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Abstract Software systems continuously evolve to accommodate new features and inter-
operability relationships between artifacts point to increasingly relevant software change
impacts. During maintenance, developers must ensure that related entities are updated to
be consistent with these changes. Studies in the static change impact analysis domain have
identified that a combination of source code and lexical information outperforms using each
one when adopted independently. However, the extraction of lexical information and the
measure of how loosely or closely related two software artifacts are, considering the seman-
tic information embedded in their comments and identifiers has been carried out using
somewhat complex information retrieval (IR) techniques. The interplay between software
semantic and change relationship strengths has also not been extensively studied. This work
aims to fill both gaps by comparing the effectiveness of measuring semantic coupling of
OO software classes using (i) simple identifier based techniques and (ii) the word corpora
of the entire classes in a software system. Afterwards, we empirically investigate the inter-
play between semantic and change coupling. The empirical results show that: (1) identifier
based methods have more computational efficiency but cannot always be used interchange-
ably with corpora-based methods of computing semantic coupling of classes and (2) there is
no correlation between semantic and change coupling. Furthermore we found that (3) there
is a directional relationship between the two, as over 70% of the semantic dependencies are
also linked by change coupling but not vice versa.
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1 Introduction

Software Change Impact Analysis (CIA) is an essential technique for identifying the poten-
tial ripple effects caused by software changes during software maintenance and evolution
(Briand et al. 1999; Wilkie and Kitchenham 2000). CIA techniques can be typically static
or dynamic (Sun et al. 2015), depending on how the information is collected to analyse its
change impact. Dynamic techniques rely on information gathered during program execu-
tion to compute the change impact set while static techniques are centred around the source
code, semantic information and change dependencies. Because of the many false positives
and the effort required in dynamic analysis (collecting data during execution and analyzing
data during execution), static techniques have gained popularity (Sun et al. 2015).

Most studies on static impact analysis have shown that certain classes, identified by pat-
terns or metrics, are more likely to be impacted by a change and, hence, practitioners will
need to invest extra effort in their future maintenance. Other studies, specifically addressed
at establishing a link between coupling and co-change, have found that the set of co-changed
classes was much larger compared to the set of structurally coupled classes (Oliva and
Gerosa 2011, 2015; Fluri et al. 2005, Geipel and Schweitzer 2012). This implies that not
all of the change dependencies are related to structural dependencies and there could be
other reasons for software artefacts to be change dependent (Oliva and Gerosa 2011). High
coupling between classes in an OO design can increase system complexity by introducing
multiple inter-dependencies among the classes (Subramanyam and Krishnan 2003). Moreover,
excessive coupling can complicate testing, make additional changes problematic and limit
possibilities for reuse (Prasad and Bhadauria 2009). Software that is not flexible or tolerant to
modification is usually destined to abandonment or replacement (Oliva and Gerosa 2012).

Kagdi and Maletic have estimated that there is a hidden dependency (HD) between two
classes or two methods if the classes or the methods are changed at the same time in the
past (Kagdi et al. 2007). As Yu et al. stated (Yu and Rajlich 2001): ‘hidden dependencies
among software artefacts make both understanding and maintenance difficult’. Briand et
al. showed that if developers are required to handle a large set of dependencies, they would
miss a significant number of them Briand et al. (1999). Poshyvanyk and Marcus detected
dependencies using information retrieval techniques (Poshyvanyk and Marcus 2006). In a
similar way to HD, complex dependencies are captured by semantic information which is
hard to detect by traditional program analysis techniques (Vanciu and Rajlich 2010). Some
CIA tools do not discover HD, and it is the responsibility of the programmer to correctly
identify and trace HD during change impact analysis (Petrenko and Rajlich 2009).

In the last few years, a new dimension has been identified as a hidden dependency,
termed “semantic” coupling, that could have an influence on coupling and co-change. Sim-
ply defined, semantic coupling is a measure of how loosely or closely related two software
artefacts are, by considering the semantic information embedded in the comments and
identifiers. According to Bavota et al. (2013b):

the peculiarity of the semantic coupling measure allows it to better estimate the mental
model of developers than the other coupling measures. This is because, in several cases,
the interactions between classes are encapsulated in the source code vocabulary (...).
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In the conceptual framework for software dependency management proposed by Oliva
and Gerosa (2012), semantic coupling is not considered as one of the dependencies to be
measured. They state that software dependencies are the ‘primary’ subject of management,
and the identification of dependencies involves capturing structural and logical dependen-
cies. Nonetheless, the same authors claim that there is still a need to study the interplay
between semantic and logical coupling in OO software as well as the interplay between
structural and semantic coupling (Oliva and Gerosa 2011, 2015). They identified a small
intersection between the sets of structural and logical dependencies after analyzing com-
mits from the Apache Software Foundation repository. When directly assessing semantic
coupling, researchers in the software evolution and dependency domain have demonstrated
that semantic coupling metrics can outperform structural metrics in identifying classes that
might be impacted by a given change request (Poshyvanyk et al. 2009). Semantic and logi-
cal coupling metrics have also been combined in change impact analysis (Kagdi et al. 2010;
Lozano et al. 2014).

Researchers have suggested that frequent change coupling indicates a strong structural
coupling between the corresponding modules, sub-modules, or files as well as possible
shortcomings in the design of a software system (Fluri et al. 2005). However, the frequency
of change couplings have not yet been studied in relation to semantic coupling. The compu-
tation of semantic coupling in studies in this domain have been done by using information
retrieval techniques such as latent semantic indexing (LSI) and vector space modelling
(VSM) (Poshyvanyk and Marcus 2006; Poshyvanyk et al. 2009; Kagdi et al. 2013) to ana-
lyze the corpora of OO software classes (after transforming the semantic information from
source code into a text or words corpus).

In a pilot study, we observed that the extraction of word corpora can be time-consuming,
especially when systems are large and many classes are involved (Ajienka and Capiluppi
2016). With the goal of identifying how the computation of the semantic coupling of classes
can be improved, we statistically compared the metrics derived from analyzing the corpora
of classes against an analysis of only their identifiers. Results revealed that identifier based
metrics reflect the corpora based measurements. In addition, identifier based measurements
were more efficient in terms of computation time, especially when analyzing large soft-
ware classes (e.g., > 1000k lines of source code). It is important to further validate results
derived from the pilot study with a larger sample of projects to improve generalizeability. In
addition, the results will further contribute to knowledge on how to ease semantic coupling
measurement in further studies that rely on semantic coupling information of classes in OO
software.

Given the current state of the art in the area of software coupling, and extending our pre-
vious work, we shift the focus of the change impact analysis to the semantic link between
object-oriented (OO) software classes in 79 OSS projects (written in Java). This paper
examines the strength of semantic coupling (Poshyvanyk and Marcus 2006) between pairs
of classes, through the evolution of various software systems, and correlates it with the
likelihood of their future co-change.

Establishing whether there is an interplay between logical and semantic coupling has
several applications in software engineering including:

1. Co-change inferred by semantic coupling: understanding the influence of seman-
tic coupling on co-change can also help to infer the co-change frequency of software
classes based on semantic coupling strengths, i.e., semantic coupling metrics can be
used to directly inform practitioners about potential unplanned co-changes of classes in
OO software projects.
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2. Improving software tools to detect hidden dependencies: “hidden” dependencies
not detected by software maintenance tools during change impact analysis that cause
co-change would be detected with significant precision.

3. Minimizing historical data extraction and analysis efforts: semantic coupling met-
rics will be used to inform or predict the strength of the logical dependencies between
classes without the need to analyze historical data of software projects, thus reducing
the effort required (i.e., computation time and data storage) in the detection of logical
dependencies via mining software repositories. The semantic similarity between class
identifiers will also be used in the ranking of classes that might be impacted by a given
change request without having to analyze software evolution or historical data, thus
minimizing the effort required in change impact analysis (Kagdi et al. 2013).

This work is articulated as follows: in Section 2 we describe the definitions, research
goals and steps taken to carry out this study, with the help of a worked example to show
the empirical approach. Sections 3 and 4 highlight the results of our study, followed by a
discussion on the importance of these findings. Section 5 highlights the threats to validity
and in Section 6 we summarise the related work. Finally, our conclusions and areas for
further research are presented in Section 7.

2 Research methodology

In this section, we present the definitions for the different types of coupling Section 2.1,
the motivating scenario Section 2.2 and the goals of this research Section 2.3. Additionally,
we highlight, with the use of worked examples, the steps performed in the methodology:
data collection Section 2.4; computing the coupling types Section 2.5; evaluating their
intersection Section 2.6; and performing the statistical tests Section 2.7.

2.1 OO software dependencies

A dependency is a semantic relationship that indicates that a client element may be affected
by changes performed in a supplier element (Oliva and Gerosa 2011). In Sections 2.1.1
and 2.1.2, we introduce semantic and logical dependencies and discuss how they can be
operationalised in an OO context.

2.1.1 Logical coupling

According to Wiese et al., “change coupling is a phenomenon associated with recurrent co-
changes found in the software evolution history” (Wiese et al. 2015). Co-evolution of classes
can be represented with their change, logical or evolutionary coupling (Zimmermann et al.
2003; Yu 2007) (as shown in Fig. 2). Therefore, the logical coupling of any two classes
is based on their change history, and is a measure of the observation that the two classes
always co-evolve or change together (Gal et al. 1998, 2003; D’Ambros et al. 2009; Wiese et
al. 2015). They are commonly treated as association rules (Zimmermann et al. 2005), which
means that when X1 is changed, X2 is also changed (Oliva and Gerosa 2011). Furthermore,
X1 and X2 are called the antecedent (i.e., left-hand-side, LHS) and the consequent (i.e.,
right-hand-side, RHS) of the rule, respectively. For example, the rule {A, B}→ C found in
the sales data of a supermarket indicates that a customer who buys A and B together, is also
likely to buy C (Oliva and Gerosa 2011).
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Two classes change at the same time when changes in one class A are made in response to
a change in another class B. Kagdi et al. (2013) state that logical coupling captures the extent
to which software artefacts co-evolve and this information is derived by analysing patterns,
relationships and relevant information of source code changes mined from multiple versions
(of software systems) in software repositories (e.g., Subversion and Bugzilla). According
to Lanza et al. (D’Ambros et al. 2006) it is useful to study logical coupling because it can
reveal dependencies not revealed by analyzing the source code (Yu 2007) only. These sort
of dependencies are the most troublesome and are the source of many defects in software.
In this study, we adapt the methods proposed by Zimmermann et al. (2003) to represent
logical dependencies.

Operationalisation The logical dependency between classes and its degree, is evaluated
in this work using the support and confidence metrics. By doing so, we evaluated the
significance of the association rules between classes (Oliva and Gerosa 2011), and across
the lifespan of a software project (i.e., taking all versions of the software system into
consideration).

The support value counts the number of revisions where two software artifacts (i.e.,
classes) were changed together. In other words, the probability of finding both the
antecedent and consequent in the set of revisions. For example, in Fig. 1, class A was mod-
ified in 3 transactions (where 3 is the “Transaction Count” (Yu 2007)). Out of these 3
transactions, 2 also included changes to the class C. Therefore, the support for the logical
dependency A → C will be 2. By its own nature, support is a symmetric metric, so the
A → C dependency also implies A ← C. The support value of a given rule determines
how evident the rule is Wiese et al. (2017).

On the other hand, the confidence1 value of a dependency link measures the degree of
the logical dependency and normalizes the support value by the total number of changes of
the causal class, or the antecedent of the association rule. Numerically, it is the ratio of the
support count to transaction count: from Fig. 1, the confidence value for the association rule
A → C (which states that C depends on A) will have a high confidence value of 2/3 = 0.67.
In contrast, the rule C → A (which states that A depends on C) has a lower confidence
value of 2/4 = 0.5. In other words, the confidence is directional, and determines the strength
of the consequence of a given (directional) logical dependency. The confidence value is the
strength of a given association rule (Wiese et al. 2017).

Logical coupling is directional, thus A → C (changes made to class A resulted in
changes in C) and C → A (changes in C caused changes in A) will have different meanings.
As a result, the confidence for these two cause −→ effect rules can be different.

2.1.2 Semantic coupling

Some studies have used the term “semantic” (Poshyvanyk et al. 2009; Qusef et al. 2011,
Bavota et al. 2010, 2013b, 2014a, b; Kagdi et al. 2010; Gethers et al. 2012), while others
have used the term “conceptual” (Gethers et al. 2012) to describe the same concept. Poshy-
vanyk et al. (2009) state that conceptual coupling captures the degree to which the identifiers
and comments from different classes relate to each other (Qusef et al. 2011, Bavota et al.
2010, 2013b, 2014a, b; Kagdi et al. 2010). Gethers et al. (2012) add a twist to the definition
and state that conceptual coupling captures the extent to which domain concepts/features

1Also called the support ratio (Yu 2007)
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Fig. 1 Association rule example for confidence and support metrics

and software artefacts are related to each other. However, both definitions have things in
common. They are limited to the underlying meanings of unstructured text in the source
code of software entities (e.g., classes) and how these underlying meanings relate to each
other. Furthermore, this relationship is derived in the form of metrics (-1 to 1, where 1 =
high semantic coupling (Poshyvanyk and Marcus 2006)).

Identifiers used by developers for names of classes, methods, or attributes in source code
or other artifacts contain important information and account for approximately half of the
source code in software (Kagdi et al. 2013). These names often serve as a starting point in
many program comprehension tasks. Hence, it is essential that these names clearly reflect
the concepts that they are supposed to represent, as self-documenting identifiers decrease
the time and effort needed to acquire a basic comprehension level for a programming task
(Kagdi et al. 2013).

2.2 Motivating scenario

Figure 2 shows a simplified scenario that underlies our motivation: previous research (Yu
2007) (pictured inside the grey box) has shown that the structural coupling between classes
causes them to be co-changed, and it plays an important role in the measurement of co-
evolution (Yu 2007). However Yu (2007) has used correlation to infer a causal relationship
and research has shown that correlation does not always mean causality (Didele 2005);
there are different ways to identify causal relationships. In addition to correlation studies
which investigate linear relationships, we have also investigated the presence of a directional
relationships between semantic and logical coupling. Our contribution, expressed in this
research, includes semantic coupling in the picture: we posit that the semantic coupling of
classes leads to their co-change and logical coupling (evolutionary dependencies).

2.3 Research goals

The work we present is based on the three following goals:

G1: to establish with a larger sample of OSS projects whether the semantic coupling
between classes using the class names of Java files produces comparable results to
using the corpora of the classes content (i.e., the class own source code) (Ajienka and
Capiluppi 2016);
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Fig. 2 Motivating example: structural coupling → co-evolution (Yu 2007) and semantic → co-evolution (to
be checked in this work)

G2: to investigate how the semantic coupling strength between classes has an impact on
their future co-changes;

G3: to investigate the directionality of the relationship between logical and semantic (as
motivated by Fig. 2) by identifying the proportion of logical dependencies that involve
semantically related elements (“hidden dependencies” (Vanciu and Rajlich 2010))
and vice-versa.

Research questions were derived from each goal, and testable hypotheses formulated for
each question, as summarised in Table 1.

2.4 Empirical data collection

In the next subsections, we present how and what kind of data we collected from the
repositories of the studied sample of OO software projects.

Table 1 Research Goals and Questions

Goals Research questions Null hypothesis H0

G1 [Q1] Can semantic coupling between classes
be captured via class names, rather than
with source code corpora?

There is no association between the seman-
tic similarity measures of the corpora and
identifier based techniques

G2 [Q2] Is there a linear relationship between
logical and semantic coupling?

No linear relationship between the strengths
of logical and semantic dependencies

G3 [Q3] Is there a directional relationship
between semantic and logical coupling?

No directional relationship
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2.4.1 Selection of a sample of OSS projects

Leveraging the FlossMole project, we used its latest available data dump to determine the
population of GoogleCode: a total of 2,593,222 projects are listed in the November 2012
dump.2 Given their language descriptions, we extracted the subset of Java projects from that
population, obtaining 49,459 Java projects. Each project in the subset was given a unique
ID: using a 95% confidence level, and a 5% confidence interval, a random sample of 380
IDs were extracted, and linked to the Java projects’ names.

2.4.2 Storage of projects metadata and revisions

The first phase of this activity was centered on obtaining the metadata (e.g, name of devel-
opers, date and time of changes, etc.) of each project in the sample. The repository of each
project was downloaded and stored, with its metadata, using the CVSAnalY set of tools.3

The process to obtain the metadata for all the projects took around 48 hours: sleep state-
ments were inserted in a routine not to overload the online servers, and to make sure that
the latest versions of the files were downloaded. The metadata allowed us to obtain the list
of revisions for each class, and for the whole project. The second phase was to get all the
revisions of each project; from this we could identify the trivial projects (with < 20 revi-
sions) and exclude these from the study. As a result, we ended up with 79 non-trivial Java
open-source software projects with 117 revisions on average.

There is a chance that re-sampling to retrieve a larger sample of projects could result in a
larger number of trivial projects with less than 79 left. Previous studies have also excluded
a number of OSS projects after their initial sampling. Samoladas et al. (2010) and Gousios
and Pinzger (2014) applied certain selection criteria to exclude projects from their initial
selection. Midha and Palvia (2012) based on certain project selection criteria, reduced their
initial sample from 887 to 283. Haefliger and Spaeth (Haefliger et al. 2008) reduced their
selected sample of projects to 6 OSS projects with variance on their sampling criteria. The
studied sample included a wide variety of software products such as office software, games,
a hardware driver, and an instant messenger client and this reduced sampling bias (Stake
1995). Similarly in this study, the resulting non-trivial sample of 79 OSS projects are of
different domains, sizes and levels of activity. The sample selection criteria widely used
in OSS research (Cruz et al. 2006; Rainer and Gale 2005) and adopted by Haefliger and
Spaeth, includes: 1) the project is under active development, allowing the tracking of its
development activity 4, 2) the source code modifications of the project need to be available
online, and 3) the project should have been in existence for at least a year.

Because the process of analyzing the correlation between identifier and corpora based
methods of computing semantic coupling is labour-intensive 5, we focused our attention

2Data dump is available at http://flossdata.syr.edu/data/gc/2012/2012-Nov/
3http://metricsgrimoire.github.io/CVSAnalY/
4Prior research (Kalliamvakou et al. 2016) shows that 75% of OSS projects on Github have over 20 commits
and 90% have less than 50 commits. We selected projects with above 20 commits to retrieve a variety of
projects with varying levels of development activity in our sample, improve generalizeabiliy of the study as
well as extract substantial change history to understand logical coupling.
5To answer RQ1, it becomes imperative to compute VSM using a Java tool to parse the corpus of classes
after the stemming of words, converting class identifier names from camel case to snake case with a Shell
script, and computing correlations in the R statistical environment

http://flossdata.syr.edu/data/gc/2012/2012-Nov/
http://metricsgrimoire.github.io/CVSAnalY/


Empir Software Eng (2018) 23:1791–1825 1799

Table 2 Co-evolution data for
Project UrSQL (excerpt) Project name Rev Class A Class B

UrSQL 4 UDO Filio

UrSQL 4 UDO Main

UrSQL 4 UDO UrSQLController

UrSQL 4 UDO UrSQLEntity

UrSQL 4 UDO UrSQLEntry

UrSQL 4 Filio UDO

UrSQL 4 Filio Main

UrSQL 4 Filio UrSQLController

on a subset of this sample of projects when answering RQ1 (Crowston et al. 2005) while
ensuring that the subset consists of projects of varying sizes representative of the overall
sample.

2.5 Identifying class dependencies (RQ1)

In the following subsections, we present how the class dependencies were calculated with
examples. We also present assumptions and decisions made during this task.

2.5.1 Logical coupling

For each project, we extracted the number of revisions, based on the tables built by CVS-
AnalY. This task was a pure SQL extraction task, so it did not pose a time issue. For all
revisions, we extracted the list of pairs of classes that were co-evolving in that revision and
stored this data in a .CSV file. An example of the co-evolution data is provided in Table 2,
detailing an excerpt of the Java classes that co-evolve in the UrSQL project in its 4th revi-
sion. The first column shows the project name, the third and fourth columns show classes
that were co-changed, through association rules.

Using the arules 6 library in the R 7 environment for association rule mining (Hahsler
et al. 2007), we were able to compute the Confidence metric for each pair of classes with an
established logical dependency. Similar to prior research, the support and confidence thresh-
olds have been set to 0.01 and 0.1 respectively (Kenett and Salini 2008). This is because
increasing the support and confidence increases precision but lowers recall (i.e., only a small
number of association rules are identified when the minimum confidence value is higher
than 0.01). The number of identified co-evolving class pairs reduces based on increase in
confidence and such pruning looses important information (Zimmermann et al. 2005). Oliva
and Gerosa classified confidence metrics as: [0.00-0.33] low logical coupling, [0.33-0.66]
medium logical coupling and [0.66-1.00] high logical coupling and identified that highly
logically coupled classes suffered slightest influence from structural coupling. In addition,
the arules library in the R statistical environment has been used with a high precision and
minimal false positives in prior research across different disciplines (Hahsler et al. 2006;
Hahsler and Hornik 2007; Kenett and Salini 2008) when mining frequent item sets from
data.

6https://cran.r-project.org/web/packages/arules/index.html
7https://www.r-project.org/

https://cran.r-project.org/web/packages/arules/index.html
https://www.r-project.org/


1800 Empir Software Eng (2018) 23:1791–1825

2.5.2 Semantic coupling

In a previous study (Ajienka and Capiluppi 2016) described in Section 1, we compared two
sentence similarity techniques (based on N-Gram 8 and Disco Word synonym9 categories
methods) against a corpus or text document cosine similarity based technique (VSM)10 11

for computing semantic similarity between Java classes. The study was conducted using
two software projects and identified by means of Chi-squared independence tests that mea-
suring the semantic similarity between classes using (only) their identifiers is similar to
using the class corpora. This is because using identifiers was more efficient in terms of
recall, and computation time (Ajienka and Capiluppi 2016). The study also identified that
English based word similarity techniques such as WordNet do not perform well on software
terminologies (e.g., export ↔ dump). The steps taken to compute the semantic similar-
ity between Java classes using the three techniques is explained in detail in Ajienka and
Capiluppi (2016).

In addition, the N-Gram technique is based on the edit distance and shared sub-strings
of length n between sentences (Kešelj et al. 2003). An example is the semantic similarity
between two class identifiers ’Ur S Q L Controller’ and ’Ur S Q L Entry’ which returns
a value of 0.6 for shared sub-strings between 0 and 4. We have used n-grams of size 4
in this study based on prior information retrieval research (Mcnamee and Mayfield 2004;
Kešelj et al. 2003) that shows that n=4 increases the precision when analyzing words or
terms in various languages. The N-Gram technique also performs better on text from other
languages (Ajienka and Capiluppi 2016) apart from English (Mcnamee and Mayfield 2004;
Kešelj et al. 2003) compared to English based text similarity methods like WordNet. The
Disco technique although with low precision on non-English words has been compared to
other text similarity techniques and proven to perform well when its outputs were manually
checked. According to Despotakis et al. (2011) “although the precision for Disco was low,
it did provide additional valuable concepts, which were approved by both experts. We also
manually checked the outputs of the semantic similarity measurements to minimize the
effects of false positives.”

In this study, we extend the previous study with a larger sample of OO software projects
written in the Java programming language. The statistical methods applied in investigating
the association between the corpus and identifier-based techniques are described in Sec-
tions 2.7.1 and 2.7.2. We also compare the techniques with three semantic dissimilarity
thresholds (t = 0.1, 0.2, and 0.5) based on what has been used previously in the litera-
ture (0.195 (Kešelj et al. 2003); between 0.1 and 0.2 (Tan et al. 2000), 0.2 (Erkan and
Radev 2004; Sarikaya et al. 2005); and 0.5 (Coster and Kauchak 2011; Corley and Mihalcea
2005)).

8A Java implementation of the N-Gram distance algorithm is available at https://github.com/tdebatty/
java-string-similarity#n-gram
9The Disco sentence similarity measures the semantic similarity between sentences according to the syn-
onyms of their words. A Java implementation of the tool is publicly available at https://sourceforge.net/
projects/semantics/?source=directory
10We have developed a tool that uses the VSM method to automate the corpus based technique. It can be
downloaded at: https://github.com/najienka/SemanticSimilarityJava
11Two out of the studied projects have also been added to the online repository for replication.

https://github.com/tdebatty/java-string-similarity#n-gram
https://github.com/tdebatty/java-string-similarity#n-gram
https://sourceforge.net/projects/semantics/?source=directory
https://sourceforge.net/projects/semantics/?source=directory
https://github.com/najienka/SemanticSimilarityJava
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2.6 Evaluating the intersection of sets (RQ2)

Once pair-wise semantic and logical dependencies were identified and the associated cou-
pling values were calculated, we then built a spreadsheet per project based on the data with
the following columns; LHS (antecedent), RHS (consequent), semantic similarity, and con-
fidence. Using a Shell script, we could parse the data and identify the proportion of semantic
dependencies that involved non-logical dependencies (i.e., A − B from the sets in Fig. 3),
the proportion of logical dependencies that involved non-semantic dependencies (i.e., B−A

from Fig. 3) as well as the intersection set of pairs of classes that are both semantically and
logically related (i.e., A ∩ B from Fig. 3).

2.7 Statistical tests

Both RQ1 and RQ2 are linked to formal statistical testing. Below the two tests (Chi-Squared
for RQ1 and Spearman for RQ2) are illustrated in the context of the analysed systems.

2.7.1 Chi-Squared (X2) Test (RQ1)

To answer RQ1, we performed a Chi-square statistical test to discover if the similarity mea-
sures from one class identifier-based technique (say, the N-Gram) produces similar results
to the corpus-based technique (VSM). For each project, we populated a 2X2 contingency
table, composed of row (i.e., groups) and column (i.e., outcomes) variables. The first con-
tingency table visible in Table 3 is a generic 2x2 contingency table, with the corpus-based
outcomes (VSM) as the outcomes variable, and the identifier-based outcomes (N-Gram and
Disco) as the groups variable. For the statistical test, we used three semantic dissimilarity
thresholds t = 0.1, 0.2, and 0.5.

If s is the semantic similarity between pairs, and using a similarity threshold t (with a
lower t implying a weaker similarity), the items of the contingency table are:

– A: pair of classes with s � t for both Corpora-based and Identifier-based techniques;
– B: pair of classes with s < t for one technique but � t for the other;

Fig. 3 Intersection of semantically and logically coupled classes



1802 Empir Software Eng (2018) 23:1791–1825

Table 3 Contingency Tables:
generic (top) and populated
(middle and bottom) with
Identifier (either N-Gram or
Disco) vs Corpus Based (VSM)
techniques

Generic Contingency Table

Corpora-Based (VSM)

Identifier-Based A B

C D

VSM vs N-Gram Comparison - UrSQL project (p=.000532)

� 0.1 < 0.1

� 0.1 3 0

< 0.1 0 3

VSM vs Disco Comparison - UrSQL project (p=.000532)

� 0.1 < 0.1

� 0.1 3 0

< 0.1 0 3

The following are the possible outcomes observed for the threshold t – for the Identifier-
based technique:

– C: pair of classes with s � t for one technique but < t for the other;
– D: pair of classes with s < t for both techniques.

The other two tables (middle and bottom of Table 3) report the values and results for (i)
VSM as the column variable, and N-Gram as the row variable and (ii) VSM as the column
variable, and Disco as the row variable for the UrSQL Project, with t = 0.1.

After populating the contingency Tables, we tested for the association between the
semantic similarity measures derived from the pairs of techniques (the identifier and corpus
based) using the Chi-square test method (chisq.test) in R12. This test is used to compare
categorical data. It asserts the independence of the two techniques, with a null hypothesis
H0 of no association between their outcomes. We set the p-value at 0.05 as the threshold to
reject the null hypothesis and compute the Chi-square tests for each project.

2.7.2 Spearman’s rank correlation ρ (RQ1 and RQ2)

This section describes the computation of Spearman’s rank correlation statistical tests for
RQ1 and RQ2.

To further answer RQ1, using the semantic dissimilarity thresholds (0.1, 0.2, and 0.5)
described in Section 2.5.2, we will in addition to the Chi-square test compute the linear
correlation between the corpora based semantic similarity measurement technique and the
identifier based techniques to verify whether the semantic coupling metrics reported by the
different techniques for the same pairs of classes co-vary.

The intersection of dependency sets (from 2.6) is used to evaluate the relationship
between the coupling types. All the values of the logical coupling strength (i.e., the confi-
dence metrics) and all the values of the semantic coupling strength, are pulled together, per
pair of classes, per project and along their string of revisions. Given a project, we created

12http://courses.statistics.com/software/R/Rchisq.htm

http://courses.statistics.com/software/R/Rchisq.htm
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two vectors 13, one with the values of ‘semantic similarity‘ between classes; the other with
all the values of co-change confidence between classes.

Each observation in both vectors contain the semantic coupling between two classes and
the confidence of their co-evolution or logical coupling metric. Notwithstanding, the seman-
tic coupling metric is a symmetric metric whereby the semantic coupling is the same in both
directions (for example a pair of classes A and B in a software project Y, A → B will have
the same semantic coupling metric as B → A). The logical coupling metric however is not
symmetric. The association rule A → B measures the strength of the following observa-
tion: “when A is modified, there will always be a change in B” (Zimmermann et al. 2003).
Therefore, A → B and B → A are not treated as the same association rule (the confidence
metric could be different but the semantic coupling metrics is the same) and are considered
as different observations in the created vectors.

Computing a linear correlation between the strengths of the semantic and logical cou-
pling of classes will help to further answer questions such as: “What is the strength of
the relationship between semantic and logical coupling of classes?”, “are classes with a
high degree of semantic coupling likely to co-evolve frequently?”. Various correlation coef-
ficients have been considered including Pearson, Kendall and Spearman. However, for
Pearson’s to be valid the data has to follow a normal distribution (Yu 2007; Pagano 2001)
(the mean, median and mode have to be the same) while Kendall tau is used in small
sample sizes and where there are multiple values with the same score (Field 2009) and inter-
preted based on the probability of concordant and discordant observations. Finally, p-values
derived from Kendall tau are more accurate with smaller sample sizes.

The null hypothesis H0 to be tested for RQ2 is as follows:

– H0: No linear relationship between the strengths of logical and semantic dependencies.

The correlation between the two vectors is evaluated using the Spearman’s rank correla-
tion coefficient (Yu 2007). The Spearman’s metric (non-parametric) was chosen because it
is unlikely that either the semantic or logical coupling values will have a normal distribu-
tion (Pagano 2001). Additionally, some classes might not be changed in all the revisions in
which they are semantically coupled. Nevertheless the vectors will be of the same size or
contain the same number of observations with the confidence metric in one and the semantic
coupling metric in the other.

We adapt the categorization of correlation coefficients by Marcus and Poshyvanyk
(2005) as follows: ([0 − 0.1] to be insignificant, [0.1 − 0.3] low, [0.3 − 0.5] moderate,
[0.5 − 0.7] large, [0.7 − 0.9] very large, and [0.9 − 1] almost perfect) if the rank correlation
coefficient proves to be statistically significant.

We reject the null hypothesis for all the projects studied at the 95% confidence level. In
other words, if the rank correlation coefficient proves to be statistically significant at the
α = 0.05 level, we will reject the null hypothesis and fail to reject the alternative hypothesis
H1: There is a linear relationship between the logical coupling and semantic coupling of
OO software classes. The results derived for all projects are described in Section 3.2. The
α = 0.05 level was chosen as suggested in Yu’s study (Yu 2007). One of the threats to the
statistical validity to their study was the selection of the significance level. In that study,

13By the term vectors we refer to the distribution of values for the logical and the semantic coupling for the
analyzed pairs of classes
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they chose α = 0.1 which might have resulted in a type I error - mistakenly rejecting a null
hypothesis. To reduce this threat, they planned in future research to decrease the α value to
0.05 for more accuracy (which we have done herein).

3 Results

Following the methodology outlined above, this section presents the results of the three
analyses, as performed on the selected projects. The aim is to answer the research questions
outlined in Table 1.

3.1 RQ1. Can semantic coupling between classes be captured via class identifiers,
rather than with source code corpora?

A Chi-squared test of independence was carried out to investigate the independence of the
semantic coupling metrics measured using:

1. A corpora based technique (VSM) and
2. A couple of identifier based techniques (N-Gram and Disco word synonym category-

based)

The measurement was done at the class level of granularity as mentioned in Section 6.1
and based on the results derived from the statistical test we could either reject or fail to reject
the null hypothesis (H0) presented in Table 1 for RQ1 : There is no association between the
semantic similarity measures of the corpora and identifier based techniques.

Figure 4 shows the distribution of the p-values per studied OO software project derived
from the Chi-squared test of independence. The box-plot also shows that we considered
three semantic dissimilarity thresholds (t = 0.1, 0.2, 0.5) based on previous studies (Kešelj

Fig. 4 RQ1- Chi-square association test results for class corpora (VSM) vs identifier (N-Gram, Disco word
synonym category) based semantic similarity techniques (box-plot distribution of p-values for threshold t =
0.1, 0.2 and 0.5)
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et al. 2003; Tan et al. 2000; Erkan and Radev 2004; Sarikaya et al. 2005; Coster and Kauchak
2011; Corley and Mihalcea 2005) on text similarity, whereby any class pairs with a measure
below the threshold were not considered as semantically coupled.

We reject the null hypothesis at the 95% confidence level with only a 5% error margin.
In other words, we consider results as statistically significant where the p-value is below or
at α = 0.05 level.

Figure 4 shows that when the threshold is set to 0.1, not all the p-values fall below 0.05.
Therefore, we cannot reject the null hypothesis. When the threshold is set to 0.2, a similar
condition for 0.1 also applies for the VSM ↔ N-Gram tests with many outliers above the
0.05 mark. However, when the threshold is set to 0.5 all the p-values are less than or equal to
0.05 for the VSM ↔ N-Gram tests. Yet the VSM ↔ Disco tests revealed only two outliers
while the rest of the p-values are less than or below 0.05.

In addition to Chi-square independence test, we have used Spearman’s rank correlation
to further verify the linear correlation between the metrics derived from the corpus based
technique against the identifier based techniques. Spearman’s correlation results showed
generally a statistically significant and weak correlation in at least half of the projects and
between a moderate to large positive correlation (0.3 - 0.8) in another half of the projects
with some outliers (negative correlation coefficients) as shown in Fig. 5. However, these
negative correlation coefficients are statistically insignificant; the p-values are greater than
0.05 meaning the negative correlation was identified by chance.

Based on the Spearman’s correlation coefficient results, the semantic coupling metrics
derived from IR techniques based on class identifiers and class corpora do not covary.
However, the use of thresholds when testing for their independence shows a significant
association at a semantic dissimilarity threshold of 0.5. This is expected as using a higher
dissimilarity threshold of 0.5 for the semantic coupling means that only a subset of all pairs
of classes will be reported as semantically coupled. Therefore, the Chi-square independence
tests only reveal a significant association between identifier and corpora-based IR methods
for a subset of classes – classes that are highly semantically related (semantic coupling �
0.5).

Fig. 5 RQ1- Spearman’s rank correlation results for class corpora (VSM) vs identifier (N-Gram, Disco
word synonym category) based semantic similarity techniques (box-plot distribution of Spearman’s rank
correlation coefficients)
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Based on the overall results, we cannot reject the null hypothesis and fail to reject the
alternative hypothesis H1 for these tests - There is an association between the semantic
similarity measures of the corpora and identifier based techniques, as semantic coupling
metrics that exploit class identifiers (Kagdi et al. 2013) capture different information with
respect to semantic coupling metrics using the entire class corpus.

3.1.1 Summary on RQ1 and its results

Similarly to the results derived in our pilot study (Ajienka and Capiluppi 2016), the Chi-
square independence test results indicate the association between the semantic coupling
metrics derived when measuring the semantic similarity between OO software classes based
on their identifiers and the whole source code corpus. However, this association only applies
to classes which as highly semantically related (semantic coupling � 0.5). This is an impor-
tant result for further studies that wish to consider only highly semantically coupled classes,
also considering the efficiency of both approaches (corpora and identifiers) in terms of compu-
tation time. The fifth column in Table 4 in Appendix A shows that time was saved when we
computed the semantic similarity between classes using their identifiers in all but the first
project. For example, the semanticdiscoverytoolkit project highlighted in Table 4. Extracting
the corpus is time consuming as well as computing the semantic coupling metrics compared
to using the identifiers alone. Especially for ‘large’ projects with hundreds of thousands of
lines of source code, these results are essential for both researchers and practitioners.

On the other hand, the Spearman’s correlation coefficient results confirm that the seman-
tic coupling metrics derived from identifier and corpora-based IR techniques do not covary.
Therefore, to recap the identifier-based metrics and corpora-based cannot be used inter-
changeably apart from when considering highly semantically linked classes (semantic
coupling � 0.5) .

Notwithstanding, there are cases or software activities for which one sentence similarity
measurement technique will be more useful compared to the other two. For example, in a
scenario whereby two class identifiers are similar but these classes do not have related com-
ments, the corpora based method will return a low similarity while identifier based methods
will return a high semantic similarity metric. For example, considering the class identifiers
GeocoderGeometry and GeocoderIT in the geocoder-java OSS project. The following met-
rics are returned by the corpora (VSM), N-gram and Disco techniques respectively: 0.0, 0.5
and 0.7. To make use of identifier based techniques, class identifiers are split into short sen-
tences or phrases before adopting the identifier based techniques. The N-gram technique
returns a metric closest to that returned by the corpora based technique in comparison to
Disco because Disco relies on the English dictionary and will not scale well on non-English
terms. For example, considering the class identifiers Data and AnzeigeSpielfield in the 4-
connect OSS project. The following metrics are returned by the corpora, n-gram and disco
techniques respectively: 0.1, 0.1 and -1.0. At 0.5. The Disco technique compares words
based on the similarities of their synonyms while the N-Gram technique is based on the
edit distance and shared sub-strings of length n between sentences and has been widely
used in the literature on text analysis (Kešelj et al. 2003). We have used n-grams of size 4
in this because research in the area of text mining (Mcnamee and Mayfield 2004; Kešelj
et al. 2003) has shown that n=4 maximizes precision when analyzing words or terms in
several languages including English, French, German, Italian and Swedish. To add to that,
long lengths of n increase lexicon size, will not represent short words well and processing
N-grams sizes larger than 10 is very slow (Kešelj et al. 2003).
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While identifier based techniques are more efficient when measuring semantic coupling
between classes in terms of computation time, the corpus based technique is useful when
recovering traceability links between source code and design documents (Marcus et al.
2005; Witte et al. 2008). Identifier based techniques are unable to extract the meaning or
semantics of the documentation and source code to produce similarity measures that can be
used to identify traceability links. This is because the identifier of a design document will
be too vague and will likely be unrelated to a number of class identifiers. But when parts
of the documents are parsed and compared with the terms embedded within the comments
and source code of classes, then parts of design documents can be linked to classes in an
OO software. Traceability is particularly useful when a developer is trying to comprehend
someone else’s code and following any provided documentation as is usually required dur-
ing maintenance and evolution. This is usually done manually and can be time consuming
(especially with large systems consisting of millions of lines of code) without tools that can
automatically recover traceability links between source code and documentation.

3.2 RQ2. Is there a <<linear>> relationship between semantic and logical
coupling?

In order to answer RQ2, it is necessary for us to compute the Spearman’s rank correlation (ρ)
between the strengths of the logical and semantic coupling between related class pairs in the
studied projects. The strength of the logical coupling is measured in terms of the confidence
metrics of identified association rules or frequently co-changed class pairs. Similarly to the
confidence metric for logical coupling, the semantic coupling metric range between 0 and 1.

The measurement of how loosely or closely two classes are semantically coupled is based
on the corpora-based method (VSM), having identified that identifier-based metrics and
corpora-based metrics do not share a linear relationship or covary in Section 3.1. Answering
RQ2 will shed more light on whether or not the strengths of the semantic and logical cou-
pling of OO software classes covary. For instance, if they do covary, such statistical results
will enable the prediction of the co-change frequency of class pairs based on the strength of
their semantic coupling. To recap, the linear relationship between both semantic and logi-
cal coupling metrics is investigated using the Spearman’s rank correlation coefficient in this
section and the results are now presented.

The charts in Fig. 6 show the correlation results including the p-values obtained. While
Fig. 7 further gives a clearer picture of the distribution of the p-values. Similarly to the cor-
relation tests explained in Section 3.1, we reject the null hypothesis at the 95% confidence
level with only a 5% error margin for the Spearman’s rank correlation.

3.2.1 Summary on RQ2 and its results

Figure 6 shows that there is no substantial evidence to infer a particular type of correlation
(+ve or -ve) exists between semantic and logical coupling strengths. There is a positive
correlation in some projects, while a negative correlation in others. The p-values in 7 further
show that the correlations might have been identified by chance and are not statistically
significant. This is because most of the p-values are above 0.05 except for only a very few
out of the sample of studied projects.

Therefore, due to the lack of any considerable evidence to suggest that there is a corre-
lation between semantic and logical coupling strengths or related OO software classes, we
fail to reject the null hypothesis (H0) for RQ2 presented in Table 1: No linear relationship
between the strengths of logical and semantic dependencies.
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Fig. 6 RQ2- Correlation between VSM based semantic similarity measures and confidence

In summary, to answer RQ2 we have computed the linear correlation between the
strengths of the semantic and logical coupling class pairs. We have used the semantic sim-
ilarity of class identifiers and the confidence of their co-evolution. The results indicate that
these coupling strengths do not covary, so they should be considered independent. A pair
of classes with a higher co-evolution frequency are not necessarily bound to be linked by a
semantic link.

This overall observation has two effects:

1. inferring the co-evolution degree or frequency of class pairs based on the strength of
their semantic coupling and vice versa will produce a lot of false positives.

2. Using only semantic coupling information to predict co-evolution will produce a
prediction model with low precision.

Fig. 7 RQ2- Correlation between VSM based semantic similarity measures and confidence (box-plot
distribution of p-values)
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Previous research by Abdeen et al. (2015) has shown that combining semantic and struc-
tural coupling information when predicting change impact sets outperforms using either of
them individually. However, semantic coupling metrics produced better recall values com-
pared to structural coupling metrics. Research has also shown that the lack of a linear
correlation does not imply a lack of causation (Perdicoúlis 2013). In RQ3, we investigate
the possibility of a causal relationship between the semantic and logical coupling of classes.

3.3 RQ3. Is there a <<directional>> relationship between semantic and logical
coupling?

With the aim of contributing to the interplay between semantic coupling and logical
coupling we went a step further to empirically investigate the presence or absence of a (bi-
)directional relationship between these types of software dependencies. In Section 3.1, we
identified that identifier and corpora-based semantic coupling metrics do not covary. Conse-
quentially, similarly to Section 3.2 in this section the semantic coupling metric is calculated
using the corpora technique (VSM).

In order to answer RQ3, it is imperative to gain an understanding of the overlapping or
intersection of the logical and semantic class dependencies per project. The intersection
set per project is defined as the proportion of class pairs linked both logically and seman-
tically. Classes linked logically have either been co-changed once or more while classes
linked semantically share are all class pairs excluding those without any semantic similarity
whatsoever. The intersection set of class pairs is represented by the shaded area in Fig. 3.
Depending on the size of the two sets, the Venn diagram could be far from symmetric.

Equations 1 and 2 are at the core of RQ3. Two formulas are presented: the Co-changed
Semantic Dependencies (CSD, measured in percentages) and Semantic Logical Depen-
dencies (SLD, also a percentage). These two formulas are used as a measure of the class
dependencies that belong to the intersection set (both logically and semantically related
classes). The CSD(%) represents co-changed semantic dependencies, these are class pairs
that share a semantic and modification relationship (frequently co-changed). The SLD(%)
represents classes that are logically or change related and also share a semantic relationship.
Some classes might only share either a semantic relationship only or a logical relationship
only and these classes do not belong to the intersection set.

CSD(%) = Semantic ∩ Logical

Semantic
(1)

SLD(%) = Semantic ∩ Logical

Logical
(2)

Figures 8 shows two summary plots with the CSD and SLD proportion extracted from the
studied sample of OO software projects:

While the proportion of co-changed semantic dependencies (CSD) is high (� 70%),
the proportion of semantic logical dependencies (SLD) tends to also be high. Table 5 in
Appendix B reveal for each project the number of distinct semantic dependencies in the
third field, the number of distinct logical dependencies in the fourth field, the number of
dependencies in the intersection set – pairs of classes that co-change and are semantically
related, the percentage of semantic dependencies in the intersection set shown in the sixth
field (see (1)), while the last field shows the percentage of logical dependencies in the
intersection set (see (2)).
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Fig. 8 CSD and SLD Percentages per OSS Project (KEY: CSD = Co-changed Semantic Dependencies; SLD
= Semantic Logical Dependencies)

Table 5 is sorted by the project IDs and names for readability. The table shows that
there is a directional connection between co-change and semantic coupling. When classes
contain terms with similar meanings (i.e., the classes are semantically related) they require
modifications at the same time. This also holds in the opposite direction.

From Table 5 in Appendix B, we know for instance, that the project with ID=56 has a
proportion of 60% of its semantic class dependencies including logical dependencies (as
shown in the 6th column). On the other hand, all of the pairs that co-changed include seman-
tic dependencies, in the same project. This is a recurring pattern: in all of the projects as
shown in Table 5, we have evidence to indicate that very often, semantically related classes
involve logically related classes. In 17 of these projects, all the semantic dependencies are
reflected into logical dependencies. In both Venn diagrams (left and right) in Fig. 9, the
smaller circle represents the set of semantic dependencies while the larger circle represents
the set of logical dependencies. Using the Venn diagram on the left (weighted) in Fig. 9,
all the semantically coupled pairs of classes in the alleywayreinvented project (project ID =
12) need also co-changes. On the flip side, not all the pairs that co-change are semantically
coupled.

The second most common scenario identified in the results is illustrated using the Venn
diagram in Fig. 9 (right), showing the guitarjava project (project ID = 69). A subset of pairs
of semantically coupled classes do not need co-change, while the majority of the others still
do. Again, in this project most of its other co-changes are not conducive of semantic links.

3.3.1 Summary on RQ3 and its results

The results mentioned above are illustrated with two box-plots each in Fig. 8. The figure
shows the distribution of class pairs belonging to the intersection set (classes with both
semantic and logical dependencies; see (1) and (2)). The results indicate a bi-directional
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Fig. 9 Venn Diagrams (weighted) showing the two sets of coupling in two scenarios: project ID=12 (left)
and project ID=69 (right)

relationship between semantic relationships and co-change, as in Fig. 8 where both distri-
butions are relatively high in the overall sample of studied OSS projects. Therefore, we
reject the null hypothesis (H0) for RQ3 presented in Table 1 and fail to reject the alter-
native hypothesis: There is a directional relationship between the semantic and logical
dependencies among OO software classes.

In summary, after identifying the lack of a linear relationship between two identifier
based techniques in relation to a corpora based information retrieval (IR) technique in
semantic coupling measurement (in Section 3.1), we went further to investigate whether
there is a linear relationship between the strengths of semantic and logical dependencies
of OO software classes. Results presented in Section 3.2 revealed the absence of a linear
relationship between the strengths or degrees of the two software dependency types (seman-
tic and logical) at the file or class level. Lastly, as motivated by previous research by Yu
(2007) and Fig. 2 where it has been shown that structural coupling of classes leads to their
co-change, we wanted to identify where there was a bi-directional relationship between
semantic and logical dependencies. Other results in Section 3.3 revealed the presence of a
bi-directional link from semantic to change dependency (semantic ↔ logical coupling).

4 Discussion

In Section 3, we presented the results of a three-fold empirical study on the interplay
between semantic and logical coupling among classes in OO systems. Previous studies have
shown that a number of coupling measures, related to aggregation and invocation coupling,
are related to a higher probability of common changes. This indicates that these coupling
measures should be good indicators of ripple effects and are used as such in a decision
model for ranking classes according to their probability to contain ripple effects associated
with given change requests (Briand et al. 1999; Wilkie and Kitchenham 2000; Sun et al.
2015). According to Briand et al. (1999), it is also clear that a substantial number of ripple
effects are not covered by the selected highly coupled classes. Thus, such models can be
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used to focus dependency analysis and help reduce the impact analysis effort. Nevertheless,
other important dependencies are clearly not measured or accounted for, and may not be
measurable from code alone.

The main findings from the analysis carried out in this study include:

RQ1 Identifiers vs Corpora – Firstly, identifier-based techniques (N-gram and Disco)
yield similar results to analysing the whole corpora of software classes only for
highly semantically related classes (semantic coupling � 0.5) and as such can-
not always be used interchangeably when computing semantic coupling. Secondly,
N-gram and Disco are much more computationally efficient than corpora-based
techniques, time-wise. Finally, the N-gram technique is more efficient than the
Disco technique, precision-wise: the latter is heavily dependent on the English dic-
tionary, as it considers words with similar English synonyms as semantically related.
This study has shown that over 50% of the software projects analyzed do not contain
classes with only English identifiers, therefore the Disco technique will produce a
lot of false negatives.

RQ2 Strengths of coupling – There is no linear correlation between the degree or
strengths of the semantic similarity between classes and the frequency of their co-
change. Statistical results prove that not all highly semantically related class pairs
will require frequent co-changes.

RQ3 Direction/Causality of Coupling – There is a large overlapping between semantic
and logical (change) class dependencies. If two classes are semantically coupled,
there is a high chance that they will co-evolve in the future. However, from RQ2
we have shown that the degree of these dependency types do not show a linear
correlation.

The last result is particularly important: for example, two (semantically similar) class
pairs A ↔ Â and B ↔ B̂ could share a semantic similarity of 0.7, but not the same degree
of co-change: the pair A ↔ Â could change much more often than B ↔ B̂. Even so, what
we have shown is that it is highly likely that the pairs A ↔ Â and B ↔ B̂ will co-change
at least once or more.

In addition, Spearman’s rank correlation coefficient only assesses linear relationships
but some relationships can be curvillinear (Barnett and Salomon 2006). Earlier research has
shown that lack of correlation does not imply lack of causation (Howard and Maxwell 1980;
Wright et al. 1999; Verhulst et al. 2012).

Other researchers have emphasized the need to study the interplay between semantic
and logical coupling in OO software as well as the interplay between structural and seman-
tic coupling (Oliva and Gerosa 2011, 2015). It is noteworthy that this study has presented
three novel results in (Sections 3.1, 3.2 and 3.3) the software dependency and maintenance
domain. These results will be useful and can guide software developers when building
software maintenance tools for change impact analysis (CIA).

Studies on the relationship and interplay between structural and logical coupling have
shown that a majority of co-evolving classes are not structurally linked. According to Geipel
and Schweitzer (2012), this indirectly means that any model that tries to infer structural cou-
pling from logical coupling or co-evolution will produce a lot of false positives. On the other
hand, using the structural coupling information between pairs of classes to infer their future
co-change is a more realistic objective (Oliva and Gerosa 2015). Differently from previous
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studies, this study has shown that over 70% of semantically related classes will usually
co-change and the same proportion of change related classes will usually share a seman-
tic relationship. Reflecting back to Section 1, these results are backed by the argument by
Bavota et al. (2013b): “the peculiarity of the semantic coupling measure allows it to better
estimate the mental model of developers than the other coupling measures. This is because,
in several cases, the interactions between classes are encapsulated in the source code vocab-
ulary”. However we cannot firmly assert that using the semantic coupling metrics between
classes to infer the strength of their co-change is a realistic objective as our empirical study
did not show a linear relationship between the strengths of semantic and logical coupling.
But we believe that using a combination of structural and semantic information to predict
co-change patterns (Abdeen et al. 2015) might be a more feasible objective.

5 Threats to validity

In this section we present the threats to validity of this study, dividing them in external,
internal and construct threats.

External validity This paper presents the results of an empirical analysis that should be
applicable to all open-source projects. We cannot generalise our findings on any other sample of
projects, or from any other repository but the lessons learned from this study can be instruc-
tive and transferred to similar studies carried out by others. Nonetheless, in order to make
the findings from our study more generalisable and representative of open-source projects,
we have carried out our analysis on a random sample of projects, with different sizes.

Internal validity Our selection of the semantic dissimilarity threshold when investigating
the association between the corpora-based technique and the identifier-based IR techniques
for semantic coupling measurement is based on dissimilarity thresholds used in previous
text mining and information retrieval studies. Therefore, to prevent any form of bias during
the Chi-squared independence tests we have used three different values (t = 0.1, 0.2 and
0.5) and compared results. This is because different thresholds will reveal different results
as shown in Section 3.1.

For measuring logical coupling, we have used the arules package in the R statistical
environment (Hahsler et al. 2007). We set the confidence threshold to 0.01 and this might
have affected the results. While this is a low threshold, it results in a higher recall (Dasseni
et al. 2001) (i.e., identified a larger set of frequently co-changing classes). We further con-
ducted a manual check on the returned association rules in the smaller projects to ensure that
class pairs returned by the arules tool actually co-changed and to validate its accuracy.
We also adopted 2×2 contingency tables when investigating the association between the
identifier and corpora-based IR techniques using the Chi-squared independence test. This
test results in false positives when one or more cells have no observations but this was not
the case in our data set as each project had at least one class pair in each contingency table
cell.

For parsing the corpora of classes and computing semantic coupling, we have adopted
the vector space model (VSM) IR technique and we acknowledge that this can have an
impact on our results. We also acknowledge that other text document comparison techniques
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1 ...
2 public class setzeStein {
3 ...
4 dbConnector DBConnect = new dbConnector();
5 ...
6 // DBConnect.insertMove(data.getAktSpieler(), eingabespalte);
7 ...

Listing 1 SetzeStein.java

1 ...
2 //Benutzt Methode insert um den Array players in Tabelle tbl_player

zu speichern
3 insert("tbl_player", players);
4 }
5 public void insertMove(String Player, int Spalte) throws
6 Exception {
7 //fullt Array moves
8 String[] moves = new String[]{
9 String.valueOf("(SELECT NEXT VALUE FOR seq_move FROM tbl_id)"),
10 String.valueOf(Spalte),
11 String.valueOf(Player)
12 //String.valueOf(move.getSet()),
13 };
14 // Benutzt Methode insert um den Array moves in Tabelle tbl_move zu

speichern
15 insert("tbl_move", moves);
16 ...

Listing 2 DbConnector.java

exist, one of which is the latent semantic analysis (LSI); an extension of VSM (Bavota et al.
2013a) used in other domains apart form software engineering.

LSI uses an approach called singular vector decomposition (SVD) to reduce text docu-
ments (dimensionality or noise reduction to reflect semantic associations between words -
latent semantic space) 14 by representing synonyms with topics in a latent semantic space
before computing document similarity. As such, the dimensionality of a corpus is the num-
ber of distinct topics represented in it. Dimentionality reduction allows LSI to index or
compare text documents based on topics/concepts instead of similar words. This means that
LSI requires the use of fine tuned models.

However, in the context of semantic coupling the reduction of words in documents by
grouping them into topics is time consuming as well as prone to low accuracy especially in
cases where software teams or comments are multi-lingual (i.e., software built by developers
who speak different languages and write comments in their native language). An example
of this scenario is the two classes in Listings 1 and 2 both from the same software project
(4-connect). Line 7 of Listing 2 contains English words while other comments in the class
contain non-English words. The identifier of the class in Listing 1 is also not an English
word. In such a case, it becomes imperative to translate words from one language to another
before building a textual model for LSI to rely upon.

14https://matpalm.com/lsa via svd/intro.html

https://matpalm.com/lsa_via_svd/intro.html
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Prior research has demonstrated that text similarity is based on the notion that the mean-
ing of a sentence is made up of not only the meanings of its individual words, but also the
structural way the words are combined (Oliva et al. 2011). Measuring the similarity between
non-English documents based on models trained with the Wikipedia corpus for example
will yield a low accuracy in the software domain. In Section 3.1.1, we have demonstrated
using the Disco word synonym technique that text similarity methods based on the English
dictionary does not perform well in the software domain.

In a different study (Bavota et al. 2013a) on software traceability link recovery, VSM
outperformed LSI. But in an earlier study on the same topic the authors preferred the use of
LSI over VSM. According to Marcus et al. (2005) “our main assumption is that developers
use the same natural language (e.g., English, Romanian, etc.) in writing internal documen-
tation and external documentation”. However, our examples and results have shown that
the reverse is the case. A feasible research topic for future work will be to investigate or
build techniques for the measurement of semantic coupling between multi-lingual OO soft-
ware classes. Lastly, the performance of LSI depends on the contents of the documents used
to build the model. As such, LSI is also not scalable when new documents, not analyzed
during model building are parsed using pre-built models, as the concepts in such documents
is not captured in the model which also has to be re-built.

Construct validity The scope of our sample of projects was limited to open-source
software projects written in the Java programming language (object-oriented), thus we
encourage investigating projects written in other programming languages and non-object-
oriented software projects. The study was also conducted at the class level of granularity.
This is because overall,the measurement of semantic coupling is more affected by the dif-
ference in granularity than logical or evolutionary coupling. A previous study has shown
that for the semantic dependencies, going from the coarse granularity of classes to the finer
granularity of methods results in the reduction of the sizes of the documents (Kagdi et al.
2013). The documents are reduced in terms (and frequency). That is, a corpus for a class
is typically much “bigger” than a corpus for a method (Kagdi et al. 2013). For logical cou-
pling some commits do not contain changes made to methods while some do not contain
changes made to classes, so there is not way to map changes made to classes and methods.
This informs the choice of the class level of granularity.

6 Related work

Structural and logical (evolutionary) dependencies are at the core of software engineering.
However, the study of semantic coupling is still evolving and relatively new compared to
the number of studies undertaken on the structural and logical coupling of software classes.
In the following section, we summarise the main results of related work on both aspects
separately and jointly.

6.1 Semantic coupling

Poshyvanyk and Marcus (2006) defined a coupling metric for classes based on textual infor-
mation extracted from source code identifiers and comments. Their conceptual coupling
metric, CoCC (Conceptual Coupling of Classes), captures a new dimension of coupling not
addressed by structural or dynamic measures. More recently, Újházi et al. (2010) extended
the CoCC, defining the new CCBO metric (Conceptual Coupling between Object Classes).
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Fluri et al. use a set-based similarity metric to explore how comments and code evolve
over time (Fluri et al. 2007). Kuhn et al. (2007) proposed the use of IR techniques to exploit
linguistic information found in source code, such as identifiers (i.e., class or method) names
and comments. Revelle et al. (2011) define new feature coupling metrics based on structural
and textual source code information.

Kagdi et al. (2013) in their study on integrating conceptual and logical coupling met-
rics for change impact analysis suggest that measurement of conceptual metrics is better
employed at the class level than at the method level. A corpus for a class is typically much
“bigger” than a corpus for a method (Kagdi et al. 2013). This informs our choice of con-
ducting this study at the class level of granularity. In most of these studies, the semantic
similarity between software classes using the LSI or VSM approach was adopted.

6.2 Logical coupling

In comparison to the broad research on structural coupling, the study of logical coupling,
evolutionary or change dependencies (Yu 2007; Oliva and Gerosa 2011; Zimmermann et al.
2005) only began a few years ago because of the advances in data mining techniques (Yu
2007) used to extract co-evolution data. However, despite its short history, there have been
several interesting studies published with promising results. Xia (Xia 1996) argued that
the most widely used design metrics for the inter-module relation were based on informa-
tion flow rather than the coupling or cohesion criteria, and proposed a metric to compute
coupling complexity of modules of a system. Ying et al. (2004) proposed an approach
for predicting source code changes by mining the change history of software systems.
Zimmermann et al. (2005) applied data mining to version histories to guide programmers
on related changes using the idea that “Programmers who changed these functions also
changed....” (Zimmermann et al. 2005). Given a set of existing changes, the mined associ-
ation rules 1) suggest and predict likely further changes, 2) show up item coupling that is
undetectable by program analysis, and 3) can prevent errors due to incomplete changes.

6.3 The link between semantic and logical coupling

Recent studies (Oliva and Gerosa 2011, 2015; Geipel and Schweitzer 2012; Fluri et al.
2005) have shown that it is possible that structural and logical coupling are caused by other
types of relationships (e.g., conceptual dependencies); some logically coupled classes were
without structural coupling links between them and vice versa.

Kagdi et al. (2010, 2013) demonstrated that finer granularity decreased the accuracy of
all approaches; however, it does not prevent the combination of the two from outperforming
the standalone techniques. That is, the gain acquired by combining conceptual and evolu-
tionary coupling exists regardless of the granularity (file-level and method-level) considered
in the study. Additionally, they did not analyze the relationship between the coupling types
and their information retrieval technique (LSI) or take into consideration “common English
words and programming language keywords”. Since this study has shown that not all OO soft-
ware contain only English words, this could have had an effect on the accuracy of their findings.

Related work shows that only a few studies have combined semantic and logical cou-
pling to support software engineering activities and none have studied their correlation and
interplay. Our study fills this gap by examining the interplay between semantic and logi-
cal coupling in OO software systems. Bavota et al. (2013b) investigated how class coupling
as measured by dynamic, logical, structural and semantic coupling aligned with developer
perception of coupling. They concluded that coupling was an important quality attribute of a
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software system which could not be captured by structural information such as method calls.
More sophisticated approaches, and different source of information need to be analyzed to pro-
vide a better evaluation of developer perception of coupling. To this end, semantic coupling
seems to reflect a developer’s mental model when identifying interaction between entities.

Poshyvanyk et al. (2009) propose new semantic coupling metrics based on the degree to
which the identifiers and comments from different classes relate to each other at the class
and method level of granularity. They suggest that their metrics capture new dimensions
in software dependency measurement, compared with existing structural dependency met-
rics. For example, indicating change ripple effects better, compared to existing structural
coupling measures and the new metrics can be used to rank classes in the course of impact
analysis in large OO systems.

7 Conclusions and future work

We have presented two methods of measuring the semantic coupling of software classes
using only their identifiers. We further compared each of these methods to measuring the
semantic coupling of classes using their corpora. Results showed that using only the class
identifiers is a more efficient approach but not in all cases (only when considering highly
semantically similar classes). As such, identifier and corpora-based IR methods for com-
puting semantic coupling cannot be used interchangeably in all studies. For projects with
hundreds of thousands of lines of code, the extraction of text from all the classes to build
their corpora can be time consuming and complex. Hence, the results derived from this study
on class identifier-based semantic coupling metrics have some significance in the software
dependency and maintenance domain and can be further explored.

On the interplay between semantic and logical dependencies, in 79 object-oriented
and open-source software projects we could not detect a linear relationship between the
strengths of semantic and logical dependencies. However, we identified a bi-directional link
between semantic to logical dependencies. In other words, over 70% of classes that are
semantically related will usually co-evolve and classes that are change related will usually
share some degree of semantic coupling. Based on empirical results derived from a signif-
icant number of software projects, we conclude that identifying more efficient methods of
semantic coupling computation as well as a directional relationship between semantic and
change dependencies can help to improve CIA techniques that integrate semantic coupling
information.

This will speed up the process of revealing ‘hidden dependencies’ not captured by source
code dependencies. Our results can also guide software developers and researchers in devel-
oping future generations of tools for supporting program comprehension. Future work will
involve comparing the change impact set identified when adopting identifier-based meth-
ods for semantic coupling measurement to class corpora-based methods based on precision
and recall. Other future work will focus on the interplay between structural and semantic
coupling as well as the measurement of semantic coupling between classes in OO soft-
ware projects built by multi-lingual developers with comments written in several natural
languages (e.g., English, French, German, etc.).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

http://creativecommons.org/licenses/by/4.0/
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Appendix A: Summary of the software systems analyzed for semantic
coupling measurement comparison

Table 4 RQ1- Characteristics of the software systems analyzed for semantic coupling measurement
comparison

Project Classes Class pairs LOC (with
comments)

Time to
analyze
corpora
(mins)

Time to ana-
lyze identifiers
(mins)

� mins

4-connect 10 45 1,160 0.003 0.005 <1%

alexo-chess 119 7,021 22,986 1.01 0.07 143%

alto 315 49,455 101,379 20 1 19%

audao 152 11,476 20,347 1.1 0.1 10%

bitlyj 22 231 1,255 0.002 0.002 0%

bluecove 390 75,855 75,237 18 1 17%

daedalum 68 2,278 10,172 0.2 0.01 19%

dbmigrate 7 21 1,337 0.003 0.00005 598%

echo-nest-java-api 36 630 6,903 0.1 0.005 19%

fdelimitedtextutilities 11 55 1,769 0.003 0.001 2%

geocoder-java 27 351 1,732 0.006 0.003 1%

google-voice-java 56 1,540 10,078 0.3 0.02 14%

gp-net-radius 25 300 2,469 0.01 0.002 4%

guitarjava 87 21 18,331 0.5 0.03 16%

jangod 127 8,001 10,789 0.4 0.02 19%

java-chess-web 111 6,105 7,983 0.2 0.04 4%

java-weather-api 35 595 2,041 0.01 0.004 2%

jbal 109 5,886 21,285 2 0.04 49%

jbandwidthlog 13 78 2,472 0.01 0.001 9%

jiopi 22 231 2,260 0.003 0.001 2%

jmemcache 14 91 1,035 0.002 0.001 1%

kryo 52 1,326 6,356 0.1 0.01 9%

migrator-postgresql 29 406 2,282 0.01 0.002 4%

monome-pages 158 12,403 64,942 9 0.08 112%

powermock 673 226,128 73,985 21 3 6%

prettyfaces 229 26,106 26,104 2 0.08 24%

projet-qcm-java 53 1,378 4,661 0.04 0.01 3%

ps3mediaserver 189 17,766 39,816 6 0.05 119%

restfb 75 2775 16,041 0.8 0.06 12%

scikit 109 5,886 18,224 1 0.03 32%

semanticdiscoverytoolkit 1,421 1,008,910 268,564 695 7.2 98%

seoma 280 39,060 37,007 2.4 0.3 7%

sjava-logging 19 171 1,514 0.002 0.001 1%

tabuvrp–study 28 378 2,524 0.01 0.002 4%

usemon 1,090 593,505 219,546 980 4 244%
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Appendix B: Summary of the intersection of semantic and logical
dependencies

Table 5 RQ3- Intersection of Semantic and Logical Dependencies in the studied 79 OSS Projects. (KEY:
Sem. Dep. = Semantic Dependencies; Log. Dep. = Logical Dependencies; CSD = Co-changed Semantic
Dependencies; SLD = Semantic Logical Dependencies)

ID Project Sem. Dep. Log. Dep. Int. Set CSD (%) SLD (%)

1 2dtetris 213 166 166 78 100

2 4-connect 55 80 54 98 68

7 ahs-scheduling 144 118 118 82 100

8 aima-java 190694 190432 189812 100 100

10 alexo-chess 9759 9603 9603 98 100

11 algmusic 3867 3812 3812 99 100

12 alleywayreinvented 668 680 668 100 98

13 alto 77600 78481 77505 100 99

14 amock 3508 2969 2969 85 100

18 apjava 202 196 196 97 100

20 appletbomberman 1307 1255 1255 96 100

22 ascrblr 1429 1396 1396 98 100

24 audao 6957 6838 6838 98 100

26 bitlyj 1068 1036 1036 97 100

28 bluecove 63358 63404 63212 100 100

30 castanea 681 624 624 92 100

31 catchnthrow 180 164 164 91 100

41 daedalum 4855 4854 4852 100 100

45 dbmigrate 29 26 26 90 100

51 echo-nest-java-api 1132 1116 1116 99 100

56 fdelimitedtextutilities 57 34 34 60 100

60 fyllgen 14316 14318 14298 100 100

64 geocoder-java 441 379 379 86 100

65 google-voice-java 767 724 694 90 96

66 gorobot 89362 88731 88627 99 100

67 gp-net-radius 537 522 522 97 100

68 guavatools 6923 6899 6879 99 100

69 guitarjava 3412 3681 3351 98 91

71 hobbylinkchecker 35890 35923 35887 100 100

79 jangod 15126 15220 15030 99 99

81 jaque 1228 1065 1065 87 100

84 java-chess-web 2902 2596 2590 89 100

86 java-weather-api 231 220 216 94 98

88 javacoder 104 104 104 100 100

92 javastepbystep 1945 1795 1795 92 100

96 jbal 12903 12986 12884 100 99

97 jbandwidthlog 468 468 468 100 100
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Table 5 (continued)

ID Project Sem. Dep. Log. Dep. Int. Set CSD (%) SLD (%)

99 jease 40346 39842 39842 99 100

103 jeudi-tech-spring 343 310 310 90 100

107 jiopi 553 532 532 96 100

109 jmemcache 97 94 94 97 100

112 jnoob 426 417 417 98 100

113 jothelo 137 148 124 91 84

115 jprg2-assg 336 332 332 99 100

118 jroguedps 6394 6255 6253 98 100

119 jsbe 70 70 70 100 100

122 jtowerdefense 2212 2191 2191 99 100

123 jugile-util 3175 3088 3082 97 100

124 jutf8search 152 152 150 99 99

127 kryo 5465 5372 5370 98 100

130 lemyriapode 10732 10520 10496 98 100

136 migrator-postgresql 478 476 476 100 100

140 mobs 703 672 672 96 100

141 mocrap 100 74 74 74 100

142 monome-pages 10462 10362 10354 99 100

148 ngamejava 1246 1196 1196 96 100

149 object-procedural-bridge 27983 27343 27309 98 100

152 onslaught 5747 5739 5739 100 100

157 p2ploan 10476 10041 10041 96 100

164 powerjava 168 150 148 88 99

165 powermock 105828 105733 105291 99 100

166 prettyfaces 12968 12987 12949 100 100

168 product-center 7708 7220 7220 94 100

169 project-armageddon 88 68 68 77 100

170 projet-qcm-java 937 868 868 93 100

172 ps3mediaserver 29497 29313 29303 99 100

179 restfb 4139 4045 4035 97 100

180 robust-coupe 1833 1648 1648 90 100

183 scikit 11489 10958 10956 95 100

184 semanticdiscoverytoolkit 179777 177962 177928 99 100

185 semweb4j 69401 68309 68009 98 100

186 seoma 17166 16929 16929 99 100

188 simplenamingservice 1662 1593 1593 96 100

189 sjava-logging 408 408 408 100 100

195 squabble 4687 4578 4578 98 100

197 subitizer 188 176 176 94 100

201 tabulasoftmed 58497 58420 58218 100 100

202 tabuvrp–study 491 442 442 90 100

211 usemon 529180 529590 528932 100 100
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