.6553 (2.0022)
DC-CQR1 1.4196 (0.5407) 1.4252 (0.5552) 1.4330 (0.6088)
ACQR19 1.1078 (0.3937) 1.1162 (0.4024) 1.1220 (0.3967)
DC-CQR19 1.1069 (0.3937) 1.1146 (0.4025) 1.1179 (0.4018)
DC-WCQR19 0.7746 (0.3006) 0.7767 (0.3018) 0.7804 (0.3040)

MAD Case 1 LS 1.6769 (0.4736) 1.9430 (0.8388) 1.3456 (0.5321)
LAD 15.146 (3.0817) 9.1055 (4.1343) 3.8980 (1.4488)
DC-CQR1 1.1164 (0.4795) 1.0964 (0.3975) 1.0163 (0.2893)
ACQR19 0.7817 (0.2909) 0.8256 (0.3023) 0.8017 (0.2481)
DC-CQR19 0.7817 (0.2909) 0.8262 (0.3036) 0.8145 (0.2617)
DC-WCQR19 0.6598 (0.1680) 0.5879 (0.1531) 0.5469 (0.1203)

RMSE Case 2 LS 42.473 (0.1658) 42.473 (0.1658) 42.473 (0.1658)
LAD 43.473 (0.2020) 37.892 (2.0429) 37.871 (1.0911)
DC-CQR1 0.7075 (0.2118) 0.8533 (0.2826) 0.8777 (0.2748)
ACQR19 0.5217 (0.1730) 1.1870 (0.3536) 1.1885 (0.3558)
DC-CQR19 0.5217 (0.1730) 0.6743 (0.2269) 0.7693 (0.2664)
DC-WCQR19 0.4331 (0.1301) 0.4520 (0.1210) 0.4673 (0.1224)

MAD Case 2 LS 42.487 (0.1235) 42.575 (0.1637) 42.632 (0.2770)
LAD 43.413 (0.1808) 38.451 (2.4846) 38.521 (0.5111)
DC-CQR1 0.5991 (0.2198) 0.8613 (0.3102) 0.9259 (0.2663)
ACQR19 0.4440 (0.1417) 0.9487 (0.2861) 1.1850 (0.4549)
DC-CQR19 0.4440 (0.1417) 0.6930 (0.2561) 0.6254 (0.1859)
DC-WCQR19 0.3388 (0.1097) 0.3336 (0.0751) 0.2572 (0.0834)

Table 6: The means of confidence intervals and hypothesis testing for β3 for Case 1.
ϵ K Methods β̂3(×10−2) Length(×10−2) C.P.(=T.P.) P-value
N(0,1) 1 CQR -0.0399 0.6571 0.94 0.5642

WCQR -0.0313 0.6421 0.94 0.5770
10 CQR -0.0419 0.6571 0.96 0.5683

WCQR -0.0314 0.6421 0.96 0.5765
100 CQR -0.0439 0.6571 0.96 0.5549

WCQR -0.0316 0.6420 0.96 0.5680
t(3) 1 CQR -0.1087 0.8039 0.92 0.4062

WCQR -0.1025 0.7847 0.94 0.4152
10 CQR -0.1091 0.8085 0.91 0.4057

WCQR -0.1058 0.7895 0.94 0.4155
100 CQR -0.1113 0.8095 0.91 0.4059

WCQR -0.0973 0.7845 0.94 0.4148
χ2(5) 1 CQR 0.0218 1.7583 0.91 0.4822

WCQR -0.0010 1.3172 0.90 0.5107
10 CQR 0.0278 1.7583 0.90 0.4860

WCQR 0.0029 1.3171 0.89 0.5100
100 CQR 0.0154 1.7583 0.90 0.4871

WCQR -0.0062 1.3160 0.89 0.5153
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Table 7: The simulation results for variable selection.
N(0,1) t(3)

RGMSE GMSE(DC-WCQR) sensitivity specificity RGMSE GMSE(DC-WCQR) sensitivity specificity
K=1 1.9179 0.0010 0.9700 0.9667 1.4317 0.0013 0.9300 0.9667
K=10 1.8773 0.0012 0.9400 0.9667 1.4701 0.0017 0.9200 0.9667
K=100 1.9048 0.0011 0.9500 0.9667 1.4679 0.0014 0.9100 0.9500

Table 8: The estimates for the airline on-time data.
Mthod departure hour distance night weekend MSE MAD
LS 0.0012 -0.0091 -0.0037 -0.0144 0.0732 0.1906
LAD -0.0009 -0.0093 -0.0057 -0.0117 0.0744 0.1857
DC-CQR1 0.0018 0.0021 -0.0009 -0.0048 0.0737 0.1961
ACQR19 0.0007 -0.0057 -0.0030 -0.0071 0.0733 0.1904
DC-CQR19 0.0007 -0.0055 -0.0030 -0.0069 0.0733 0.1904
DC-WCQR19 0.0007 -0.0065 -0.0018 -0.0044 0.0734 0.1904
DC-PWCQR19 0.0000 -0.0055 -0.0030 -0.0069 0.0736 0.1884

20



References

Bahadur, R. R. (1966). A note on quantiles in large samples. Annals of Mathematical Statistics, 37, 577-580.

Chen, X. and Xie, M. (2014). A split-and-conquer approach for analysis of extraordinarily large data. Statistica
Sinica, 24, 1655-1684.

Draper, N. R. and Smith, H. (1998). Applied Regression Analysis, 3rd ed., Wiley, New York.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal
of the American Statistical Association, 96, 1348-1360.

Fan, J. and Peng, H. (2004). On non-concave penalized likelihood with diverging number of parameters. Annals of
Statistics, 32, 928-961.

Fan, J. and Lv, J. (2011). Non-concave penalized likelihood with NP-dimensionality. IEEE transaction on Informa-
tion Theory, 57, 5467-5484.

Fan, T. H., Lin, D. and Cheng, K. F. (2007). Regression analysis for massive datasets. Data & Knowledge Engineer-
ing, 61, 554-562.

Van de Geer, S., Buhlmann P, Ritov, Y, and Dezeure R. (2014). On asymptotically optimal confidence regions and
tests for high-dimensional models. The Annals of Statistics, 42, 1166-1202.

Jiang, X. J., Jiang, J. C. and Song, X. Y. (2012). Oracle model selection for nonlinear models based on weighted
composite quantile regression. Statistica Sinica, 22, 1479-1506.

Jiang, X. J., Li, J. Z., Xia, T. and Yan, W. F. (2016). Robust and efficient estimation with weighted composite quantile
regression. Physica A, 457, 413-423.

Jiang, R., Zhou, Z. G., Qian, W. M. and Shao, W. Q. (2012). Single-index composite quantile regression. Journal of
the Korean Statistical Society, 3, 323-332.

Jiang, R., Zhou, Z. G., Qian, W. M. and Chen, Y. (2013). Two step composite quantile regression for single-index
models. Computational Statistics and Data Analysis, 64, 180-191.

Jiang, R., Qian, W. M. and Li, J. R. (2014). Testing in linear composite quantile regression models. Computational
Statistics, 29, 1381-1402.

Jiang, R., Qian, W. M. and Zhou, Z. G. (2015). Composite quantile regression for linear errors-in-variables models.
Hacettepe Journal of Mathematics and Statistics, 44, 707-713.

Jiang, R., Qian, W. M. and Zhou, Z. G. (2016a). Weighted composite quantile regression for single-index models.
Journal of Multivariate Analysis, 148, 34-48.

Jiang, R., Qian, W. M. and Zhou, Z. G. (2016b). Single-index composite quantile regression with heteroscedasticity
and general error distributions. Statistical Papers, 57, 185-203.

Jiang, R., Qian, W. M. and Zhou, Z. G. (2018). Weighted composite quantile regression for partially linear varying
coefficient models. Communications in Statistics-Theory and Methods, 47, 3987-4005.

Kai, B., Li, R. and Zou, H. (2010). Local composite quantile regression smoothing: an efficient and safe alternative
to local polynomial regression. Journal of the Royal Statistical Society, Series B, 72, 49-69.

Kai, B., Li, R. and Zou, H. (2011). New efficient estimation and variable selection methods for semiparametric
varying-coefficient partially linear models. Annals of Statistics, 39, 305-332.

Kleiner, A., Talwalkar, A., Sarkar, P. and Jordan, M. I. (2014). A scalable bootstrap for massive data. Journal of the
Royal Statistical Society, Series B, 76, 795-816.

21



Koenker, R. (2005). Quantile regression. Cambridge University Press, Cambridge.

Lam, C. and Fan, J. (2008). Profile-Kernel likelihood inference with diverging number of parameters. Annals of
Statistics, 36, 2232-2260.

Li, R., Lin, D. and Li, B. (2013). Statistics inference in massive data sets. Applied Stochastic Models in Business
and Industry, 29, 399-409.

Liang, F., Cheng, Y., Song, Q., Park, J. and Yang, P. (2013). A resampling-based stochastic approximation method
for analysis of large geostatistical data. Journal of the American Statistical Association, 108, 325-339.

Lin, N. and Xi, R. (2011). Aggregated estimating equation estimation. Statistics and Its Interface, 4, 73-83.

Ma, P., Mahoney, M. W. and Yu, B. (2015). A statistical perspective on algorithmic leveraging. The Journal of
Machine Learning Research, 6, 861-911.

Meishausen, N. and Buhlmann, P. (2010). Stability selection. Journal of the Royal Statistical Society, Series B, 72,
417-473.

Ning, Z. and Tang, L. (2014). Estimation and test procedures for composite quantile regression with covariates
missing at random. Statistics and Probability Letters, 95, 15-25.

Schifano, E. D., Wu, J., Wang, C., Yan, J. and Chen, M. H. (2016). Online updating of statistical inference in the big
data setting. Technometrics, 58, 393-403.

Shah, R. and Samworth, R. J. (2013). Variable selection with error control: Another look at stability selection.
Journal of the Royal Statistical Society, Series B, 75, 55-80.

Tang, L., Zhou, Z. and Wu, C. (2012). Weighted composite quantile estimation and variable selection method for
censored regression model. Statistics and Probability Letters, 3, 653-663.

Tang, L. and Zhou, Z. (2015). Weighted local linear CQR for varying-coefficient models with missing covariates.
Test, 24, 583-604.

Tian, Y., Zhu, Q. and Tian, M. (2016). Estimation of linear composite quantile regression using EM algorithm.
Statistics and Probability Letters, 117, 183-191.

Tibshirani, R. J. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society,
Series B, 58, 267-288.

Wang, C., Chen, M. H., Schifano, E. D., Wu, J. and Yan, J. (2015). Statistical methods and computing for big data.
Statistics and its Interface, arXiv:1502.07989.

Wang, H., Li, G. and Jiang, G. (2007a). Robust regression shrinkage and consistent variable selection via the LAD-
LASSO. Journal of Business and Economic Statistics, 20, 347-355.

Wang, H., Li, R. and Tsai, C. L. (2007b). Tuning parameter selectors for the smoothly clipped absolute deviation
method. Biometrika, 94, 553-568.

Wu, Y. and Liu, Y. (2009). Variable selection in quantile regression. Statistica Sinica, 19, 801-817.

Xu, Q., Cai, C., Jiang, C., Sun, F. and Huang, X. (2017). Block average quantile regression for massive dataset.
Statistical Papers, DOI:10.1007/s00362-017-0932-6 .

Zhao, T., Kolar, M. and Liu, H. (2017). A general framework for robust testing and confidence regions in high-
dimensional quantile regression. Tech. rep.

Zhao, K. and Lian, H. (2016). A note on the efficiency of composite quantile regression. Journal of Statistical
Computation and Simulation, 86, 1334-1341.

22



Zhao, W., Lian, H. and Song, X. (2017). Composite quantile regression for correlated data. Computational Statistics
and Data Analysis, 109, 15-33.

Zou. H. (2006). The adaptive LASSO and its oracle properties. Journal of The American Statistical Association,
101, 1418-1429.

Zou, H., Hastie, T. and Tibshirani, R. (2007). On the degrees of freedom of the Lasso. Annals of Statistics, 35,
2173-2192.

Zou, H. and Yuan, M. (2008). Composite quantile regression and the oracle model selection theory. Annals of
Statistics, 36, 1108-1126.

23


