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A B S T R A C T

This paper aims to select the best model or set of models for modelling volatility of the four most
popular cryptocurrencies, i.e. Bitcoin, Ethereum, Ripple and Litecoin. More than 1000 GARCH
models are fitted to the log returns of the exchange rates of each of these cryptocurrencies to
estimate a one-step ahead prediction of Value-at-Risk (VaR) and Expected Shortfall (ES) on a
rolling window basis. The best model or superior set of models is then chosen by backtesting VaR
and ES as well as using a Model Confidence Set (MCS) procedure for their loss functions. The
results imply that using standard GARCH models may yield incorrect VaR and ES predictions, and
hence result in ineffective risk-management, portfolio optimisation, pricing of derivative secu-
rities etc. These could be improved by using instead the model specifications allowing for
asymmetries and regime switching suggested by our analysis, from which both investors and
regulators can benefit.

1. Introduction

Modelling volatility is crucial for risk management. Following the global financial crisis of 2008, the Basel III international
regulatory framework for banks has imposed more stringent capital requirements, and enhanced risk management systems have been
developed. Since then the international financial system has had to face a new challenge, namely the introduction of decentralised
cryptocurrencies, the first being Bitcoin, which was created in 2009 (Nakamoto, 2009). Unlike traditional currencies, crypto-
currencies are based on cryptographic proof, which provides many advantages over traditional payment methods (such as credit
cards) including high liquidity, lower transaction costs, and anonymity (these features are discussed by Fantazzini et al., 2016).

Interest in Bitcoin and other cryptocurrencies has risen considerably in recent years. Their market capitalisation increased from
approximately 18 billion US dollars at the beginning of 2017 to nearly 600 billion at the end of that year2, and high returns have
attracted new investors. In addition, two big exchanges, i.e. the Chicago Mercantile Exchange (CME) and the Chicago Board Options
Exchange (CBOE), started to trade futures on Bitcoin.3 As a result of these developments, central banks have been facing the question
of whether or not cryptocurrencies should be regulated, given the numerous technical and legal issues involved.

Further, cryptocurrencies are highly volatile and consequently it is important to estimate appropriate risk metrics, which can be
used for calculating capital requirements, margins, hedging and pricing derivatives etc. It is well known that standard GARCH models
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can produce biased results if the series display structural breaks (Bauwens et al. (2010, 2014); these are likely to occur in the case of
cryptocurrencies. Specifically, Chu et al. (2017) argue that structural changes not accounted for (such as policy changes) might
explain why the Integrated GARCH (1, 1) (IGARCH) model is found to be a good fit for numerous cryptocurrencies (Caporale et al.
(2003)). Therefore a more suitable modelling approach should be used. Ardia et al. (2018a) suggest estimating in such cases Markov-
Switching GARCH (MSGARCH) models, whose parameters can change over time according to a discrete latent variable.

The aim of this paper is to find the best model or set of models for modelling volatility of the four most popular cryptocurrencies,
i.e. Bitcoin, Ethereum, Ripple and Litecoin. More than 1000 GARCH models are fitted to the log returns of the exchange rates of each
of these cryptocurrencies to estimate a one-step ahead prediction of Value-at-Risk (VaR) and Expected Shortfall (ES) on a rolling
window basis. The best model or superior set of models is then chosen by backtesting VaR and ES as well as using a Model Confidence
Set (MCS) procedure for their loss functions.

The paper is organised as follows. Section 2 briefly discusses the relevant literature; Section 3 provides a description of the data;
Section 4 outlines the methodology; Section 5 presents the empirical results; finally, Section 6 offers some concluding remarks.

2. Literature review

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models are the most commonly used in the literature for
modelling volatility and estimating Value-at-Risk (VaR) and Expected Shortfall (ES). The original Autoregressive Conditional
Heteroskedasticity (ARCH) specification was introduced by Engle (1982) and then extended by Bollerslev (1986), who put forward
the GARCH framework. Additional specifications were then developed: the exponential GARCH (EGARCH) model of Nelson (1991),
the threshold GARCH (TGARCH) model of Zakoian (1994), the Student’s t-GARCH model of Bollerslev (1987), the GJRGARCH model
of Glosten et al. (1993) and many others (see Bollerslev et al. (1992), 1994 and Engle (2004)). Hansen and Lunde (2005) showed that
a GARCH (1, 1) specification outperforms more sophisticated models in the case of exchange rates, whilst models including a leverage
effect were found to be more appropriate for IBM returns.

The first studies using a Markov-switching framework for modelling volatility estimated ARCH specifications (Cai (1994);
Hamilton and Susmel (1994)) because of their computational tractability compared to GARCH ones; in particular, the evaluation of
the likelihood function for Markov-switching GARCH model required integration over all KN paths (where K is the number of regimes
and N is the number of observations), making such estimation extremely difficult. To solve this problem Dueker (1997); Gray (1996)
and Klaassen (2002) used an ad hoc approximation method based on collapsing the past regime-specific conditional variances.

Recent studies have shown that structural breaks result in biased estimates of GARCH models and poor volatility forecasts
(Bauwens et al. (2010, 2014). To deal with this issue Markov-switching GARCH models (MSGARCH) have been proposed, whose
parameters can change over time according to a discrete latent (i.e., unobservable) variable. In particular, Ardia et al. (2018a)
estimated a large set of MSGARCH specifications allowing for various functional forms as well as distributions of the errors. They
compared two estimation techniques, namely Maximum Likelihood (ML) and Markov chain Monte Carlo (MCMC) procedures, and
found that MSGARCH outperforms single regime models in forecasting VaR and ES for daily, weekly, and ten-day equity log-returns.
Ardia et al. (2018a) followed Haas et al. (2004) in letting the GARCH process of each state evolve independently of those in the other
states – this is also the method used in the current study.

Markov-switching GARCH models have been used in recent papers to analyse various type of assets: commodity prices (Alizadeh
et al. (2008)), stock returns (Henry (2009)), exchange rate returns (Wilfling (2009); Bohl et al. (2011)), etc.

As for volatility modelling in the case of cryptocurrencies, many studies have relied on the GARCH framework. Glaser et al. (2014)
estimated a standard GARCH (1, 1). Gronwald (2014) reported that an autoregressive jump-intensity GARCH model fits the Bitcoin
data better than a standard GARCH. Dyhrberg (2016) estimated an asymmetric GARCH for Bitcoin arguing that it can be used for
hedging. Bouoiyour and Selmi (2016) compared different specifications including EGARCH, Asymmetric Power ARCH (APARCH),
weighted GARCH and component GARCH with multiple thresholds by using in-sample criteria such as the Akaike information
criterion (AIC), the Bayesian information criterion (BIC) and the Hannan-Quinn information criterion (HQC); they concluded that,
despite a noticeable decrease in its volatility, Bitcoin cannot yet be considered a mature currency. Katsiampa (2017) found that the
AR-CGARCH model gives the best fit for Bitcoin, which means that accounting for both the short- and long-term components of the
conditional variance is important. Chu et al. (2017) fitted 12 GARCH specifications with different distributions for the innovation
process to seven cryptocurrencies; an IGARCH (1, 1) model with normal innovations was found to yield the smallest values of AIC, the
corrected AIC (AICc), BIC, HQC and the Consistent AIC (CAIC) in the case of Bitcoin, Dash, Litecoin, Maidsafecoin and Monero;
instead the GJRGARCH (1, 1) and GARCH (1, 1) model with normal innovations produced the smallest values for Dogecoin and
Ripple respectively.

Ardia et al. (2018b) have instead tested the presence of regime changes in the GARCH volatility dynamics of Bitcoin using
MSGARCH models. Specifically, they use daily Bitcoin mid-prices, which are then transformed into log-returns. Both in-sample and
out-of-sample analysis are carried out, and Bitcoin log-returns are found to exhibit regime changes in their volatility dynamics, with
MSGARCH models outperforming standard single-regime GARCH models. Our analysis below extends the study by Ardia et al.
(2018b) by analysing three other cryptocurrencies (Litecoin, Ethereum, Ripple) in addition to Bitcoin, using ES and joint loss
functions as well as the MCS procedure advocated by Hansen et al. (2011), and considering a much larger set of models.

3. Data description

The series analysed are the daily closing prices of Bitcoin, Ethereum, Ripple and Litecoin. The Bitcoin data were taken from the
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Coindesk Price Index and cover the period from 18 July 2010 to 30 April of 2018; for the other three series the data source is
CoinMarketCap.4 The end date is the same for all series, whilst the start date differs: it is 7 August 2015 for Ethereum, 4 August 2013
for Ripple, and 28 April 2013 for Litecoin. Prices were transformed into log returns by taking first differences of their logarithm (see
Fig. 1).

Summary statistics for the log returns are shown in Table 1.
As can be seen, they are negatively skewed in the case of Bitcoin and positively skewed in all other cases. All four cryptocurrencies

exhibit leptokurtosis. The histograms of the log returns series are shown in Fig. 2.

4. Methodology

4.1. GARCH models

Let ∈y Rt be the percentage log-returns of the financial asset (exchange rate) of interest at time t. Following Ardia et al. (2018a),
we adopt the following general Markov-Switching GARCH specification:

= −y S k I F h θ|( , )˜ (0, , ),t t t k t k1 , (1)

where F h θ(0, , )k t k, is a continuous distribution with zero mean, time-varying variance hk t, , and additional shape parameters con-
tained in the vector θk. Following Ardia et al. (2018a), the integer-valued stochastic variable St , defined on the discrete space {1, …,
K}, is assumed to evolve according to an unobserved first-order ergodic homogeneous Markov chain with transition probability
matrix =

=
P p{ }i j

k
i j, , 1

, with = = =−p P S j S i[ | ]i j t t, 1 , with −It 1 being the information set available at time t-1.
As in Haas et al. (2004), the conditional variance of yt is assumed to follow a GARCH process. This is not restricted to be the

standard GARCH model:

= − −h ω y h θ( , , ),k t t k t k, 1 , 1 (2)

where ω(·) – is a −It 1 – measurable function which defines the filter for the conditional variance and also ensures its positiveness. By
contrast, a variety of GARCH specifications are considered, in particular:

SGARCH (Bollerslev (1986))
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GJRGARCH (Glosten et al. (1993))
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TGARCH (Zakoian (1994))
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As for distribution mixture models, suppose that:

… … …y DM p p μ μ h h˜ ( , , ; , , ; , , ),t k k k1 1 1 (7)

where DM is a mixture of densities with the following form:

∑ ∑= = =y p f y p f y f y μ hϑ( ) ( ), 1, ( ) ( ; ; ),
k

i i

k

i i i i
1 1 (8)

where …p p[ , , ]k1 is the positive mixing law and f denotes the density function.
As an example of a distribution mixture model, consider the normal mixture models: according to Alexander and Lazar (2006),

these can be seen as Markov switching GARCH models in a restricted form, where the transition probabilities are independent of the
past state. It is assumed that K variances follow some mixture of distributions. For example, the normal mixture standard GARCH (1,
1) will be defined as follows:

= + + = …− −σ ω α ε β σ for i K, 1, , .it i i t i it
2

1
2

1
2 (9)

4 https://coinmarketcap.com/
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According to the Cifter and Ozun (2007) the overall conditional variance will then be:
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(10)

4.2. Value-at-risk backtesting

Value-at-Risk at level α is defined as the maximum loss one could expect to incur with probability α over a specific period.
Mathematically:

= ≥ = −VaR X xF x α F x( ) inf { ( ) } ( ),α X X (11)

where VaR X( )α is VaR at level α of a random variable X , F x( )X is the cumulative distribution function of X . Basically, VaR is the α
-quantile of the underlying distribution.

For carrying out VaR forecast tests, the first step is to define the “hit sequence” of VaR violations:

= < −+ + +I if r VaR1, ,t t t
α

1 1 1 (12)

= > −+ + +I if r VaR0, ,t t t
α

1 1 1 (13)

where +VaRt
a

1 is the VaR prediction at time t + 1 for risk level α. Under the null hypothesis of correct specification the hit sequence
should be an independent Bernoulli distributed variable.

Fig. 1. Log returns.

Table 1
Descriptive statistics of log returns.

Statistics Bitcoin Ethereum Ripple Litecoin

Number of obs. 2 842 996 1 730 1 828
Minimum −0.491 −0.315 −0.616 −0.514
Q1 −0.013 −0.027 −0.023 −0.019
Median 0.002 0 −0.003 0
Mean 0.004 0.007 0.003 0.002
Q3 0.023 0.036 0.022 0.018
Maximum 0.425 0.412 1.027 0.829
Std Dev. 0.058 0.072 0.080 0.069
Skewness −0.326 0.515 1.998 1.777
Kurtosis 11.811 4.347 26.629 24.961
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+H I Bernoulli α: ˜ ( ),t0 1 (14)

= −+
− + +f I p p p( , ) (1 )t

I I
1

1 t t1 1 (15)

The unconditional coverage (UC) test of Kupiec (1995) uses the fraction of observed violations for a particular risk model – π and
compares it with p. For this purpose the likelihood Bernoulli function is needed:

= − = −− + +L π Π π π π π( ) (1 ) (1 ) ,I I T T1 t t1 1 0 1 (16)

where T T,0 1 are the number of 0 s and 1 s in the sample ( = +T T T )0 1 . The maximum likelihood estimator is:

=
+

π T
T T

ˆ ,1

0 1 (17)

The hypothesis of interest can be tested by means of the following likelihood ratio test:

= − ⎡
⎣⎢

⎤
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LR L α
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χ2 ln ( )
( ˆ )

˜ ,uc 1
2

(18)

Under the null hypothesis that the model is correct LRuc is asymptotically χ1
2.

However, this test focuses only on the number of exceptions. A situation can arise when the model passes the unconditional
coverage test but all violations are concentrated. In order to reject a VaR with clustered violations a test of independence of the hit
sequence is needed. Suppose that this exhibits time dependence and follows a first-order Markov sequence with the following
transition probability matrix:

= ⎛
⎝

−
−

⎞
⎠

Π
π π
π π

1
1 ,1

01 01

11 11 (19)

where π01 is the probability of getting a violation tomorrow given no violation today.
Then the corresponding likelihood function is the following:

= − −L Π π π π π( ) (1 ) (1 ) ,T T T T
1 01 01 11 1100 01 10 11 (20)

where Tij is the number of observations with a j following i.
If the hit sequence is independent over time, then = =π π π01 11 . The transition probability matrix will have the following form:

= ⎛
⎝

−
−

⎞
⎠

Π π π
π π

ˆ 1 ˆ ˆ
1 ˆ ˆ .

(21)

Then, independence can be tested using a likelihood ratio test statistic defined as follows:

Fig. 2. Histograms of log returns.
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It is important for VaR users to be able to test simultaneously whether the hit sequence is independent and the average number of
violations is correct; the conditional coverage (CC) test developed by Christoffersen (1998) makes this possible. A sequence of VaR
forecasts at risk level α has the correct conditional coverage if { = …I t H; 1, , }t

a is an independent and identically distributed sequence
of Bernoulli random variables with parameter α. To test this hypothesis a joint test of independence of the series and the un-
conditional coverage of the VaR forecasts the likelihood ratio defined as follows is carried out:

= − ⎡
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⎤
⎦⎥
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L Π

χ2 ln ( )
( ˆ )

˜ .cc
1

2
2

(23)

This is equivalent to testing the null = =π π α01 11 . Note also that = +LR LR LRcc uc ind.
An additional test is the dynamic quantile (DQ) one introduced by Manganelli and Engle (2004). It is based on a linear regression

of the hit variable on a set of explanatory variables including a constant, the lagged values of the hit variable and any useful function
of past information. Let us denote = −Hit α I α α( ) ( )t t . Under the correct model specification, the following moment conditions are
satisfied: = = =−E Hit α E Hit α I E Hit α Hit α[ ( )] 0, [ ( ) ] 0, [ ( ) ‵ ( )] 0t t t t t1 for ≠t t‵. The linear regression is the following:

∑ ∑= + + … +
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k t
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where g (.) is a function of past information. The null hypothesis of conditional efficiency is equivalent to testing whether the
coefficients are jointly equal to zero:

= = …= = = …= = ∀ = …H δ β β γ γ k K: 0, 1, ,k k0 1 1 (25)

However, these tests do not provide any insights into the magnitude of exceedance and therefore do not enable the researcher to
make model comparisons.

A final test is due to González-Rivera et al. (2004) and McAleer and Da Veiga (2008). It uses the asymmetric linear losses incurred
by VaR forecasts. The quantile loss (QL) is given by the following function:

= − −QL α I α y VaR( ( ))( )t
a

t t t
a (26)

4.3. Expected shortfall backtesting

VaR is an elicitable risk measure, where a statistics ϕ Y( ) of a random variable Y is said to be elicitable if it minimises the expected
value of a scoring function S (Acerbi and Szekely (2014)):

=ϕ E S x Yarg min [ ( , )].
x (27)

It has been shown that VaR has several shortcomings, and that in particular is not able to capture tail risks beyond the α -quantile
(Artzner et al. (1999); Danielsson et al. (2001); Basel Committee (2013)). For these reasons, ES was introduced (Artzner et al. (1997,
1999)). To put it simply, ES is the expected loss given that the loss L exceeds VaR ( = >ES E L L VaR[ | ]). Mathematically:

∫=ES X
γ

VaR X dα( ) 1 ( ) ,γ
γ

α0 (28)

where ES X( )γ is ES of a random variable X at level γ .
The transition from VaR to ES as the main market risk metric (Basel Committee, 2016) makes it necessary to have a reliable

backtesting procedure of ES.
McNeil and Frey (2000) suggested an exceedance residual (ER) test that involves fitting a (volatility) model to the return data,

estimating predictions of the mean and volatility, and then calculating the implied model residuals. Next, extreme value theory (EVT)
can be applied, while treating the residuals as a white noise process, to model the tail of the marginal distribution. Lastly, the EVT
model can be used to estimate the upper quantile of the marginal distribution. One can then test whether the expected value of ER is
zero against the one-sided alternative that it is greater than zero or, equivalently, that ES is systematically underestimated.

The most recent test is the regression-based one of Bayer and Dimitriadis (2018), known as the ESR test. These authors use a joint
regression framework for the quantile and the ES, and present two-sided and one-sided versions of the test. Suppose that êt is the ES
forecast and Yt is the log return. Then one can regress returns on the ES forecast as follows:

= + +Y α β e u* ˆ ,t t t
e (29)

where =−ES u( ) 0γ t
e

t 1F . One can then test the joint hypothesis that α is equal to 0 and β is equal to 1, =H α β: ( , ) (0, 1),0 against the
alternative that ≠H α β: ( , ) (0, 1)1 .

As the functional ES is not elicitable, these authors estimate semi-parametrically the following system:
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⎧
⎨⎩

= + +
= + +

Y α β e u
Y α β e u

* ˆ
* ˆ

t t t
q

t t t
e

0 0

1 1 (30)

where =−VaR u( ) 0γ t
q

t 1F and =−ES u( ) 0γ t
e

t 1F .
A Wald statistic is then carried out using the parameters α β( , ):

= − −′ ′ ′ − ′ ′ ′T α β Σ α β(( , ) (0, 1)) ˆ (( , ) (0, 1)),ESR ES
1 (31)

where ΣÊS is an estimator for the (asymptotic) covariance matrix of the M-estimator of the parameters α β( , ). Hence, the test statistics
follows asymptotically a χ2

2 distribution.
The test described above has been named the bivariate ESR test by Bayer and Dimitriadis (2018). Since in their opinion the

possibility of underestimating risk is the main issue for regulators, they also suggest another regression-based backtesting procedure
for the ES:

− = +Y e α uˆ ,t t t
e (32)

where =−ES u( ) 0γ t
e

t 1F and the null hypothesis is that α is zero. These are t-tests based on the asymptotic covariance.

4.4. Model confidence set

The backtesting procedures described above cannot help to select the best GARCH specification (even QL is not sufficiently
informative). For this purpose we shall use instead the model confidence set (MCS) procedure introduced by Hansen et al. (2011).
This consists of a sequence of tests that is used to construct a set of “superior” models (SSM) for which the null hypothesis of equal
predictive ability (EPA) is not rejected.

Specifically, consider a set, M ,0 that contains a finite number of models ( = …i m1, , )0 ; these are evaluated in terms of a specified
loss function for the i-th model at time t, Li t, , where = …t n1, , .

Let the performance variable be:

= − ∀ ∈d L L i j M,ij t i t j t, , ,
0 (33)

Then define the relative sample loss statistics

∑=
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j M

ij.
(35)

Finally assume that

= =μ E d and μ E d( ) . ( . )ij ij i i (36)

is finite and does not depend on ∀ ∈t i j M, 0.
Therefore, the set of superior models is defined as

= ∈ ≤ ∀ ∈M i M μ j M{ : 0 }.ij
* 0 0 (37)

In order to eliminate inferior elements of the set M 0 the following EPA hypotheses are tested
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≠ ∈
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M i
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, (39)

where ⊂M M 0.
From these statistics the following t-statistics can be constructed
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The two EPA hypotheses map into the two test statistics

= =
∈ ∈

T t and T tmax | | max .R M
i j M

ij max M
i M

i,
,

, (41)

As mentioned before, the MCS procedure is a sequential testing procedure that removes the worst model at each step, until the
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hypothesis of EPA is not rejected for all models in the SSM. The choice of the worst model to be eliminated is made using an
elimination rule that is coherent with the statistic tests defined above, namely:

= =
⎧
⎨
⎩

⎫
⎬
⎭

∈ ∈
e arg d

var d
e arg

d

var d
max

¯
ˆ ( ¯ )

, max sup
¯

ˆ ( ¯ )
.max M

i M

i

i
R M

i j M

ij

ij
,

.

.
,

(42)

To summarise, the MCS procedure consist of the following steps:

1 set =M M 0,
2 Test for the EPA hypothesis; if EPA is not rejected terminate the algorithm and set =M M *, otherwise use the elimination rule and
find the worst model,

5. Remove the worst model, and go to step 2

The MCS procedure requires a loss function. For the VaR the QL will be used. However, the choice of a loss function is not
straightforward. Various papers have attempted to develop a consistent scoring function. Here we shall use the same loss function for
ES backtesting as in Bayer and Dimitriadis (2018), which belongs to a class of functions originally introduced by Fissler and Ziegel
(2016) in the context of forecast evaluation. They derived a consistent scoring function for (VaRα, ESα) in the following way.

Let ∈α (0, 1). Also let F be a class of distribution functions on R with finite first moments and unique α -quantiles, and
= ∈ ≥A x x x{ : }0

2
1 2R . A scoring function S is then defined as follows: × →A0 R R of the form
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where → =′G G a G a, , , : , ,1 2 2 2 2G R R G isF -integrable and −∞ G1 x( ; ] 11 isF -integrable ∀ ∈x1 R , isF -consistent for (VaR ES, )α α

if G1 is increasing and 2G is increasing and convex. If 2G is strictly increasing and strictly convex, then S is strictly F -consistent for
(R ES, )α α .

Bayer and Dimitriadis (2018) used the scoring function defined above as follows:
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which is the 0-homogeneous loss function (see Dimitriadis and Bayer (2017); Taylor (2017); Patton et al. (2017), Barendse (2017)
and Nolde and Ziegel (2017)).

6. Empirical results

As mentioned above, we estimate the following GARCH specifications: SGARCH, EGARCH, GJRGARCH and TGARCH. Normal
(norm), skewed normal (snorm), Student’s t (std), skewed Student’s t (sstd), generalized error (ged) and skewed generalized error
distributions (sged) are used. Finally, the mixture parameter is included; if this takes the value of one (TRUE) then the model becomes
the distribution mixture GARCH, if it is instead set equal to zero (FALSE) it yields the MSGARCH specification. In total, 1176 GARCH
models were estimated for each cryptocurrency following the maximum likelihood procedure described in detail in Aria et al. (2017).

The results were obtained from 1-step ahead VaR and ES predictions. A moving window with refitting at every step was used for
the estimates and the predictions. The window size is 70% of the total number of observations. The models that did not fail the
backtesting procedures were then used in the MCS procedure in order to obtain the best model or set of models. The p-values in the
MCS procedure was set equal to 30%.

6.1. Value-at-risk results

Table 2 reports p-values for the backtesting procedures and the MCS procedure for the superior set of models (SSM) for Bitcoin. As
can be seen, 24 models out of 1176 satisfy the VaR and ES backtesting procedures and were selected by MCS as models with equal
predictive power with respect to QL. Note that none of the single regime models was selected for the SSM.

Standard GARCH models prevail in the first and second regimes. Interestingly, the normal distribution prevails in the first regime,
but whilst the Student’s t distribution is appropriate for 70% of the models in the second regime. Mixture models represent ap-
proximately 60% of those selected for the SSM. It is also noteworthy that in the first regime a variety of specifications appear to be
appropriate, whilst in the second standard GARCH and GJRGRACH account for more than 90% of the specifications. The same
pattern emerges for the distribution functions: in the second regime the Student’s t and normal distribution are chosen in 87.5% of the
cases. Interestingly, no models with a skewed GED distribution are selected for the SSM, and none with skewed distributions in the
second regime. Specifications that account for leverage effects at least in one of the regimes represent more than 75% of those
selected for the SSM.

Table 3 shows the results for Ethereum. Only one model was selected. It is a mixture of GJRGARCH with Student’s t distribution in
the first regime and TGARCH with skewed Student’s t distribution in the second regime.
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Table 4 reports the results for Ripple. Only eight models satisfied all backtesting procedures and were selected by the MCS
procedure. For the first regime models with standard GARCH or TGARCH were chosen by this procedure. For the second regime 50%
of the models selected for the SSM have a TGARCH specification and 25% of them has either a standard GARCH or GJRGARCH
specification. In the first regime normal and skewed normal distributions prevail, while in the second the Student’s t and skewed
Student’s t distributions are found to be appropriate for all models. The same percentage of mixture models and Markov-switching
models are selected for the SSM. Specifications accounting for leverage effects at least in one of the regimes represent more than 75%
of those in the SSM.

Table 5 shows that MCS selects the highest percentage of models satisfying the backtesting procedures in the case of Litecoin; in
total, 33 models out of 1176 were chosen. In the first regime TGARCH models represent 40% of those selected, standard GARCH ones
30% and EGARCH and GJRGARCH the rest; the most common distribution is the normal, followed by the skewed normal and
Student’s t. In the second regime standard GARCH models exceed 50%, and the Student’s t and skewed Student’s t distributions are

Table 2
P-values of the Bitcoin backtesting and MCS procedures for the VaR loss function. The table reports the selected functional form for the first and
second regime respectively, followed by the corresponding distributions and finally the mixture parameter: if this takes the value of one (TRUE) then
the model becomes the distribution mixture GARCH, if it is instead set equal to zero (FALSE) it yields the MSGARCH specification.

№ Model UC CC DQ ER ESR MCS

1 tGARCH-sGARCH-sstd-std-TRUE 63% 84% 99% 68% 87% 100%
2 tGARCH-gjrGARCH-sstd-std-TRUE 61% 83% 100% 81% 80% 100%
3 eGARCH-sGARCH-snorm-std-TRUE 86% 89% 99% 71% 97% 100%
4 sGARCH-sGARCH-norm-std-TRUE 87% 91% 100% 66% 94% 100%
5 sGARCH-sGARCH-norm-std-FALSE 85% 91% 100% 58% 96% 100%
6 sGARCH-gjrGARCH-norm-std-FALSE 85% 91% 100% 59% 96% 100%
7 gjrGARCH-eGARCH-ged-std-TRUE 59% 81% 100% 66% 71% 100%
8 gjrGARCH-gjrGARCH-norm-std-FALSE 85% 91% 100% 67% 89% 99%
9 eGARCH-sGARCH-sstd-std-TRUE 60% 82% 100% 68% 56% 98%
10 sGARCH-gjrGARCH-snorm-std-FALSE 87% 90% 99% 67% 95% 97%
11 gjrGARCH-sGARCH-norm-ged-FALSE 87% 90% 100% 81% 68% 97%
12 eGARCH-sGARCH-std-std-TRUE 60% 82% 100% 54% 62% 96%
13 sGARCH-sGARCH-snorm-std-FALSE 87% 90% 100% 67% 99% 95%
14 gjrGARCH-gjrGARCH-std-std-TRUE 85% 91% 97% 57% 73% 94%
15 sGARCH-sGARCH-snorm-std-TRUE 87% 91% 100% 65% 94% 94%
16 eGARCH-gjrGARCH-norm-norm-TRUE 87% 90% 99% 84% 85% 94%
17 sGARCH-gjrGARCH-snorm-norm-TRUE 87% 90% 99% 72% 91% 78%
18 sGARCH-tGARCH-std-std-TRUE 89% 92% 100% 77% 81% 74%
19 sGARCH-sGARCH-norm-ged-FALSE 59% 81% 100% 65% 81% 74%
20 tGARCH-sGARCH-norm-ged-TRUE 59% 81% 100% 54% 91% 71%
21 tGARCH-sGARCH-std-norm-FALSE 59% 81% 100% 72% 65% 67%
22 gjrGARCH-sGARCH-norm-std-FALSE 85% 91% 100% 59% 97% 67%
23 sGARCH-sGARCH-std-norm-FALSE 59% 81% 100% 58% 84% 66%
24 gjrGARCH-sGARCH-std-std-TRUE 60% 82% 92% 59% 92% 66%

Table 3
P-values of the Ethereum backtesting and MCS procedures for the VaR loss function. The table reports the selected functional form for the first and
second regime respectively, followed by the corresponding distributions and finally the mixture parameter: if this takes the value of one (TRUE) then
the model becomes the distribution mixture GARCH, if it is instead set equal to zero (FALSE) it yields the MSGARCH specification.

№ Model UC CC DQ ER ESR MCS

1 gjrGARCH-tGARCH-std-sstd-TRUE 96% 97% 99% 100% 65% 100%

Table 4
P-values of the Ripple backtesting and MCS procedures for the VaR loss function. The table reports the selected functional form for the first and
second regime respectively, followed by the corresponding distributions and finally the mixture parameter: if this takes the value of one (TRUE) then
the model becomes the distribution mixture GARCH, if it is instead set equal to zero (FALSE) it yields the MSGARCH specification.

№ Model UC CC DQ ER ESR MCS

1 sGARCH-sGARCH-snorm-sstd-TRUE 30% 57% 100% 54% 66% 100%
2 tGARCH-gjrGARCH-sstd-sstd-FALSE 11% 28% 87% 89% 61% 100%
3 sGARCH-tGARCH-sged-sstd-FALSE 11% 28% 96% 100% 84% 100%
4 sGARCH-tGARCH-snorm-std-TRUE 12% 29% 95% 6% 58% 100%
5 tGARCH-gjrGARCH-norm-std-FALSE 30% 57% 96% 99% 10% 99%
6 tGARCH-tGARCH-norm-sstd-FALSE 44% 68% 94% 100% 10% 98%
7 sGARCH-tGARCH-norm-std-TRUE 11% 28% 84% 100% 99% 69%
8 sGARCH-sGARCH-snorm-std-TRUE 94% 95% 100% 79% 85% 64%
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also selected in more than 50% of the cases for the SSM. Mixture models represent more than 80% of those in the SSM. Specifications
allowing for leverage at least in one regime account for approximately 76% of those in the SSM.

6.2. Expected shortfall results

Table 6 reports p-values for all backtesting procedures and the MCS procedure to choose the best set of models for Bitcoin. As can
be seen 25 models out of 1176 satisfy the VaR and ES backtesting procedures and were selected by MCS as models with equal
predictive power with respect to the joint loss function. Note that none of the single regime models was selected for the SSM.

The results from the MCS procedure with a joint loss function are mostly the same as those for QL, since SSM is constructed from
the same set of models that did not fail the VaR and ES backtesting procedures. Standard GARCH models prevail in the first and
second regimes. Interestingly, the normal distribution prevails in the first regime, but in the second the Student’s t distribution is
selected in 70% of the cases. Mixture models represent 60% of those in the SSM. In the first regime there is more variety of speci-
fications, whilst in the second standard GARCH and GJRGRACH represent 90% of the chosen models. Similarly, the Student’s t and
normal distribution prevail in the second regime being selected in 88% of the cases. No models with a skewed GED distribution are
included in the SSM, and none with a skewed distribution in the second regime. Specifications accounting for leverage effects at least
in one of the regimes represent 80% of those in the SSM.

Table 7 shows the results for Ethereum, which are essentially the same as for QL.
Table 8 reports the results for Ripple. Only five models did not fail the backtesting procedures and were selected by the MCS

procedure. In the first regime standard GARCH or TGARCH models were chosen by MCS procedure; in the second a TGARCH
specification is selected for the SSM in 60% of the cases, and GARCH or GJRGARCH ones in 20% of them. Normal and skewed normal
distributions prevail in the first regime, whilst Student’s t and skewed Student’s t distributions are chosen in all cases in the second.
Markov-switching and mixture models represent respectively 60% and 40% of those included in the SSM. Specifications with
leverage effects at least in one of the regimes represent 80% of the total in the SSM.

Table 9 shows the results of the MCS procedure for Litecoin with a joint loss function. In total 47 models were chosen, the highest
percentage of models satisfying the VaR and ES backtesting procedures. Standard GARCH is chosen in one third of the cases in the
first regime, and in approximately half of them in the second. The Student’s t distribution and its skewed version prevail in both

Table 5
P-values of the Litecoin backtesting and MCS procedures for the VaR loss function. The table reports the selected functional form for the first and
second regime respectively, followed by the corresponding distributions and finally the mixture parameter: if this takes the value of one (TRUE) then
the model becomes the distribution mixture GARCH, if it is instead set equal to zero (FALSE) it yields the MSGARCH specification.

№ Model UC CC DQ ER ESR MCS

1 gjrGARCH-tGARCH-norm-sstd-TRUE 51% 78% 62% 100% 85% 100%
2 tGARCH-sGARCH-snorm-sstd-TRUE 52% 79% 100% 56% 51% 100%
3 sGARCH-sGARCH-norm-sstd-FALSE 83% 91% 97% 60% 83% 100%
4 sGARCH-sGARCH-norm-std-FALSE 83% 91% 93% 70% 82% 100%
5 gjrGARCH-gjrGARCH-norm-sged-TRUE 50% 78% 99% 53% 59% 100%
6 gjrGARCH-tGARCH-sstd-std-TRUE 51% 78% 100% 63% 67% 100%
7 tGARCH-sGARCH-sged-sstd-TRUE 51% 78% 100% 50% 71% 100%
8 sGARCH-sGARCH-std-sstd-TRUE 83% 93% 100% 58% 90% 99%
9 tGARCH-gjrGARCH-std-sstd-TRUE 84% 94% 100% 57% 51% 99%
10 sGARCH-sGARCH-norm-sged-TRUE 83% 91% 100% 54% 76% 98%
11 sGARCH-sGARCH-snorm-std-TRUE 53% 75% 99% 63% 99% 98%
12 sGARCH-sGARCH-sstd-std-TRUE 83% 93% 100% 66% 80% 98%
13 gjrGARCH-sGARCH-sstd-std-TRUE 83% 93% 100% 68% 54% 97%
14 tGARCH-tGARCH-snorm-ged-TRUE 53% 80% 100% 86% 79% 97%
15 sGARCH-sGARCH-std-std-TRUE 51% 78% 100% 57% 74% 97%
16 tGARCH-tGARCH-norm-ged-TRUE 50% 78% 100% 58% 65% 95%
17 tGARCH-gjrGARCH-ged-sstd-TRUE 86% 94% 100% 86% 65% 93%
18 tGARCH-sGARCH-ged-sstd-TRUE 51% 78% 100% 66% 79% 93%
19 gjrGARCH-gjrGARCH-std-std-TRUE 50% 78% 100% 52% 54% 93%
20 tGARCH-sGARCH-sstd-std-TRUE 84% 94% 100% 88% 56% 84%
21 gjrGARCH-sGARCH-std-sged-TRUE 50% 78% 99% 54% 66% 81%
22 eGARCH-sGARCH-ged-sged-TRUE 50% 78% 100% 54% 67% 78%
23 gjrGARCH-eGARCH-norm-std-FALSE 50% 78% 100% 57% 53% 76%
24 eGARCH-tGARCH-snorm-ged-TRUE 50% 78% 100% 57% 60% 74%
25 sGARCH-tGARCH-snorm-ged-TRUE 50% 78% 100% 52% 54% 72%
26 eGARCH-gjrGARCH-snorm-sged-TRUE 50% 78% 100% 52% 53% 69%
27 tGARCH-sGARCH-sged-std-TRUE 51% 78% 99% 56% 57% 68%
28 sGARCH-sGARCH-snorm-sged-TRUE 83% 93% 100% 51% 85% 64%
29 tGARCH-sGARCH-sstd-sstd-TRUE 82% 91% 100% 86% 51% 63%
30 tGARCH-eGARCH-sstd-snorm-TRUE 85% 95% 100% 69% 53% 53%
31 tGARCH-sGARCH-norm-ged-FALSE 51% 78% 99% 99% 79% 52%
32 sGARCH-eGARCH-std-sged-FALSE 83% 91% 99% 64% 81% 38%
33 tGARCH-sGARCH-std-ged-FALSE 51% 78% 100% 94% 82% 34%
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regime, whilst the percentages for the normal distribution and its skewed version are 40% and 4% respectively in the two regimes.
The corresponding percentages for the GED distribution are 44% and 18% respectively. Mixture models are selected in 80% of the
cases for the SSM. Specifications with leverage effects are also chosen in 80% of the cases at least in one regime.

7. Conclusions

This paper has used VaR and ES backtesting as well as the MCS procedure to select the best model or superior set of GARCH
volatility models for four of the main cryptocurrencies, namely Bitcoin, Ethereum, Ripple and Litecoin. Two-regime GARCH models
are found to produce better VaR and ES predictions than single-regime models.

Surprisingly, both the QL and joint loss function results suggest a standard GARCH model for Bitcoin. As for Ethereum, the MCS
procedure selects a regime mixture model with a GJR GARCH specification and Student’s t distribution in the first regime and a
TGARCH model with a skewed Student’s t distribution in the second regime. Concerning Ripple, for the first regime the QL results

Table 6
P-values of the Bitcoin backtesting and MCS procedures for the joint loss function. The table reports the selected functional form for the first and
second regime respectively, followed by the corresponding distributions and finally the mixture parameter: if this takes the value of one (TRUE) then
the model becomes the distribution mixture GARCH, if it is instead set equal to zero (FALSE) it yields the MSGARCH specification.

№ Model UC CC DQ ER ESR MCS

1 eGARCH-sGARCH-snorm-std-TRUE 86% 89% 99% 71% 97% 100%
2 eGARCH-sGARCH-sstd-std-TRUE 60% 82% 100% 68% 56% 100%
3 gjrGARCH-gjrGARCH-std-std-TRUE 85% 91% 97% 57% 73% 100%
4 tGARCH-sGARCH-sstd-std-TRUE 63% 84% 99% 68% 87% 100%
5 sGARCH-sGARCH-norm-std-FALSE 85% 91% 100% 58% 96% 100%
6 sGARCH-sGARCH-norm-std-TRUE 87% 91% 100% 66% 94% 100%
7 gjrGARCH-sGARCH-norm-ged-FALSE 87% 90% 100% 81% 68% 100%
8 gjrGARCH-gjrGARCH-norm-std-FALSE 85% 91% 100% 67% 89% 100%
9 tGARCH-gjrGARCH-sstd-std-TRUE 61% 83% 100% 81% 80% 100%
10 sGARCH-gjrGARCH-norm-std-FALSE 85% 91% 100% 59% 96% 100%
11 eGARCH-sGARCH-std-std-TRUE 60% 82% 100% 54% 62% 100%
12 sGARCH-sGARCH-norm-ged-FALSE 59% 81% 100% 65% 81% 100%
13 sGARCH-sGARCH-std-norm-FALSE 59% 81% 100% 58% 84% 100%
14 gjrGARCH-eGARCH-ged-std-TRUE 59% 81% 100% 66% 71% 99%
15 tGARCH-sGARCH-std-norm-FALSE 59% 81% 100% 72% 65% 99%
16 tGARCH-sGARCH-norm-ged-TRUE 59% 81% 100% 54% 91% 99%
17 sGARCH-gjrGARCH-snorm-std-FALSE 87% 90% 99% 67% 95% 99%
18 gjrGARCH-sGARCH-std-std-TRUE 60% 82% 92% 59% 92% 99%
19 sGARCH-sGARCH-snorm-std-FALSE 87% 90% 100% 67% 99% 97%
20 sGARCH-tGARCH-std-std-TRUE 89% 92% 100% 77% 81% 97%
21 eGARCH-gjrGARCH-norm-norm-TRUE 87% 90% 99% 84% 85% 93%
22 sGARCH-gjrGARCH-snorm-norm-TRUE 87% 90% 99% 72% 91% 79%
23 tGARCH-gjrGARCH-norm-std-TRUE 86% 91% 100% 67% 89% 48%
24 sGARCH-gjrGARCH-norm-norm-TRUE 87% 90% 99% 61% 88% 43%
25 gjrGARCH-sGARCH-norm-std-FALSE 85% 91% 100% 59% 97% 39%

Table 7
P-values of the Ethereum backtesting and MCS procedures for the joint loss function. The table reports the selected functional form for the first and
second regime respectively, followed by the corresponding distributions and finally the mixture parameter: if this takes the value of one (TRUE) then
the model becomes the distribution mixture GARCH, if it is instead set equal to zero (FALSE) it yields the MSGARCH specification.

№ Model UC CC DQ ER ESR MCS

1 gjrGARCH-tGARCH-std-sstd-TRUE 96% 97% 99% 100% 65% 100%

Table 8
P-values of the Ripple backtesting procedure and MCS procedures for the joint loss function. The table reports the selected functional form for the
first and second regime respectively, followed by the corresponding distributions and finally the mixture parameter: if this takes the value of one
(TRUE) then the model becomes the distribution mixture GARCH, if it is instead set equal to zero (FALSE) it yields the MSGARCH specification.

№ Model UC CC DQ ER ESR MCS

1 sGARCH-sGARCH-snorm-sstd-TRUE 30% 57% 100% 54% 66% 100%
2 sGARCH-tGARCH-sged-sstd-FALSE 11% 28% 96% 100% 84% 100%
3 sGARCH-tGARCH-snorm-std-TRUE 12% 29% 95% 6% 58% 91%
4 tGARCH-tGARCH-norm-sstd-FALSE 44% 68% 94% 100% 10% 79%
5 tGARCH-gjrGARCH-sstd-sstd-FALSE 11% 28% 87% 89% 61% 45%
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lead to the choice of standard GARCH and TGARCH models, and the joint loss function ones suggest a standard GARCH specification;
for the second regime TGARCH models account for most of the SSM. Lastly, for Litecoin standard GARCH models prevail in both
regimes.

It is noteworthy that specifications allowing for leverage at least in one regime account for more than 75% of the SSM for all four
cryptocurrencies. In particular, symmetric GARCH models are the most appropriate for one regime in the case of Bitcoin, Ethereum
and Litecoin, but for the other in most cases an asymmetric functional form is found to be preferable; this confirms the importance of
using a Markov-switching framework - Dyhrberg (2016), for instance, had not found leverage effects in his study that does not allow
for different regimes. Mixture GARCH models prevail for almost all cryptocurrencies with both a QL function and a joint loss function.

On the whole, our findings imply that cryptocurrencies exhibit high volatility and leverage effects (at least in one regime). Two-
regime models yield better results in terms of prediction for both VaR and ES. Mixture distribution models outperform Markov-
switching ones. Our analysis also indicates that using single-regime GARCH models may yield incorrect VaR and ES predictions, and
hence result in ineffective risk-management, portfolio optimisation, pricing of derivative securities etc. These could be improved by
using instead the model specifications suggested by our analysis, from which both investors and regulators (such as the US Securities
and Exchange Commission (SEC), which is planning to regulate the cryptocurrency exchanges) can benefit.

Table 9
P-values of the Litecoin backtesting and MCS procedures for the joint loss function. The table reports the selected functional form for the first and
second regime respectively, followed by the corresponding distributions and finally the mixture parameter: if this takes the value of one (TRUE) then
the model becomes the distribution mixture GARCH, if it is instead set equal to zero (FALSE) it yields the MSGARCH specification.

№ Model UC CC DQ ER ESR MCS

1 sGARCH-sGARCH-norm-std-FALSE 83% 91% 93% 70% 82% 100%
2 sGARCH-sGARCH-norm-sstd-FALSE 83% 91% 97% 60% 83% 100%
3 gjrGARCH-tGARCH-norm-sstd-TRUE 51% 78% 62% 100% 85% 100%
4 tGARCH-sGARCH-snorm-sstd-TRUE 52% 79% 100% 56% 51% 100%
5 tGARCH-sGARCH-sged-sstd-TRUE 51% 78% 100% 50% 71% 100%
6 gjrGARCH-gjrGARCH-norm-sged-TRUE 50% 78% 99% 53% 59% 100%
7 sGARCH-sGARCH-std-sstd-TRUE 83% 93% 100% 58% 90% 100%
8 sGARCH-sGARCH-snorm-std-TRUE 53% 75% 99% 63% 99% 100%
9 tGARCH-sGARCH-ged-sstd-TRUE 51% 78% 100% 66% 79% 99%
10 sGARCH-sGARCH-sstd-std-TRUE 83% 93% 100% 66% 80% 97%
11 gjrGARCH-sGARCH-std-sged-TRUE 50% 78% 99% 54% 66% 97%
12 tGARCH-gjrGARCH-std-sstd-TRUE 84% 94% 100% 57% 51% 96%
13 sGARCH-sGARCH-norm-sged-TRUE 83% 91% 100% 54% 76% 95%
14 sGARCH-sGARCH-std-std-TRUE 51% 78% 100% 57% 74% 95%
15 gjrGARCH-tGARCH-sstd-std-TRUE 51% 78% 100% 63% 67% 94%
16 tGARCH-tGARCH-norm-ged-TRUE 50% 78% 100% 58% 65% 94%
17 gjrGARCH-sGARCH-sstd-std-TRUE 83% 93% 100% 68% 54% 92%
18 tGARCH-sGARCH-sstd-sstd-TRUE 82% 91% 100% 86% 51% 91%
19 eGARCH-tGARCH-snorm-ged-TRUE 50% 78% 100% 57% 60% 89%
20 tGARCH-sGARCH-std-ged-FALSE 51% 78% 100% 94% 82% 88%
21 eGARCH-sGARCH-snorm-sged-TRUE 50% 78% 100% 50% 53% 88%
22 sGARCH-eGARCH-std-sged-FALSE 83% 91% 99% 64% 81% 87%
23 tGARCH-tGARCH-snorm-ged-TRUE 53% 80% 100% 86% 79% 86%
24 tGARCH-gjrGARCH-ged-sstd-TRUE 86% 94% 100% 86% 65% 85%
25 gjrGARCH-eGARCH-norm-std-FALSE 50% 78% 100% 57% 53% 85%
26 tGARCH-sGARCH-sstd-std-TRUE 84% 94% 100% 88% 56% 85%
27 sGARCH-sGARCH-sged-sstd-FALSE 50% 78% 100% 55% 60% 82%
28 gjrGARCH-eGARCH-sstd-ged-TRUE 50% 78% 99% 53% 67% 79%
29 eGARCH-gjrGARCH-snorm-sged-TRUE 50% 78% 100% 52% 53% 79%
30 sGARCH-tGARCH-snorm-ged-TRUE 50% 78% 100% 52% 54% 71%
31 eGARCH-sGARCH-ged-sged-TRUE 50% 78% 100% 54% 67% 70%
32 sGARCH-tGARCH-norm-ged-TRUE 50% 78% 100% 52% 60% 69%
33 gjrGARCH-gjrGARCH-std-std-TRUE 50% 78% 100% 52% 54% 68%
34 sGARCH-eGARCH-std-snorm-TRUE 50% 78% 97% 51% 59% 64%
35 sGARCH-eGARCH-ged-sged-TRUE 50% 78% 100% 53% 63% 63%
36 sGARCH-tGARCH-sged-sstd-FALSE 50% 78% 100% 63% 68% 61%
37 eGARCH-sGARCH-snorm-sged-FALSE 50% 78% 100% 52% 58% 59%
38 tGARCH-eGARCH-sstd-snorm-TRUE 85% 95% 100% 69% 53% 59%
39 tGARCH-sGARCH-norm-ged-FALSE 51% 78% 99% 99% 79% 56%
40 gjrGARCH-eGARCH-std-std-TRUE 50% 78% 96% 61% 72% 55%
41 eGARCH-tGARCH-sstd-sstd-TRUE 53% 80% 100% 71% 69% 52%
42 sGARCH-sGARCH-snorm-sged-TRUE 83% 93% 100% 51% 85% 50%
43 tGARCH-sGARCH-sged-std-TRUE 51% 78% 99% 56% 57% 43%
44 sGARCH-eGARCH-std-sged-TRUE 50% 78% 98% 55% 68% 42%
45 sGARCH-gjrGARCH-sstd-ged-TRUE 50% 78% 100% 58% 71% 40%
46 gjrGARCH-tGARCH-snorm-ged-FALSE 51% 78% 99% 96% 64% 38%
47 eGARCH-sGARCH-std-std-TRUE 50% 78% 100% 62% 59% 35%
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Future work will use intraday data to address the issue of the large number of the observations required by some of the tests
carried out in the present paper, and also estimate multivariate GARCH models, e.g. to examine the linkages between Altcoins and
Bitcoin.
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