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Abstract - One of the main difficulties in obtaining reli- 
able data from patients in glaucomatous tests is the measure- 
ment noise caused by the learning effect, inattention, failure of 
fixation, fatigue etc. Using Kohonen’s self-orgadsing feature 
maps, we have developed a computational method to distin- 
guish between the noise and true measurement. This method 
has been shown to provide a satisfactory way of locating and 
rejecting noise in the test data, an improvement over conven- 
tional statistical methods. 

I. INTRODUCTION 

DIAGNOSIS of visual function losses in glaucomatous 
patients depends on the analysis of the data collected from 
corresponding psychophysical tests [4]. One of the main 
difficulties in analysing such data is the measurement noise 
caused by patient’s learning effect, inattention, failure of 
fixation, fatigue etc. This implies that the data collected 
cannot be guaranteed to accurately reflect the visual function 
of an individual, therefore making the clinician’s diagnostic 
process a challenging one. 

One of the traditional approaches to dealing with the 
measurement noise is to quantify the data variance, e.g. 
short-term fluctuation [8]. This kind of statistical informa- 
tion is expected to make the clinician aware of the potential 
noise in the data and therefore s h e  can take this information 
into account when interpreting the data. 

The clinician’s interpretation using the statistical 
information is, however, ultimately a subjective one, 
depending on hisher experience and knowledge. Although 
the statistical information gives a global measurement about 
how reliable an individual test is, it don’t tell when and 
where during the test the noise actually occurred, which is 
extremely useful for eliminating noise and monitoring 
patient’s behaviour during the span of the test. 

This has led us to seek a novel way of dealing with the 
noise in the test data. In this paper, we introduce a computa- 
tional method that shows promise in overcoming the 
difficulties associated with conventional techniques. This 
method utilises the transition trajectories in Kohonen’s self- 
organising maps (SOM) [ 5 ]  to demonstrate patients’ 
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behaviour during the glaucomatous psychophysical test and 
these trajectories can be used to show when and where the 
noise occurred in the test data. The real noise can then be 
filtered out, and therefore, the clinician can make more accu- 
rate decisions based on quality test data. 

We have used 263 clinical visual function test records 
(2630 input vectors to the SOM) from glaucoma patients 
and suspects at the Moorfields Eye Hospital in London to 
experiment with the proposed method. In particular, 91 
pairs of repeated tests are used to see how successful this 
method is in identifying and deleting the noise. The findings 
are very encouraging. 

11. THE MOTION SENSITIVITY PERIMETRY 

The Motion Sensitivity Perimetry (MSP) was pro- 
posed in [3] and has been shown to be useful and reliable 
measurements of glaucoma progressing for early glaucoma 
patients [lo]. The test examines 6 locations 
(Ll,L2,L3,IA,L5 and L6) within the visual field by four dif- 
ferent stimuli (S l ,  S2, S3, S4), which consist of both motion 
and flicker. 

4 stimuli 

6 locations 

Figure 1. Data structure for each MSP (l=yes, O=no) 

In order to investigate the test behaviour as a function 
of time, the test strategy used a Single Amplitude Trial 
(SAT) for ten trials. The principle for SAT was to obtain the 
patient’s behaviour to the same test condition during a given 
number of trials. A reliable patient’s behaviour pattern 
should be different from an unreliable pattern detected by 
this strategy. To keep the same test conditions, therefore, 
the sequence of presentations in MSP used a look-up table 
rather than by random order. In the table, the sequence of 
test locations had two patterns (Pl:Ll+L2+L3+L4+L5+L6, 
P2:L2+U+L6+Ll+L3+L5). The whole sequence for MSP 
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Figure 2. Apply the SOM to the MSP 

was (S4Pl+S2€'2+SlPl+S3P2) x (number of trials). The 
test data basically constitutes a three dimensional array, as 
shown in Figure 1 .  

There are ten trials for each test and each trial leads to 
24 data elements: 6 locations are tested using 4 different 
stimuli. Each element is either 1 which shows that the 
patient does see the motion or flicker, or 0 which shows the 
patient does not. The sensitivity of a patient is then defined 
by how often s h e  can see the stimuli. 

III. APPLICATION OF THE SOM TO THE MSP 

As discussed above, each patient is subjected to ten 
repeated trials during a single test and each trial has a fixed 
pattern involving 6 locations and 4 stimuli. Therefore it 
would be natural to view the testing process as a patient 
going through ten identical test cycles. It would also be 
natural to assume that the response pattern should be similar 
from one test cycle to another for a patient having a reliable 
test. This assumption, however, is often violated by factors 
such as the learning effects, fatigue etc., which lead to 
significant differences between patient's response patterns. 
Therefore, noise is typically involved in the response pat- 
terns of a psychophysical test. 

The proposed method for filtering out unreliable data 
consists of three steps. Firstly, Kohonen's learning tech- 
nique is used to train a network capable of generating maps 
which reflect the patient's test behaviour, as illustrated in 
equation ( 1 ) . 

dw i 
- =a(t)y(i,t)(xj -wi) (1) dt 

The cx is a monotonical decay function with time and y 
is a neighbourhood function, two of the most popular being 
the "bubble" adaptation[5] or a Gaussian-type function [9]. 
The vector of connection weights between input and output 
neurons is represented by w ( i  = 1 ,2 , .  . . ,M) where M is the 
number of output neurons. 

Each response pattern for each test cycle (6 x 4 
matrix) is used as an input vector to the self-organising map 
and each winner node is produced on the output map [Figure 
21. In all, 2630 trial data vectors corresponding to 263 tests 
are used to train the network and the whole data set is 
reiteratively submitted 100 times in random orders. 

Secondly, an effort is made to find a network which 
shows better neighbourhood preservations, i.e. similar input 
patterns are mapped onto identical or closely neighbouring 
neurons on the output map. This step is important as we 
want to map similar response patterns from patients onto 
similar neurons. We have used the topographical product 
(TP)[ 11 as a measurement for this purpose where 

While R and R 2  can be calculated as follows: 

Where d "( w,, w n;( j) ) denotes the distances measured in the 
input space between w, and wn;( ,) and dA (j,n: ( j ) )  denotes 
the distances measured in the output space between j and kth 
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nearest neighbour of j ,  n: ( J ) .  The TP indicates the magni- 
tude of neighbourhood violation. Therefore, the smaller the 
value of TP is, the better the neighbourhood preservation 
would become. 

Our experiments have shown that using a Gaussian- 
type neighbourhood function gives much better neighbour- 
hood preservations than a neighbourhood iteration set (i.e., 
the "bubble" adaptation). This has been shown to be true in 
some other cases [2,7]. 

Having obtained a well-performed network, a 12 x 8 
map in our case, the final step is to generate the behaviour 
maps for individual patients and and analyse these maps to 
identify and reject the measurement noise. As far as each 
patient is concerned, there would be ten winner nodes and 
nine transitions on the output map. These transitions consti- 
tute a transition trajectory, which graphically illustrates how 
patient's behaviour changed from one trial to the other [Fig- 
ure 31. 

As one of the key SOM features is that similar input 
vectors would lead to similar winner nodes, here we have 
the general principle for identifying the noise from the data: 
if most of the winner nodes are centered around one particu- 
lar region, then few of the remaining winner nodes indicate 
that they constitute the unreliable parts of the test, or "meas- 
urement noise". For example, the nodes 8 are 9 in Figure 3 
are the noise and therefore can be discarded. 1 0 0 0 0 0 0  

0 0 0 0 0 0 0 0  0 

0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0  1 : : : l  
0 0 0 0 0 0 ~ 0 0 0 ~  

0 0 0 0 0 0  0 0 0 0 0  

l o  0 0 0 0 0 0 0 0 0 0 01 

Figure 3. A transition trajectory in the output map 

It should be noted that each neuron on the output map 
is likely to have a number of input vectors associated with it, 
and these input vectors in turn determines the physical 
meaning of the neuron such as average sensitivity, response 
time, etc. Using the meaning of the neurons and the transi- 
tion trajectory on the map, one can explain patient's test 
behaviour in depth, for example, whether the noise was due 
to fatigue, learning effect, or other reasons. Details of this 
study can be found in [6].  

don. To find out how successful this method is in achieving 
its objective, we use the idea of reproducibility of the test 
results. 

As glaucoma is a long term progressing disease, the 
visual function should remain more or less the same during a 
short period of time. Therefore results from such two 
repeated tests within this time period should be very close. 
However, this is not always true under real clinical situa- 
tions as noise is involved in each test, perhaps for different 
reasons. Thus it is not surprising to note that there are a 
large number of repeated tests, which were conducted within 
an average time span of one month, whose results showed 
disagreements to various degrees. 

As one of the main reasons for the disagreement is the 
noise, i.e. the unreliable portion of the test, with the two 
tests, it is natural to assume that the sensitivity results of the 
two tests should agree (to various degrees) after the noise is 
discarded. This then constitutes a strategy for evaluating our 
proposed method for eliminating noise from data. 

0 .  
0 20 40 60 so 
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Figure 4(a). Before deletion 
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Figure 4(b). After deletion 

We have chosen 91 pairs of records for this purpose. 
The average sensitivity values of these tests are contrasted in 
Figure 4(a) where the dot is used to indicate the result of the 
first test, the oval is used for the result of the second test, 
and the difference between the two results for each case is 

IV. THE RESULTS 

In this section, we present the experimental results in 
applying the proposed method to a set of clinical test data 
(2630 data vectors) from the Moorfields Eye Hospital, Lon- 

65 1 



illustrated by the line in between them. The same results 
after the rejection of noise by the proposed method are given 
in Figure 4(b). 

One of the major findings is that the results from the 
two repeated tests have much better agreements after the 
noise is rejected. This is indicated by the following two 
measurements. First, more than 80% of the tests after the 
rejection of noise have reached almost total agreement (less 
than 1.0% error), while only less than 48% of the tests 
agreed in the original data set. This is reflected by the fact 
that there are many more cases on Figure 4(a) where the dot 
and oval are overlapping or very close than those on Figure 
4(b). Second, if one calculates the mean difference between 
the two tests, 5.6 (95% Confidence Interval: 4.3 - 7.0) is the 
figure for the original data, while 3.4 (95% Confidence 
Interval: 1.8 - 4.9) is obtained after the noise is eliminated. 
This is indicated by the observation that the lines between 
the two tests are in general shortened in Figure 4(b). These 
findings have shown that the proposed method does provide 
an effective way of identifying and discarding the noisy 
data. 

In addition, noise deletion may also be of direct diag- 
nostic assistance to the clinician. One of the difficulties for 
the clinician is that the result from one test suggests that the 
patient is normal (no glaucoma), while the result from the 
other test shows that the patient is abnormal (having glau- 
coma of some kind). It has been found that the average sen- 
sitivity value of 75% appears to be the golden line that 
divides the normal and abnormal groups [lo]. Since much 
better agreement is shown between the two repeated tests 
after the deletion of noise, there would be fewer cases whose 
test results are split by the golden line. This is indeed the 
case with our data as shown in Figure 4: there are quite a 
few conflicting cases in Figure 4(a), while only one or two 
such cases exist in Figure 4(b). 

V. CONCLUDING REMARKS 

In this paper we introduce an alternative way of deal- 
ing with noisy data. Instead of measuring and providing 
information on the amount of noise in the data, we try to 
explicitly identify and then discard the noise so that quality 
data can be used for decision making. To find out how suc- 
cessful this method is in achieving its objective, we have 
also suggested an evaluation strategy using the concept of 
reproducibility of the test results. 

The proposed method has been used to model 
patient’s behaviour during the psychophysical test and to 
show when and where the noise occurred in the test data. 
The results from this study suggest that the explicit treat- 
ment of noise in the data using self-organising maps 
presents a promising approach to identifying and eliminating 
measurement noise in these tests. 
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