
An Approach to Agent-Based Service
Composition and Its Application to Mobile

Business Processes
Michael Berger, Makram Bouzid, Mark Buckland, Habin Lee, Nicolas Lhuillier, Dieter Olpp,

Jérôme Picault, and John Shepherdson

Abstract—This paper describes an architecture model for multiagent systems that was developed in the European project LEAP

(Lightweight Extensible Agent Platform). Its main feature is a set of generic services that are implemented independently of the agents

and can be installed into the agents by the application developer in a flexible way. Moreover, two applications using this architecture

model are described that were also developed within the LEAP project. The application domain is the support of mobile, virtual teams

for the German automobile club ADAC and for British Telecommunications.

Index Terms—Business to worker, multiagent system, multiagent architecture, generic service component, field trial, virtual team.

æ

1 INTRODUCTION

ONE of the basic requirements for agents is to accompany

their human users, while fulfilling certain tasks for

them. As the tendency to carry and use mobile devices

increases, agents should be present on such devices too,

given their ability to communicate via some form of mobile

Internet. An area where this idea can be directly applied is

the work of mobile, virtual teams. This was the starting

point of the European project LEAP1 (Lightweight Exten-

sible Agent Platform) [5], which ran from January 2000 to

June 2002. It consisted of three main activities:

First, the agent platform JADE [3], [6] was enhanced and

modified to form JADE-LEAP, the first FIPA-compliant

agent platform that runs on small devices like PDAs and

mobile phones. This effort has been described elsewhere in

detail [1], [2].

Second, an architecture model was developed that is

based on “generic services.” A set of such services for the

application domain of mobile workforce support was

implemented.

Third, two applications were written on top of these

services and tested under real-life conditions in two field

trials in April and June 2002. These applications sup-

ported mobile, virtual teams of German automobile club

ADAC, whose so-called “Yellow Angels” offer roadside

assistance to club members, and of British Telecommuni-

cations plc (BT), whose “Survey Officers” evaluate the

telecommunications infrastructure needed for new and

existing BT customers.
This paper is about the generic services and the field trial

applications. In Section 2, we explain the abstract architec-

ture model and the process of building a multiagent

application for the JADE-LEAP agent platform from the

generic services. In Section 3, we present the generic

services concretely implemented. Finally, we give an

overview of the two applications and the set-up of the

corresponding field trials for ADAC (Section 4) and BT

(Section 5).

2 THE GENERIC SERVICES ARCHITECTURE MODEL

The objective of the generic services is to ease the

development of agent services by providing generic

building blocks, which can be assembled and customized

to create complex applications. These generic service

components mainly handle most of the agent-related

concerns (protocol, conversation, language, ontology, and

errors), while allowing the developer to concentrate on the

application logic.

The architecture of generic services relies on two main

components: the Initiator and the Respondent. The main

motivation is to decouple as much as possible the service

from the application, to ease the integration of agent

services within applications, and to increase reusability of

service components. Note that the arity of the interaction

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 2, NO. 3, JULY-SEPTEMBER 2003 197

. M. Berger and D. Olpp are with Siemens AG, CT IC 6, Otto-Hahn-Ring 6,
81730 Muenchen, Germany. E-mail: {m.berger, dieter.olpp}@siemens.com.

. M. Bouzid, N. Lhuillier, and J. Picault are with Motorola Labs Paris, Parc
Les Algorithmes, Saint-Aubin, 91193 Gif-sur-Yvette Cedex, France.
E-mail: {makram.bouzid, nicolas.lhuillier, jerome.picault}@motorola.com.

. M. Buckland, H. Lee, and J. Shepherdson are with BT Exact, Intelligent
Systems Lab., pp MLB1-12, Orion Building, Adastral Park, Martlesham,
Ipswich, Suffolk IP5 3RE, United Kingdom.
E-mail: {mark.buckland, ha.lee, john.shepherdson}@bt.com.

Manuscript received 14 Jan. 2003; accepted 29 Apr. 2003.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number 7-012003.

1. Supported by the European Commission by grant IST-1999-10211.
Consortium members were: Motorola S.A., Paris, France; ADAC e.V.,
Munich, Germany; Broadcom Eireann Research Ltd., Dublin, Ireland;
British Telecommunications plc, Ipswich, UK; TILAB S.p.a., Turin, Italy;
University of Parma, Parma, Italy; Siemens AG, Munich, Germany.

1536-1233/03/$17.00 ß 2003 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS



between Initiator and Respondent is 1 to n, i.e., one Initiator

interacts with one to many Respondents.
The Initiator is used to access the service. The term

“Initiator” has to be preferred to “client” because the

Initiator’s role is first to start the conversation, but it can

also be involved in the decision process and the service

provision.

As agents communicate on a peer-to-peer basis, it is

possible (but not compulsory) for both Initiator and

Respondent components to be installed within the same

agent. Hence, the architecture of the application and the

deployment of the service components are free to have

whatever configuration is suitable for the application. This

is particularly useful when a part of the application has to

run on lightweight (i.e., computing resource constrained)

devices because it allows deploying only some part of the

interactions on the lightweight devices and the rest on more

“heavyweight” (i.e., powerful) devices.

Note that, though these components are built to be

independent from the agent they are plugged into, they

cannot be used without being installed within an agent

because they have no intrinsic communication capabilities

and need to rely on those provided by the agent. FIPA

agents [4] use an Agent Communication Language (ACL) to

communicate, which defines the encoding, semantics, and

pragmatics of message exchanges.
The functions performed by the Initiator are as follows:

. To find the appropriate responder(s), which can
fulfil the service. By default, this is performed by
searching the Directory Facilitator (DF) agent for a
specific service registration. In fact, in FIPA specifi-
cations, the DF is the agent that provides a service
lookup function for the agent platform.

. To return a directly usable result to the user of this
service. This means hiding, as much as possible from
the user, the complexity of the request and the
different steps of the interaction. Using an API-based
initiation (e.g., method call), the user requests the
service and is returned a well-formed result. The
generic service API allows all kinds of initiation (as
shown in Fig. 1)—through a GUI, a method call, or
after the receipt of a message.

. Finally, the Initiator component has to ensure that
the agent that it is plugged into has the required

capabilities to perform the request. In particular, this
means the agent knows the appropriate content
language and service ontology (which gives a
meaning to the symbols in the content expression).
In the best case, the service component should use
the content language the agent already supports and
install the missing resources if required.

From the other side, the Respondent component has to
ensure the following roles:

. To advertise, via the DF agent, the kind of service it
provides, so that initiator components are able to
find and access it.

. To ensure that service requests are answered each
time in the best possible way. Since the Respondent
has no facility to receive messages itself, this implies
modifying the agent behavior so that the agent
effectively handles all request messages for the
service, which will process them in turn.

. To make sure the agent this component is plugged
into owns all the required resources (e.g., content
language and ontology) to process the service
requests. If possible, the component should provide
the agent with the missing required resources or
should return an error otherwise.

Note that the only prerequisite for an Initiator to interact

with a Respondent is to have the information about the

protocol, the content language, and the ontology used by

the service. Hence, each generic service should include a

detailed specification, at the FIPA level, to allow other

standards-compliant parties to potentially interact with it.

3 GENERIC SERVICES FOR MOBILE WORKFORCE

SUPPORT

3.1 Customization of Generic Services

A key advantage that generic services offer is that they can

be customized to fit an application’s specific needs.

Customization of generic services is performed through

the implementation of the Initiator and Respondent inter-

faces. These interfaces are the means for developers to give

the generic service all the information that the service

cannot know beforehand because this information is

application-dependent. The implementation of each inter-

face can be by any type of object, including a GUI or even an

initiator component.

3.2 Service Broker

In some architectures, it may be useful (or sometimes
required) to use a Broker component between the Initiator
and the Respondent. This can be:

. For performance reasons: There are many commu-
nications between broker and Respondent.

. For lookup specialization reasons: The broker knows
about many more Respondents.

. For security reasons: The Initiator is not allowed to
directly access the Respondents.

In our case, the broker is just a particular kind of generic

service, whose role is to mediate the interaction between the

198 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 2, NO. 3, JULY-SEPTEMBER 2003

Fig. 1. Initiator/Respondent architecture.



Initiator and the Respondent, especially in case of 1 to n

interactions (i.e., one Initiator and n Respondents).

3.3 Composition of Services

By composition of services, we mean that the output of one

service becomes the input for another service. This feature

is a key to agent services as it allows developers to

dynamically build groups of services in order to fulfil

requests that were not considered beforehand. Note that

this architecture does not provide the means to decide how

and why a collection of services has to be built, but only

defines the mechanisms by which elements of this collec-

tion, once defined, will be able to easily interact with one

another. Service composition is achieved thanks to the

Initiator and Respondent interfaces, which can be imple-

mented by other initiator components, thus allowing the

output of one service to be the input of another service.

3.4 Identified Generic Services

We have identified three categories of agent generic services
relevant for the mobile workforce domain and, hence, used
in the field trial applications, as follows.

3.4.1 Travel Management

Providing up-to-date information and guidance on travel
planning. Ensuring travel time is minimized, thus saving
resources and reducing traffic congestion. The Travel
Management services anticipate a mobile worker’s travel
needs, providing guidance and time estimation so as to
synchronize the movements of virtual teams working over
vast geographic areas. Useful services that have been
identified are as follows:

. Plan Route. Given two locations A and B, calculate a
route between A and B, subject to any given
constraints (e.g., shortest distance, least time taken,
must pass through intermediate “waypoints,” etc.).

. Replan Route. Following the initial generation of a
route plan, the system identifies that the mobile
worker is no longer on schedule. This may be due to
a number of reasons: the work schedule being
changed, new traffic information being received,
the mobile worker being delayed, and so on.

. Get Current Position. Find the position of the mobile
worker. This could be done by using a positioning
system, e.g., GPS, triangulation, or by asking the
user directly.

. Estimate Route Cost. Given a route consisting of a set
of legs and using information about current condi-
tions, calculate the cost of the route in terms of
nominated dimensions such as time, mileage, etc.

3.4.2 Teamwork Coordination

Empowering individuals to collectively coordinate activ-
ities (e.g., by trading jobs, automatically negotiating for
work, and expressing personal preferences) within an
agreed policy framework; facilitating “buddying” between
mobile workers where team members can exchange tacit
knowledge, for example, between experienced and trainee
workers. A list of services we have defined is given below:

. Give Job. Allows a mobile worker to give a job that
has been assigned to him to another mobile worker
based on a predefined policy (distance, skills, etc).

. Swap Shift. Each mobile worker has an attendance
pattern that defines the shifts they will work. A
mobile worker wants to swap a shift on some day for
some other shift (on possibly the same day).

. Auction Shift Swap. The same as Swap Shift, but
using an auction-based mechanism between mobile
workers.

. Request Expertise. When a mobile worker has a
problem that he cannot solve alone, this service will
enable him to ask for help with the problem from an
expert in the given problem area.

. Make Collective Decision. Called by other services in
order to mediate the interactions between mobile
workers when a collective decision is necessary.

3.4.3 Knowledge Management

Anticipating a mobile worker’s knowledge requirements by

accessing and customizing knowledge (based on the mobile

worker’s skill, location, current job, and type of display) and

providing access to collective knowledge assets in the team

(e.g., by putting novices in touch with experts, as and when

required). The following Knowledge Management services

have been identified:

. Find Relevant Information. Called by other services in
order to proactively provide mobile workers with
information relevant to the performance of their
work.

. Update Knowledge Base. Enable a mobile worker in the
field to add knowledge to the knowledge base. The
types of knowledge identified so far include feed-
back from the customer, work reports, technical
experience, and information about the customer.

. Find Expert. Given a problem, use the knowledge
base to identify a colleague who is likely to be able to
help in the given problem domain.

In addition, we have identified a set of common generic

services, among which we state essentially the User

Authorization service component for password based

authentication of a user.

3.5 Implementation through JADE-LEAP

This section concentrates on the implementation of the

generic services with JADE-LEAP agents. JADE (Java Agent

DEvelopment Framework) is a software framework for

developing and running multiagent systems, which is fully

implemented in the Java language. It was developed by

TILAB and the University of Parma. JADE-LEAP is its

extension developed by the LEAP project for the deploy-

ment of agents on lightweight devices. JADE-LEAP is a

distributed platform; therefore, agents can be deployed on

several different running entities called containers. Though

generic services are designed to be independent from the

agents they are plugged into, their tight coupling with the

agent makes it so that generic services that are built for a

particular FIPA agent platform will not work on another

one (until standardisation applies at this level as well).

BERGER ET AL.: AN APPROACH TO AGENT-BASED SERVICE COMPOSITION AND ITS APPLICATION TO MOBILE BUSINESS PROCESSES 199



In the JADE-LEAP approach, all the actions of an agent are
controlled by instances of the Behavior class [3]. Hence,
generic services that are plugged into an agent must add the
proper behaviors to this agent to be able to modify its
activities.

3.5.1 Concurrent Sessions

In a service framework, the Respondent component must be
able to handle several requests concurrently to allow
scalability of applications in terms of number of users,
and ensure an acceptable mean response time. Due to the
behavior-scheduling scheme of JADE-LEAP, this has to be
performed by adding ahead of time a preset number of
Respondent behaviors. This number, described by a
Policy object, defines the maximum number of concurrent
sessions. This allows us to finely control the load of a
service and to limit the potential overhead on the agent.
Note that, for a given agent, requests will never really be
processed simultaneously since the JADE-LEAP behavior
scheduler within an agent is monothreaded at the Java
level.

3.5.2 The “Future” Idiom

Interactions between service components rely on agent
message exchanges, which are intrinsically asynchronous.
In order to ease and leverage the use of the generic services
within applications and to allow various kinds of initiation,
it appeared useful to turn the asynchronous nature of the
interactions into synchronous method calls (also called an
API-based approach). This is done through a mechanism
called the Future idiom [7]. Using this mechanism, the
method called immediately returns something that is not
the real result but a placeholder (i.e., the future variable)
that will eventually contain the result that will be produced
after an asynchronous computation. The caller can issue the
call and do something else until it needs the real result,
which it then extracts from the future variable (this is called
“redeeming the future”). If the asynchronous computation
ended before the redeeming time, fine; otherwise, the caller
will block until the result is actually ready.

4 APPLICATION 1: ROADSIDE ASSISTANCE

4.1 ADAC Business Case

The ADAC (Allgemeiner Deutscher Automobil-Club), based in
Munich, Germany, is the largest automobile club in Europe
with nearly 14 million members. It was founded back in
1903. More than 6,000 employees offer a wide range of
products for the members of the club. The most famous
service is the Roadside Assistance, which is provided by
1,700 so-called “Yellow Angels,” a fleet of yellow-colored
service vehicles. In 2001, the “Yellow Angels” and their
colleagues from subcontractors registered 3.5 million road-
side assistance activities. In order to provide this service,
the ADAC runs five call centers all over Germany.

The idea for agent technology, in general, and the LEAP
project, in particular, to create an added value for ADAC,
was to provide the Yellow Angels with mobile devices and
develop an agent-based application that relieves them from
some of their routine tasks and supports their decision-
making processes.

From the many activities the Yellow Angels are involved
in throughout the day, three were chosen to be supported
by the agent application: planning a route to a customer,
retrieving tourist information for the customer, and
scheduling a meeting/agreeing on a venue (e.g., for lunch)
with other Yellow Angels.

With this selection, we have covered three typical areas
of activity of the mobile workforce: organization of the work
itself, support for the customer, and social activities related
to work. On the other hand, one main activity, namely, the
assignment of jobs to the Yellow Angels, is not touched by
our application—the corresponding processes between the
call centers and the Yellow Angels are highly sensitive and
crucial to the functioning of the Roadside Assistance
service, hence we were not allowed to interfere with them.

4.2 ADAC Application Details

We now explain, in detail, the requirements and the
resulting features of the application for the three main
features it provided.

4.2.1 Route Planning

Here, the scenario is as follows: The Yellow Angel receives a
job request from a call center and has to find the shortest
route from his current whereabouts to the location of the
stranded motorist. As there is no direct interface to the data
transferred from the call center, the start and destination
addresses must be entered by hand. However, the mobile
device is equipped with a GPS receiver by means of which
the current location can be discovered and entered into the
route request automatically. The route is then computed by
the central ADAC route planning system and is displayed
in text form on the mobile device. Of course, a more
sophisticated presentation of the route, for instance, by a
map that is updated while driving, is imaginable. Yet, it
could not be realized due to limited resources both in terms
of performance of the mobile device and in terms of
manpower for the development.

The “Route planning” feature is an application of the
“PlanRoute” and “GetCurrentPosition” generic services.

4.2.2 Tourist Information

This feature mainly serves to support the customer, but also
the Yellow Angel himself. Suppose that, due to the delay
caused by the breakdown, a motorist is looking for a place to
stay for the night; or that the Yellow Angel wants to refill his
tank on the way to his next job and, therefore, needs to know
the filling stations along the route. These and other kinds of
tourist information are provided by an ADAC database that
the application can access, either along a given route or
around a given location, for instance, where the breakdown
occurs. The “tourist information” feature is an application of
the “FindRelevantInformation” generic service, partly com-
bined with the “PlanRoute” generic service.

4.2.3 Meeting Scheduling

Suppose a Yellow Angel who is on the road wants to meet
with several others for lunch or in order to have a group
meeting. Then, he issues an invitation that is propagated to
all invitees. The invitees (including the Initiator) are notified
by their mobile devices and can reply to the invitation if
they want. Then, they have the opportunity to enter their

200 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 2, NO. 3, JULY-SEPTEMBER 2003



preferences, e.g., the maximum time they want to spend
traveling to the meeting, the current location (alternatively
detected via GPS, again), and the lists of “buddies” of
whose intentions they want to be kept informed. Each time
some preferences are changed, the system estimates the
distances of the invitees’ locations to the possible venues,
which are given by a predefined set. On this basis, the
system makes a suggestion for the venue by choosing the
one that is most convenient to all invitees in terms of the
maximum driving time. Every invitee gets informed about
the suggestion, but can freely indicate an intention to go to a
different place. The system doesn’t make a definite decision
about the venue to be chosen, but invitees can change their
intentions until the invitation expires. Finally, their inten-
tions will converge to one place to go to—or they may split
up into subgroups and go to different places, if this seems
more convenient to them.

The “meeting scheduling” feature is a direct application
of the “MakeCollectiveDecision” generic service, which, in
turn, makes use of the “EstimateRouteCost” and “GetCur-

rentPosition” generic services.

4.3 Field Trial Set-Up, Execution, and Evaluation

In a one week long field trial in April 2002, the system was
tested under real-life conditions. The trial took place near
ADAC’s headquarters, in the area around Munich. For cost
reasons, only three Yellow Angels took part, each one
accompanied by a member of the LEAP project as a
“supervisor.” Interviews about their experiences during
this week were conducted afterwards with all participants.

4.3.1 System Architecture and Implementation

Hardware and Software. The mobile devices used in the
field trial were the Siemens SX45 and Compaq iPAQ Pocket
PC’s, running Windows CE 3.0 and Windows Pocket PC
2002, respectively. Communication was established over
GPRS, using the T-D1 network of German telecom provider
T-Mobile. Here, the Siemens SX45 offered the most elegant
solution as it features a built-in GPRS phone, whereas the
Compaq iPAQ accessed the mobile network via a Bluetooth
connection to an Ericsson T39m mobile phone with GPRS
support. Each mobile device was equipped with a Pretec
WorldNavigator Teletype GPS receiver.

The mobile devices hosted the agents representing the
user of the device (see below), whereas the service-
providing agents were hosted by a PC running Linux at
the Motorola Research Centre near Paris, France. These
agents contacted a special ADAC gateway server, which
had, in turn, access to a server farm with ADAC’s route
planning system and ADAC’s tourist information database
running under Microsoft SQL Server 2000. All communica-
tion except to the mobile devices was done over the public
Internet, to which the GPRS network provided access, and
over the ADAC Intranet.

We used Jeode EVM 1.9.1 as the Java Virtual Machine on
the mobile devices and Java 2 Standard Edition on the PC.

Containers and Agents. We used the JADE-LEAP
container concept in a very straightforward way: There
was one peripheral container on each mobile device,
whereas the main container resided on a PC at the Motorola

Research Centre. The multiagent system was composed in
the following way.

There were two agents living in the main container,
namely:

. the User Admin Agent responsible for accepting a
user login to the system;

. the Travel Resource Manager Agent acting as a
responder to route planning, tourist information,
and driving time estimation requests.

Moreover, there were five agents living in each periph-
eral container on the mobile devices:

. the Coordinator Agent, coordinating the activities of
the other agents in the container and “proxying” the
communication to outside agents;

. the User Manager Agent, providing the interface to
the GUI;

. the Position Finder Agent, a wrapper agent for the
GPS system;

. the Meeting Initiator Agent, sending invitations for
new meetings on the user’s behalf and generating
suggestions about the venue;

. the Meeting Respondent Agent, guiding its user
through the process of subscribing to an invitation
and agreeing on a suitable venue together with other
invitees and their agents.

4.3.2 Field Trial Results

The evaluation of the field trial was based on feedback from
the users and logging information generated during usage.
Feedback was obtained for each of the three features: Route
planning, Tourist information, and Meeting scheduling. An
overview of user opinions follows: The analysis of the log
files showed that all services were used successfully, were
reliable, and functioned as expected during the trial. Tourist
information was not used stand-alone very often, but was
included in every usage of Route planning. Meeting
scheduling was used only a few times because of the very
long response time over GPRS. Besides this, bad GPS
reception and bad readability of the displays in the bright
sunlight were some other issues. These results and the
difficulties in handling such compact devices were the most
critical general points for the Yellow Angels.

Route Planning/Tourist Information. This feature was
used most during the field trial. It worked without
problems and received positive comments. It was thought
to be more useful to those Yellow Angels who were new to
the job or spent time in areas that they were unfamiliar
with. The additional information accessible from the mobile
device was useful in situations were the car could not be
repaired and the customer needed additional services like
finding a hotel, a garage, or a filling station. Although these
scenarios were not tested with real customers, the applica-
tion was used and received very well by the Yellow Angels.

Meeting Scheduling. The meeting scheduling feature
was not used very often during the field trial because of
problems with GPS and the long response time over GPRS.
Furthermore, the Yellow Angels rarely meet for lunch and
there was no sign that they wanted to change that.
Currently, if they want to contact each other, they use their

BERGER ET AL.: AN APPROACH TO AGENT-BASED SERVICE COMPOSITION AND ITS APPLICATION TO MOBILE BUSINESS PROCESSES 201



mobile phones. But, they can imagine using other devices
and applications such as those used in LEAP in the future.

5 APPLICATION 2: “SURVEYING FOR NETWORK

SERVICE PROVISION” PROCESS

5.1 BT Business Process

5.1.1 Description

The generic service component architecture has been
applied to the “surveying for network service provision”
process of BT, which is executed by mobile workers, called
Survey Officers.

The function of the Survey Officers is to provide relevant
technical information when queries relating to provision of
fixed telecom services for both residential and business
customers arise. Typically, surveys are initiated as a result
of a request for service provision from a customer where
there was inadequate data about the site, plant, or capacity,
or where there had been an unsuccessful attempt to install
equipment to provide service because of plant or site
difficulties. Survey Officers are organized according to
geographical areas delineated by telephone exchanges. Each
Survey Officer works within a certain area known as his
“patch” which comprises a number of exchanges. Patches
vary in size and are grouped in areas. The Survey Officers
self manage their work through a queuing system. Each
officer has ownership of a queue for the patch in which they
work. Jobs are allocated to the queue by a system called
“Job Management” which is responsible for decomposing
service provision into a number of coordinated tasks for the
relevant parts of the process to ensure that final completion
is achieved. New survey requests are regularly allocated to
the queues as customer orders demand. The number of jobs
within a queue at any one time is dependent upon the
geographical area and the size of the Survey Officer’s patch.

5.1.2 Issues

Three main requirements to support the process have been
identified. First, the main information resource is the
telecommunications network maps, which show cables
routes and the location of joints and access points.
Currently, all the related maps are stored on a server
located on the company’s Intranet. Each Survey Officer
copies the maps for their patch on to their laptop computer
and takes them to their work location. However, the maps
are sometimes not up-to-date and the laptop is difficult to
carry on to a Customer’s premises as it is heavy. Getting the
maps online and displayed on a lightweight device like a
PDA was expected to improve work performance drama-
tically. Second, support for dynamic job trading within a
team of Survey Officers is needed. One or more urgent jobs
which need to be finished that day might appear in a
Survey Officer’s queue at any point in the working day. In
order to ensure timely completion of urgent jobs, the
Survey Officer has to negotiate with other team members to
balance the day’s workload. Currently, this is done by
contacting team members via their mobile phones, which
takes time and is expensive. The use of autonomous agents
which negotiate with each other on behalf of their users was
expected to greatly reduce these coordination costs. Last, as

Survey Officers frequently travel to new job locations, the
plan route functionality was expected to reduce the travel
costs.

5.2 Customization of Generic Service Components

Three generic service components have been customized to
satisfy the requirements identified in Section 5.1.2. The
“FindRelevantInformation” service component was custo-
mized to provide a “Retrieve telecommunications network
maps” service. The “KnowledgeHunter” interface provided
by the Respondent component of “FindRelevantInformation”
was implemented to find and retrieve a telecommunications
network map from a server residing on the company’s
Intranet, using the job’s postcode or GPS location as input.
Second, the “PlanRoute” service component has been
customized for the process by implementing the “Get-
Route” interface to contact a route planning system to get
the shortest route, taking into account current traffic
conditions.

Third, the basic Contract Net-based “GiveJob” service
component was customized as Extended Contract Net, in
order to provide a dynamic job reallocation service. The
basic Contract Net protocol is composed of two phases:
bids collection and awarding. In the bids collection phase,
the Initiator sends a call for bids (CFB) to multiple
Respondents. Then, the Respondents send their bids to
the Initiator. In the awarding phase, the Initiator evaluates
the received bids and selects the winner based on the
evaluation criteria. The winner gets an award notification
and the other Respondents get reject notifications. Extended
Contract Net uses the same logic for the bids collection
phase. However, the awarding phase is changed to
negotiate with each Respondent for an award until anyone
receives the award. It means that the Respondents can
refuse the award according to their situation. The “GiveJob”
process is performed as follows: First, the initiator of the
service sends a CFB, which contains the job details
including the postcode and address of subscribed Respon-
dents. Then, the Respondents get their current locations
and calculate the estimated distances from their locations to
the job location. Then, they create bids based on the
distance and return their bids to the Initiator. The Initiator
evaluates the bids and sorts the bids according to the
specified policy (such as “shortest distance”). In the
awarding phase, the Initiator negotiates with the Respon-
dent that offered the best bid. The Respondent shows the
offer to the User and receives the response to return to the
Initiator. If the User refuses the offer, then the Initiator
contacts the next best bidder. Otherwise, the process is
finished.

For the customization of the “GiveJob” service compo-
nent, the Respondent component is provided with the
customized implementation of the “Prepare Bid” interface,
which gets the current location of the mobile worker using
the GetCurrentPosition service component. It then executes
the Initiator component of the “EstimateRouteCost” service
component to get the distance from this location to the
location of the new job. The estimated distance is used to
create a bid for the CFB. Then, the offer is evaluated by the
predefined interface “Evaluate Proposal.” The implementa-
tion of the interface shows the proposal to the User via a
GUI component and receives the User’s response to the
proposal.

202 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 2, NO. 3, JULY-SEPTEMBER 2003



5.3 Field Trial Set-Up, Execution, and Evaluation

A field trial of the application was conducted with a team of
Survey Officers (SO). Within operational constraints, each
Survey Officer’s patch was chosen to make full use of the
“GiveJob” service (i.e., as many adjacent patches as
possible). The field trial covered an area of about 80 miles
in diameter and six patches.

5.3.1 System Architecture and Implementation

Hardware Set-up. Each Survey Officer was equipped with a
palm-sized Personal Digital Assistant (PDA) with network
connectivity enabled by a PCMCIA GPRS (General Packet
Radio Service) card using an expansion sleeve for the PDA
or via Bluetooth to a GPRS enabled mobile phone. A GPS
(Global Positioning System) PCMCIA card provided posi-
tioning data.

In addition to this, the Survey Officers had access to their
existing technology, which aids them in the day-to-day
management of their jobs, a laptop with PSTN network
connectivity and a mobile phone to contact coworkers and
supervisors.

Software Set-up. Information servers behind the com-
pany firewall were accessed by client side agents using a
secure, IPSec-based Virtual Private Network (VPN), and a
Java Virtual Machine (JVM) adhering to the 1.1.x Java
Specification ran the application.

Each PDA (an iPAQ Pocket PC) ran a lightweight LEAP
container with the Personal Agent responsible for the
“GiveJob,” underground network map, “PlanRoute” and
“EstimateRouteCost” Initiator service components, and a
“GiveJob” Respondent service component. The main contain-
er resided within the company Intranet, running the Agent
Management System, and Directory Facilitator agents. Two
other containers held agents on the server side: One
container held the “PlanRoute,” “UserAuthorization,” and
“FindRelevantInformation” Respondent service components.
Another container on a separate machine hosted two agents:
JobAgent and NotificationAgent. The role of JobAgent is to
extract jobs assigned to a Survey Officer and pass the jobs to
the worker via interaction with a PersonalAgent on his
device. The NotificationAgent notifies a worker if any
urgent jobs are created for him. For this, all the Persona-
lAgents subscribe to the agent to receive the notification
service. Fig. 2 shows this configuration. The agents were
located on different machines to remove performance
bottlenecks—e.g., stopping an agent locking up a container
when undertaking heavyweight database access.

5.3.2 Field Trial Results

All the services were used successfully within the trial.
Feedback was obtained from the users, for which an
overview of each service follows.

PlanRoute. This was perhaps the most simple of all the
services. The service ran without problems and received
positive comments regarding the functionality of the
service. The service was thought to be more useful to those
Survey Officers who spent time in areas that they were
unfamiliar with.

Telecommunications Network Maps. Again, the intelli-
gence of this service was implicit in the application rather
than the agent-based interaction, that is, being able to

download job specific maps asynchronously at a press of a

button. The service worked well in the field and under real

GPRS conditions. This service reduced the search time for a

map, as the GetCurrentPosition generic service was custo-

mized to integrate a GPS system, allowing automatic

identification of the Survey Officer’s current location, which

was used by the respondent agent to get the map

corresponding to the User’s current location. A minor

inconvenience was the smallness of the PDA screen that

was not user-friendly for map viewing.
GiveJob. Technically speaking, the major accomplish-

ment of the field trial was that a successful agent based

negotiation was performed within a real-world environ-

ment and “off-the-shelf” hardware (GPRS, GPS, Bluetooth,

Java on small devices, etc.). The service released the Survey

Officers from time-consuming job coordination activities

with the help of the autonomous agents. However, there are

still issues with the third party technology that we

used—for example, GPRS coverage and signal strength

was found to be inconsistent across the trial patches. Some

of the GPS receivers were not 100 percent reliable. Such

problems with ancillary technologies had an impact on the

Survey Officers’ perceptions of how robust the agent

services were.
A user quote for a solid benefit for the business process:

The ability of being able to send a job and for LEAP to find the next
nearest person, rather than have to ring around, especially when I
am running two queues [patches] as I am at the moment.

However, there are “people” issues too:

... it is all too easy to refuse the job at the press of a button. When
you have someone you know on a phone line, it is human nature to
be more likely to say yes, but if it is a machine that will not say
anything back if you press no, then I suspect that is what will
happen in most cases.

For the success of real-world implementations of agents

on mobile devices, we need to see the robustness of mobile

networking improve and, over time this will, especially

with the advent of 3G. Also, researchers and developers

should be very aware of the “soft” issues related to new

technology and business process improvement.

BERGER ET AL.: AN APPROACH TO AGENT-BASED SERVICE COMPOSITION AND ITS APPLICATION TO MOBILE BUSINESS PROCESSES 203

Fig. 2. Application architecture to support “survey process for network

service provision.”



6 RELATED WORK

In summary, the LEAP project has resulted in three
important realizations.

The first one is the JADE-LEAP agent platform, respect-

ing the FIPA standard, which is lightweight—meaning that

it can be executed on various devices, varying from mobile

phones, and PDAs to classical desktops. JADE-LEAP is also

generic for the design and development of intelligent

software agent applications. In addition, it supports various

communication mechanisms (GPRS, TCP/IP, etc.) in a

transparent fashion to the user. Some agent platforms are

proposed in the literature, like ZEUS [13], FIPA-OS [12],

etc., but few of them can run on small devices and support

multiple communication protocols as well. MicroFIPA-OS

[18] is an extension of the FIPA-OS agent platform

developed in parallel with JADE-LEAP during the CRUM-

PET [17] project to fit small devices.

The second achievement was the set of designed and

developed generic services for mobile workers assistance

and the two applications developed to support BT Survey

Officers and ADAC Yellow Angels. These applications were

built quite easily thanks to the generic services architecture,

and we were even able to change (redesign and implement)

the BT application in about a week. Some agent applications

exist in the literature, like the ADEPT project [8] for

business process management, but, unfortunately, it is

restricted to the development of applications for a subset of

business processes (that exclude those used in the LEAP

field trials). Another proposal based on the InteRRaP [11]

agent architecture to build a multiagent system for virtual

enterprises management appeared in [10], but it remains

theoretic and incomplete to develop an entire multiagent

application for real-world problems. The WHAM [14]

system is a prototype supporting mobile workforce and

applications in workflow environments, which is imple-

mented using a client-server architecture. But, since this

prototype is not based on multiagent technology, which

allows many advantages (see [15] for a complete descrip-

tion), it should be less flexible and generic to be extended to

other types of application. In [16], there is an architecture

proposal to support nomadic agent-based applications,

based on the MicroFIPA-OS platform, like CRUMPET for

location-based services for tourism.
The third achievement is the two field trials carried out

successfully in Germany and England, with real mobile
workers being able to use the applications without the need
for in-depth technical knowledge of agents. At this time, few
real-world tests and evaluations of agent applications have
been performed. We can state the ADEPT project realization
as an example, which implemented and tested (in a real
environment) a business process management case study [9].

7 CONCLUSION

The paper described specific results of the project LEAP. In
detail, these are:

. a generic service composition framework,

. the integration of the framework into the multiagent
system LEAP,

. two applications in the area of mobile workforces,
and

. the results of the corresponding field trials.

With the generic service architecture, we have addressed

the need for reusable software components, which exists in

the design of multiagent systems just like in that of any

complex software system. Our experience was that it is

sometimes hard to separate the generic aspects of a service

from the application-specific ones and that it requires some

overhead to implement the services independently from the

agents in which they will live later on. Yet, it is an approach

worth considering as it yields a more modular structure of

the system and saves much time of rewriting services for

similar applications.

The field trials showed that agent technology is ready for

use in commercial applications. In particular, restricted

functionality can even be delivered on mobile phones and

Pocket PCs. However, several severe technical problems

mainly occur because of external influences and lacking

product quality. The technical problems outside the LEAP

consortium, for example, result from: GPRS coverage

problems, VPN problems, bad GPS signal reception in city

areas, the usage of emerging technologies and hardware, or

usage of Pocket PCs in outdoor areas with short battery life

and display readability problems.
Most of the agent services and applications developed by

the LEAP consortium have shown their benefit during the
field trials. The usability, stability, and performance of the
system have to be improved for commercial use. However,
these are points for product development and were to some
extent outside the focus of LEAP.

It has been shown that the applied approach was the
right one and the obtained results are promising for further
research and, in particular, for commercialization. Both
field trial enterprises have recognized the potential for
improvement and will use the results of the field trials to
optimize their processes and increase the satisfaction of the
workers and customers. Siemens AG and ADAC were
discussing further developments in the direction of provid-
ing assistance applications on small devices for ADAC
customers.

Altogether, one can say that the field trial participants were
moreor less infavorof thenewservicesandusagepossibilities
and would freely embrace such a new technology.

ACKNOWLEDGEMENTS

The authors acknowledge the contribution made by all
members of the LEAP project consortium, without which
the work described here would not have been possible.
They are also grateful to the European Commission, who
partially-funded this work.

REFERENCES

[1] M. Berger, B. Bauer, and M. Watzke, “Towards an Agent-Based
Infrastructure for Distributed Virtual Organisations,” Proc. IEEE
10th Int’l Workshops Enabling Technologies: Infrastructure for
Collaborative Enterprises (WET ICE ’01), 2001.

204 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 2, NO. 3, JULY-SEPTEMBER 2003



[2] M. Berger et al., “Porting Distributed Agent-Middleware to Small
Mobile Devices,” Proc. First Int’l Joint Conf. Autonomous Agents and
Multi-Agent Systems (AAMAS ’02), Workshop 16 (Ubiquitous Agents
on Embedded, Wearable, and Mobile Devices), 2002.

[3] F. Bellifemine, A. Poggi, and G. Rimassa, “JADE—A FIPA-
Compliant Agent Framework,” Proc. Fourth Int’l Conf. Practical
Applications of Intelligent Agents and Multi-Agent Systems (PAAM
’99), pp. 97-108, 1999.

[4] The Foundation for Intelligent Physical Agents (FIPA), http://
www.fipa.org, 2003.

[5] Lightweight Extensible Agent Platform (LEAP), IST-1999-10211,
http://leap.crm-paris.com, 2003.

[6] Java Agent Development Framework (JADE), http://sharon.
cselt.it/projects/jade, 2003.

[7] M.L. Scott, Programming Language Pragmatics. Morgan Kaufmann,
pp. 20-21, 1999.

[8] N.R. Jennings et al., “Autonomous Agents for Business Process
Management,” Applied Artificial Intelligence, vol. 14, no. 2, pp. 145-
189, Feb. 2000.

[9] N.R. Jennings et al., “Implementing a Business Process Manage-
ment System Using ADEPT: A Real-World Case Study,” Applied
Artificial Intelligence, vol. 14, no. 5, pp. 421-463, June 2000.

[10] K. Fischer et al., “Intelligent Agents in Virtual Enterprises,” Proc.
First Int’l Conf. Practical Applications of Intelligent Agents and Multi-
Agent Technology (PAAM ’96), 1996.

[11] J.P. Müller, “The Design of Intelligent Agents: A Layered
Approach,” Lecture Notes in Artificial Intelligence, vol. 1177, Berlin:
Springer, 1997.

[12] FIPA-OS Agent Platform, Emorphia, http://fipa-os.sourceforge.
net, 2003.

[13] ZEUS Agent Platform, BT Exact, http://www.btexact.com/
projects/agents/zeus, 2003.

[14] J. Jing et al., “WHAM: Supporting Mobile Workforce and
Applications in Workflow Environments,” Proc. 10th Int’l Work-
shop Research Issues in Data Eng., pp. 31-38, 2000.

[15] Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence, G. Weiss, ed. Cambridge, Mass.: MIT Press, 1999.

[16] M. Laukkanen, H. Helin, and H. Laamanen, “Supporting
Nomadic Agent-Based Applications in the FIPA Agent Architec-
ture,” Proc. First Int’l Joint Conf. Autonomous Agents and Multi-
Agent Systems (AAMAS ’02), 2002.

[17] S. Poslad et al., “CRUMPET: Creation of User-Friendly Mobile
Services Personalised for Tourism,” Proc. Second Int’l Conf. 3G
Mobile Comm. Technologies (3G 2001), 2001.

[18] S. Tarkoma and M. Laukkanen, “Supporting Software Agents on
Small Devices,” Proc. First Int’l Joint Conf. Autonomous Agents and
Multi-Agent Systems (AAMAS-02), 2002.

Michael Berger received the diploma in elec-
trical engineering and the PhD degree in
computer science from Dresden University of
Technology. He has been involved in computer
science research for the last eight years,
specializing in Computer Supported Cooperative
Work (CSCW), distributed systems, and multia-
gent systems research. Since 1997, Mr. Berger
has been a member of the Siemens Intelligent
Autonomous Systems Research Group in Mu-

nich and involved in technical and team management functions. He was
also the technical manager as well as work-package leader of the
European research project LEAP. Currently, he is leading projects with
Siemens’s mobile communications and automotive divisions focusing on
middleware and applications for mobile devices and future mobile
networks. He is also actively involved in the agent standardization
initiative FIPA (Foundation for Intelligent Physical Agents) as a member
of FIPA’s board of directors and chair of FIPA’s Technical Committee
“Ad-hoc.”

Makram Bouzid received the PhD degree in
computer science in multiagent systems model-
ling and simulation in 2001. He performed his PhD
work in the Loria/Inria-Lorraine laboratory. He is a
researcher within the Networking and Applica-
tions Lab of Motorola in Paris. He joined Motorola
in August 2001 and he is interested in intelligent
agents domain, including multiagent planning,
cooperation, and coordination. He participated in
the LEAP and Agentcities EU projects.

Mark Buckland received the BEng degree in
software engineering from UMIST and the MSc
degree in intelligent systems from Sussex
University. He joined BT Exact in 2000 and is
a senior research engineer with the Future
Technologies Group. He led BT’s technical
contribution in the EU-funded LEAP project
and is the author of two patents in the areas of
mobile devices and agent systems. His main
research interest is in situated agent (animat)

perception and control architectures that pay more attention to agent/
environment interaction.

Habin Lee received the BSc degree in manage-
ment from Hankuk Aviation University, the MEng
in management science and PhD degrees in
management information systems from KAIST
(Korea Advanced Institute of Science and
Technology). He joined BT in 2001, and is a
senior research engineer with the Intelligent
Business Systems Research Group in BT Exact.
He had previously worked as an assistant
professor at Paichai University and for the

foundation of Korean Software Component Consortium. He was a team
leader of the project that developed the GIGA EXCELLENCE AWARD
winning K-WFMS (knowledge-based workflow management System) at
KAIST. His main research interests include the application of multiagent
technology to eBusiness, design of multiagent architectures, knowledge
management in business processes, and simulation of consumer
markets in the presence of network externality.

Nicolas Lhuillier received the engineering
diploma from the Ecole des Mines, Nancy,
France. He joined Motorola Labs in 2000 and
he was the technical coordinator of the LEAP
project from June 2001 until its end.

Dieter Olpp received the diploma in mathe-
matics from the Technical University of Bruns-
wick, Germany, in 1993. He also holds a
certificate of advanced study in mathematics
from the University of Cambridge, UK. In 1996,
he received the PhD degree in Brunswick again,
specializing in discrete mathematics. In the
same year, he joined the corporate technology
department of Siemens in Munich, first working
with the Discrete Optimization Group. In 2001,

he switched from mathematics to computer science and now works with
the Software Agents Group as a senior research scientist. Here, his
research includes agent applications for mobile devices and agent-
based adaptive office assistence.

BERGER ET AL.: AN APPROACH TO AGENT-BASED SERVICE COMPOSITION AND ITS APPLICATION TO MOBILE BUSINESS PROCESSES 205



Jérôme Picault received the software engineer-
ing diploma from the Institut National des
Télécommunications, Evry, France. He joined
Motorola Labs in September 2001. He is
interested in distributed environments, espe-
cially in multiagent systems. He was a con-
tributor to the European projects LEAP and
Agentcities.

John Shepherdson received the honors degree
in electronics and communications engineering
from the University of North London in 1987 and
joined BT the same year. He went on to receive
a master’s degree in artificial intelligence from
Kingston University in 1993. He is a technical
manager in BT Exact’s Intelligent Systems
Laboratory at Adastral Park, Suffolk, UK. He
leads the Intelligent Business Systems Re-
search Group, and is instrumental in generating

value from multiagent and semantic integration technologies. He is a
recognized expert in the field of advanced wireless applications and
services (he chaired the Foundation for Intelligent Physical Agent’s
Gateway technical committee, which developed standards for inter-
working between software agents in wireline and wireless networks), a
named inventor, and author of many papers. He is a member of the
Institution of Electrical Engineers.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

206 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 2, NO. 3, JULY-SEPTEMBER 2003


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


