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ABSTRACT

Context: There is growing interest in establishing software engi-
neering as an evidence-based discipline. To that end, replication is
often used to gain confidence in empirical findings, as opposed to
reproduction where the goal is showing the correctness, or validity
of the published results.

Objective: To consider what is required for a replication study to
confirm the original experiment and apply this understanding in
software engineering.

Method: Simulation is used to demonstrate why the prediction
interval for confirmation can be surprisingly wide. This analysis is
applied to three recent replications.

Results: It is shown that because the prediction intervals are wide,
almost all replications are confirmatory, so in that sense there is
no ‘replication crisis’, however, the contributions to knowledge are
negligible.

Conclusion: Replicating empirical software engineering experi-
ments, particularly if they are under-powered or under-reported, is
a waste of scientific resources. By contrast, meta-analysis is strongly
advocated so that all relevant experiments are combined to estimate
the population effect.
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1 INTRODUCTION

The idea of replicating empirical studies in order to enhance the
trustworthiness of an empirical result is widely seen as a cen-
tral tenet of the scientific method [20]. This paper addresses the
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rather overlooked questions—certainly within empirical software
engineering—of (i) how do we know if a replication study confirms
the original study and (ii) were it to do so, what would this tell us?
Likewise if the replication fails to confirm the original study, what
can we learn from this?

Using empirical evidence, typically through experiment, obser-
vation and case study, to underpin software engineering has been
gaining traction in recent years. This has been stimulated in part by
the seminal paper promoting evidence-based software engineering
from Kitchenham et al. [15]. Clearly it’s desirable to understand
which methods and techniques ‘work’, to what extent, and in what
contexts? From this, emerged the idea of the community building
knowledge through replication studies [26]. A mapping study by da
Silva et al. [8] and extended by Bezerra et al. [1] found 135 articles
reporting a total of 184 replications (1994-2012).

However, recently concerns have been expressed about the reli-
ability of empirical findings both within software engineering [11]
and beyond, e.g., in experimental psychology [20]. Consequently,
replication studies have been seen as important for two reasons.
First, in terms of their ability to increase our confidence in spe-
cific empirical findings via confirmation, or otherwise. Second, as a
form of sample to estimate the reliability of software engineering
empirical studies in general.

The remainder of this paper, briefly reviews the state of replica-
tion studies in software engineering focusing on experimentation.
Next I show, by simulation, that simply through sampling error
we can obtain considerably more diverse results than might be
imagined. This is applied to a selection of published replication
studies by formally computing prediction intervals. Finally I discuss
the implications and argue that research effort would be far more
usefully deployed performing meta-analyses.

2 RELATED WORK

A key work that sets out the generally accepted view of role of
replication! studies in software engineering is by Shull et al. [26].
They state that:

“if the results of the original study are reproduced us-
ing different experimental procedures, then the com-
munity has a very high degree of confidence that the
result is real" [26] [my italics].

It would be fair to say that this represents the majority view in em-
pirical software engineering and the paper is highly cited?. In other
words, the primary purpose of replication is to increase confidence.

But how similar must results be to constitute confirmation?
Curiously this has not been directly addressed, so whilst researchers

IN.B., my focus is on ‘conceptual’ as opposed to ‘exact’ replications that deal with
reproducibility questions and, in any case, can be problematic when using human
participants.

2 According to Google Scholar there are in excess of 200 citations (8.2.2018).
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generally feel able to make judgements concerning a replication, I
am unaware of any replication study in software engineering that
has stated in some statistical sense how close a result must be to
constitute a confirmation.

A range of approaches have been deployed to make comparisons.
These include: comparison of (i) simple descriptors, e.g., means, (ii)
goodness of fit measures, e.g., R-squared, (iii) correlations, (iv) null
hypothesis significance testing (NHST) where both the original
and replication study report statistical significance at an agreed
« threshold and (v) standardised effect sizes such as Cohen’s d or
Cliff’s 8. Of these, NHST is the dominant paradigm.

Unfortunately, NHST has come in for extensive criticism [6, 7].
For example, it has been argued that given the flexibility in choice
of data and analysis methods the desire to have ‘positive’ findings
is likely to substantially increase the likelihood of a false-positive
above the nominal level set by « typically 5% [9, 27]. Another diffi-
culty arising from the ‘all or nothing’ nature of NHST is publication
bias due to the preference of authors, reviewers and editors for
‘positive’ results and the file-drawer problem [22]. Examples are
reported from psychology [18] and software engineering [11] of the
surprising prevalence of significant p values. Again this selectivity
makes it more likely that a replication will fail to such a large effect
as the original study [11].

A further problem is experimental power. For any experimental
design, the power depends on sample size, measurement error, the
number of comparisons being performed, and the effect size under
investigation [9]. However, it is clear we work in a field that is
dominated by low power studies [11, 13] and this is problematic
in that it does not just mean a reduced likelihood of detecting true
effects, it also implies increased likelihood of over-estimating the
effect size or finding an effect that does not really exist [4]. Finally,
NHST is impacted by sample size, so if the original and replication
studies employ different numbers of experimental units this alone
might lead to different values of p.

To summarise, although not generally made explicit, empirical
software engineering researchers usually require both studies to
report statistical significance (in the same direction) for the replica-
tion to be considered confirmatory. The meaning of neither study
being significant is less self-evident [6]. This leaves a decision as to
whether a replication ‘confirms’ the original study as largely being
a subjective judgement.

3 SIMULATING REPLICATIONS

In order to give insight into the major role that sampling errors play
on the variability of the experimental results, I use a simple Monte
Carlo simulation®. Suppose we have two treatments X and Y and
we want to compare them experimentally. Each experiment has 30*
units, where a unit might be a participant, a data set, and so forth.
Let’s also suppose the experimental design is extremely simple and
that the two samples are independent, as opposed to paired. We
also assume the rather unlikely situation of no measurement errors,
no publication bias and file drawer problems [27] and also that the
underlying population is normally distributed.

3The R code, additional figures and associated materials are available from https:
//figshare.com/articles/_/5873754.

4Jergensen et al. [11] report that in their survey of software engineering experiments
47% had a sample size of 25 or less.
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Starting with the simplest case of no effect with g = 100, o = 20,
10000 simulated experimental results behave as might expected
from the Central Limit Theorem. However, as confirmed by Table 1
we actually observe a surprisingly wide range of possible effect
sizes [5] with only just over half the experiments finding negligible
or no effect [-0.2, +0.2]. Note that these simulation circumstances
are considerably more propitious than we might expect in real life
[11].

Next we contrast this simulation with a small positive effect using
normal and rather more realistic mixed-normal distributions. These
contaminated or mixed normal distributions generate heavy tails
that differ from strictly normal distributions due to the presence of
additional outliers [31, Chap. 1]. Figure 1 shows the boxplots of the
experimental estimates of the effect size for these four cases (where
None and Small are the true effect sizes and * denotes a distribution
with outliers). It is clear that there is (i) a great deal of variability
in all the results and (ii) small departures from normality greatly
hinder our ability to detect a true small effect, exemplified by the
very similar distributions for Small* and None*.

Figure 1: Boxplots of Random Experiments With and With-
out a True Small Effect
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Table 1: Proportions of Different Effect Sizes (Using Cohen’s
d) for No True Effect

True | Large | Med | Small | None | Small | Med | Large
Effect | -ve -ve -ve +ve | +ve | +ve

None | 0.1% | 2.7% | 19.5% | 55.5% | 19.7% | 2.4% | 0.20%
Small | 0.02% | 0.27% | 5.79% | 43.61%| 37.78%| 11.19%| 1.34%
None* | 0.05% | 2.54% | 20.0% | 54.62%| 20.17%| 2.57% | 0.05%
Small* | 0.04% | 1.76% | 16.71%| 52.11%| 25.08%| 4.25% | 0.05%

Finally, we simulate the replication process by randomly drawing
pairs of studies, without replacement, and observing the difference
in results. Thus for each simulation of 10,000 experiments this
yields 5,000 replications. Table 2 summarises the result in terms of
confirmation, or Gelman’s S-errors [9]. Unsurprisingly, when there
is no true effect, the distribution of effect sign agreement is uni-
form. In the event of a normal distribution, and no other nuisance
factors, something like 60% of replications will find an effect in the
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same direction as the original study, but not necessarily with much
concordance in terms of effect size. However, the presence of even
a few outliers as per the mixed normal distributions reduces the
number of replications that agree in direction to under one third.
And this simulation simply focuses on sampling error. Introduc-
ing other sources of error e.g., measurement or excess researcher
degrees of freedom [17] compound the situation.

Table 2: Counts of Simulated Replication Effect Direction
Agreement

True Effect - - -+ + - ++
None 1249 | 1246 | 1250 | 1255
Small 244 825 855 | 3076
None* 1241 | 1268 | 1246 | 1245
Small* 938 | 1201 | 1234 | 1627

Thus we can see that even in quite benign circumstances, replication
is likely to be quite hit or miss simply because of sampling errors.

4 CONFIRMATION OF RESULTS IN
SOFTWARE ENGINEERING

Next we consider the situation of replication studies within software
engineering. As previously noted, two mapping studies [1, 8] have
located well in excess of 100 replications, however, unfortunately
careful examination reveals few report any measures of dispersion,
e.g., variance of the measure of effect or response variable. This
inhibits calculation of prediction intervals. Table 3 shows three
examples that are selected because some calculations are possible.

As stated, replication studies in software engineering have not
been in the habit of stating what range of values might be ex-
pected from a confirmatory replication. Formally we are asking
what variation might arise just from sampling error. The Monte
Carlo simulations from Section 3 indicate that this source of variabil-
ity can be surprisingly large. The variability can be characterised
as a prediction interval.

In this analysis the 95% prediction interval is reported using
the approach due to Spence and Stanley [28] and implemented by
the R package predictionInterval. Note a prediction interval
differs from a confidence interval because we are concerned with
the estimate from the specific study being replicated, as opposed
to an estimate of the population effect size. Generally prediction
intervals will be a little wider than confidence limits [29].

Table 3: Example Replications and Associated Prediction In-
tervals

Orig | Rep Orig Eff | Pred Int Rep Eff | Confirms?
Study | Study | Sz Sz
[25] [ [19] | o.101 [-0.33,0.53] |-0.1° Y
[12] | [24] |-0.176 [-0.84,0.48] | 0.122
(3] [2] 1.430 [0.05,2.76] | 1.090

<

5The interval is calculated by reasoning backwards from the replication study to the
original study.
SThe effect size is approximate due to the estimated pooled standard deviation.
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What is particularly noteworthy in Table 3 are the wide predic-
tion intervals so, for instance in the second example, experiment
[24] would confirm the original experiment [12] if anything from
a large negative effect to a small-medium positive effect were de-
tected. There are two contributory factors. First, small sample sizes,
e.g., [3]. Second, small effect sizes, e.g., [12, 25] which are often
driven down by high variance e.g., [19]. Thus, hugely varying re-
sults can simply be explained by sampling error. Of course this will
in all probability be exacerbated by measurement error and publi-
cation bias so the foregoing prediction interval might be regarded
as the best case scenario.

An alternative view is to regard studies that seek to answer the
same research question as inputs to meta-analysis. To illustrate
this, a simple meta-analysis is undertaken using the standardised
mean difference effect size approach of Lipsey and Wilson [16]
and implemented in the R package of Metafor from Viechtbauer
[30]. The experimental results are pooled in order to estimate the
population effect size.

. 1.43[0.21, 2.65]
— 1.08 [0.56, 1.60]

Briand et al 1997
Briand et al 2001

RE Model 1.14 [0.66, 1.61]
| O R A
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Figure 2: Forest plot of combining studies through meta-
analysis

Fig. 2 shows a forest plot of the two studies of the effect of good
design on comprehension for OO systems from [3] and [2]. The
horizontal bars show the confidence intervals for the estimated
effect sizes and the sizes of the centre points are proportional to the
sample sizes. The standardised mean distance is a measure of mean
difference normalised by standard deviation. Assuming a simple
fixed effects model we obtain the an estimate of Cohen’s d=1.14
[0.66, 1.61] denoted by the vertical dashed line. Note the limits are
at least all in one direction and are narrower than either study
individually (see Table 3). Thus we gain knowledge and precision
as opposed to simply reporting that we can confirm the original
weak finding.

5 DISCUSSION AND CONCLUSIONS

The title of this paper is intentionally provocative. The purpose,
however, is to draw attention to the twin issues of how similar
must a replication be to the original experiment to constitute con-
firmation and how effective is the process of replication for adding
empirically-derived, software engineering knowledge? This paper
has only considered experiments but in parallel, there is a case
for developing, and applying, strong meta-analytic methods for
qualitative studies e.g., case studies and action research.
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Clearly, there is a place for us to consider reproducibility. That
a study is reproducible should be considered minimally necessary
[21]. But beyond this, we have shown there are two distinct difficul-
ties with replication studies as practised in software engineering.
First, when the prediction interval can be properly constructed
[7, 28] what constitutes a confirmation is often a good deal broader
than might be anticipated. This — as has been shown both by simu-
lation and by example — could include a wide range of effect sizes,
sometimes in both directions. Thus confirmation, particularly for
low-powered experiments and small effect sizes, can be trivial.

In contrast, combining studies through meta-analysis enables
all relevant studies to be combined so that we may generate our
best estimate (complete with confidence interval) of the effect in
question. This yields more nuanced information than reducing the
matter to an all or nothing matter of confirmation or disconfirma-
tion. Of course, meta-analyses cannot overcome the problems of
poor quality primary studies or selective reporting and publication.
However, techniques such as funnel plots can at least help highlight
these problems [23]. Lack of heterogeneity (perhaps due to method-
ological differences or the existence of meaningful sub-populations)
can also be detected and investigated [16, 23].

This implies the following recommendations for the empirical
software engineering community:

(1) Properly report studies and in particular provide information
on the dispersion, e.g., variance, of the response (dependent)
variables. Without this information neither the prediction
interval can be computed (for replication analysis) nor is
meta-analysis possible. Given the current paucity of such
information, this is the biggest single contributor to wasted
research effort.

Construct prediction intervals prior to conducting replica-

tion studies and understand that under-powered studies of

small effects (i.e., much of empirical software engineering

[11, 13]) can be trivially replicated, but the contribution to

knowledge will be extremely small.

(3) Limit replications to matters of reproducibility (where war-
ranted).

(4) Conduct, independent studies of important research ques-
tions where the effects may matter to practising software en-
gineers and combine results using meta-analytic techniques.
Avoid close replications since these may violate the inde-
pendency assumption underlying meta-analysis [14]. Also,
consider corrections to the meta-analysis [23] needed due
to potential bias from inflated effect size estimates from the
first study arising from publication bias [10].
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