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Abstract—In this paper, a novel particle swarm optimization category of the patients, which can be treated as a clustering
(PSO) algorithm is proposed in order to improve the accu- problem.
racy of traditional clustering approaches with applications in Clustering techniques are used to discover the natural group-

analyzing real-time patient attendance data from an accident . . . .
& emergency (A&E) department in a local UK hospital. In NYS of a set of objects where the objects in the same cluster

the proposed randomly occurring distributedly delayed particle Share similar characteristics. During the past few decades,
swarm optimization (RODDPSO) algorithm, the evolutionary clustering techniques have been successfully employed in a
state is determined by evaluating the evolutionary factor in Variety of research areas such as bi0|ogy' 5igna| processing,

each iteration, based on which the velocity updating model computer vision, market segmentation, and healthcare, see
switches from one mode to another. With the purpose of reducing N 14 éO 351 1371 It h b h - 6
the possibility of getting trapped in the local optima and also e.g., [7], [14], [30], [35], [37]. as been shown in [6],

expanding the search space, randomly occurring time-delays that [25] that many popular clustering algorithms are heavily
reflect the history of previous personal best and global best dependent on the initial state of cluster centroids, and may get

particles are introduced in the velocity updating model in a trapped in local optima. As such, it is reasonablepgimize

distributed manner. Eight well-known benchmark functions are the ; :

: g parameters of clustering algorithms (e.g. the number of
employed to evaluate the proposed RODDPSO algorithm which is o . .
shown via extensive comparisons to outperform some currently clusters and the initial state of cluster centroids) in order to

popular PSO algorithms. To further illustrate the application ~ improve the clustering performance. It is well known that
potential, the RODDPSO algorithm is successfully exploited in evolutionary computation (EC) serves as a powerful family

th‘T Paltiif:gt‘ é'léSterirlg pr?blercvfort ?_atada”ahI/ESiS with Y?SPeCtlttO of algorithms that can be effectively used to solve global
a local epartment in West London. Experiment results i ati ; : ot
demonstrate thgt the RODDPSO-based clus[:ering method is optlmlz_atlon prob_lems by using stochastic or metaheurlstl_c
superior over two other well-known clustering algorithms. §earch|ng stra_tegles. Some |mportant EC _approaches, V_Vh'Ch
include evolutionary programming, evolutionary strategies,
genetic algorithms and generic programming, are motivated
by biological evolution and have been successfully applied
to various research fields such as atrtificial intelligence, see
[8], [22]. In this context, various EC algorithms have been
_ ] _applied to optimally set the parameters with the purpose of
Accident & emergency (A&E) departments in Nationajynroving the clustering performance with examples including
Health Service (NHS) in the UK are open f@d hours he genetic algorithm (GA) [16], [20], the simulated annealing
and 365 days a year. Targets for A&E departments aim tesay aigorithm [26], [29], the particle swarm optimization
ensure that at least8% of patients are treated from arrlval(pso) algorithm [19], [38], and the artificial bee colony (ABC)
to discharge, transfer or admission withirhours. Recently, [52] algorithm.
increa_sing_ numbers of emergency cases are leading to OVeIAmong the EC algorithms, the PSO algorithm which is
crowding in many A&E departments, which causes that many population-based heuristic algorithm has received much

A&E departments suffer from financial pressures [1], [41}esearch attention owing to its easy implementation and com-
Furthermore, a number of non-emergency patients go to fi&itiveness in finding a relatively satisfactory solution with
A&E departments, which leads to the increasing burden on tg€ra550nable convergence speed, see e.g., [11], [12], [23]

human and medical resources. Note that the identification [gﬁ] [36], [39], [40], [48], [51]. Moreover, among the EC-
illness severity plays_an important rple in medical resourcg8sed clustering approaches, PSO algorithms have proven
management. Grouping patients with an appropriate triage pe a strong competitor to other optimization algorithms
category is an important element in improving the efﬁuencmy [18], [38], [47]. For instance, a PSO-based clustering
of medical treatment. Therefore, it is vital to identify the triag?echnique has been proposed in [38] where the initial swarm
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been introduced in [2] for data clustering by combining the facilitating a better cluster partition.
kernel density estimation method with the PSO algorithm.  3) The proposed RODDPSO-based clustering algorithm is
As with almost all EC algorithms, the PSO algorithms successfully employed to analyze the A&E data in order
suffer from the problem of trapping local optima especially to verify the triage categorization. With an appropriate
in high-dimensional optimization processes. Consequently, it  triage category (resulting in improved patient routing),
is of practical significance to develop advanced approaches to the patients’ waiting time within A&E departments
further improve the search ability of the PSO algorithms in could be much decreased and patients with serious injury
terms of both the convergence and the diversity. It should be or illness can then be treated with specific care. As such,
mentioned that the PSO algorithms perform well by adding  the efficiency of both human and non-human resource
certain time-delays in the velocity updating model, see [34], management in A&E departments can be improved.

[36], [48]. In the existing delayed PSO algorithms, the time- The remaining part of this paper is organized as follows. The
delay terms (composed of both personal and global best paglisic PSO algorithm and several well-known variants of PSO
cles in the velocity updating model) contribute significantly|gorithms are discussed in Section Il. A novel RODDPSO
to the full use of historical information and the thoroughygorithm is introduced in Section lil. Detailed information
exploration of the search space, by which the convergengeie RODDPSO-based clustering algorithm is discussed in
behaviors of PSO algorithms are improved and the capabili§ction |v. Simulation results of the RODDPSO algorithm
of getting rid of local optima is enhanced. Time-delay is gng the RODDPSO-based clustering algorithm are presented
physical phenomenon existing in dynamical systems suchiassection v and Section VI, respectively. Finally, conclusions

single-frequency global positioning systems [13] and genefiqq discussions on relevant future work are presented in
regulatory networks [36]. According the way they occur, tim&eaction VII.

delays can be categorized as constant, time-varying, discrete
and distributed ones, see e.g. [33], [44].

Distributed time-delays exhibit a distinct spatial nature that Il. PSO ALGORITHMS
models delays in signal propagations distributed through anthe psSo algorithm is an evolutionary computation algo-
amount of parallel channels/pathways during a certain timignm proposed in [10]. Inspired by a metaphor of social
period. So far, the dynamical behaviors of complex systemygeraction, the PSO algorithm is developed to simulate the
(e.9. neural networks [33], [44]) with distributed time-delay§ocial behavior of fish schooling or birds flocking, where
have been well studied. Intuitively, a natural idea is t0 insach particle represents a candidate solution of the research
troduce certain distributed time-delays in the PSO algorithgioplem.
with the hope to enhance the capability of escaping from theygte that all the particles move at a certain speed iB-a

local optima and getting rid of the problem of premature CORfimensional search space. The velocity and position oftthe
vergence. As compared with the discrete time-delays in [34Jarticle at thekth iteration are denoted by two vectors, which
[36], [48], distributed time-delays could have the following e the velocity vectow; (k) = (vi1(k), viz(k), -, vip(k))

two advantages: 1) a better use of longer (more accumulatgd)j the position vectar; (k) = (zi1(k), zi2(k), -+, zip(K)),
history of the population evolution leading to a better accuraGgspectively. According to the swarm intelligence, the position
and 2) a more complicated dynamical behavior leading t0 le§s each particle is automatically updated in the direction of
possibility of trapping local optima. Furthermore, to play aghe global optimum, one is the personal best position found
adequate tradeoff between the convergence and the diver%'pl,itse” (pbest) denoted by; = (pi1, piz, -+ ,pin), and the
the introduced distributed time-delays could be made randomer one is the global best posit’ion ’thro’ughout the whole
occurring with reasonably small probability. As such, the maigyarm (gbest) represented Py = (Pg1,pg2: - »Pgp)- The

purpose of this paper is to launch a major study on a No¥gljacity and the position of théth particle at the K + 1)th
randomly occurring distributedly delayed PSO (RODDPSQpration are updated as follows:

algorithm with applications in healthcare informatics.
Motivated by the above discussions, the purpose of this pa- vi(k + 1) = wu; (k) + c1r1(pi (k) — x:(k))
per is to propose a RODDPSO-based clustering algorithm with + cara(py (k) — x4(K)), (1)
applications on analyzing A&E data. The main contributions zi(k+1) = za(k) + vi(k + 1)
of this paper can be summarized in three aspects as follows: ! ! ! '
1) A novel RODDPSO algorithm is introduced where th@herek is the current iteration number; is the inertia weight;
randomly occurring distributed time-delay terms not; andcs are the acceleration coefficients called as cognitive
only contribute to a) a thorough exploration of theind social parameters, respectively; andand r, are two
entire search space; b) a significant reduction of thendom numbers which are uniformly distributed over the
possibility of trapping local optima; and c) a propeinterval [0, 1].
balance between the local and global search abilities. In the past few years, a variety of improved PSO algorithms
2) A hybrid clustering algorithm is proposed which comhave been put forward to enhance the search ability of the PSO
bines the proposed RODDPSO algorithm with the tralgorithm and reduce the possibility of getting trapped in the
ditional K-means clustering algorithm. The proposetbcal optima, see e.g., [34], [36], [48], [51]. For example, as
RODDPSO-based clustering algorithm is not dependemie of the most popular strategies, the PSO algorithm with
on the initial states of the cluster centroids, therely linearly decreased inertia weighit (PSO-LDIW) has been
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proposed in [31], [32], wherev is given as follows: [1l. ANoVvEL RODDPSO AGORITHM
W = W — (e — Wanin) X z’te'r ’ @) In this s.ection, a novel RODDI?SO algorithm |s proposed
maxiter to further improve the search ability of the traditional PSO

where wy.. and wy;, represent the maximum and mini-algorithm. The main novelty of the proposed RODDPSO lies
mum value of the inertia weight, respectivelifer denotes in the introduction of the randomly occurring distributed time-
the number of current iteration, andaxiter represents the delays into the velocity updating model. More specifically,
maximum iteration number. Normally, a larger inertia weigha certain number of historical personal best particles and
will benefit the global exploration, and a smaller inertia weigtglobal best particles are randomly selected according to the
will contribute to the local exploitation [32]. Moreover, theevolutionary state. Note that the delayed terms are selected by
PSO algorithm with the constriction factor (PSO-CK) has beenultiplying a random number which & or 1. Compared to
introduced in [4] to guarantee the convergence rate and the traditional delayed PSO algorithms, the newly introduced
search ability, wherev is set to be).729 andc; = ¢ = 1.49. randomly occurring distributed time-delays in the velocity
In addition, the PSO algorithm with time-varying accelerationpdating model make it possible for us to 1) make better
coefficients (PSO-TVAC) has been proposed in [27]. These of accumulated history about the population evolution
cognitive acceleration coefficient is linearly decreased, andwith better accuracy; 2) pursue stronger capability of avoiding
the social acceleration coefficient is linearly increased, local optima trapping problems; and 3) keep an adequate

which are shown as follows: balance between the convergence and the diversity. As such,
maxiter — iter the proposed RODDPSO could explore and exploit the search
c1 = (ery — 1) X T aziter T Cis 3) space more thoroughly than the traditional PSO algorithm.
maxiter — iter
co = (cop —Coi) X —————— + ¢z, (4)

maxiter A. Framework of the RODDPSO Algorithm
where ¢;; and ¢y; represent the initial values of the accel-
eration coefficientse; ; andcay denote the final value of the
cognitive acceleration coefficient and the social acceleration
coefficient ¢y, respectively. It should be mentioned that the v;(k+ 1) = wv;(k) + c1r1(pi(k) — xi(k))

The velocity and position in the novel RODDPSO algorithm
are updated as follows:

parameters;; = 2.5, ciy = 0.5, co; = 0.5, andcyy = 2.5 are 4 0272(%(;{;) —z;(k))
determined based on experiment experience. N
Note that all of above variants of PSO algorithms have —|—ml(§)03rgza(7)(pi(/€ —7) — z(k))
mainly focused on adjusting parameters of the PSO algorithms. o
Furthermore, by developing different topological structures N
and learning strategies, the search ability of the PSO algorithm +mg(€)cars Z o) (pg(k — 7) — i (k)),
can be further enhanced. Along this direction, the adaptive —1
PSO (APSO) algorithm has been proposed in [51] which z;(k + 1) = (k) + v;(k + 1),
can automatically adjust the parameters according to the (5)

evolutionary factor. In the APSO algorithm, an evolutionarwherek denotes the current iteration number;is the iner-
factor has been introduced to identify four evolutionary statei& weight defined in equation (2); acceleration coefficients
which are the exploration state, the exploitation state, the and ¢, are updated according to equations (3) and (4),
convergence state, and the jumping-out state. The parametespectively;cs and ¢, are the acceleration coefficients for
in the APSO algorithm (e.g. the inertia weight and the accelatistributed time-delay terms, which are equaldoand cs,
ation coefficients) are automatically controlled on the basis bé., ¢ = ¢3 and ca = c4; N represents the upper bound
the evolutionary state in each iteration. Recently, a switchirg the distributed time-delaysy -, declares aVv-dimensional
PSO (SPSO) algorithm has been proposed in [36] to improvector where each element is randomly chosen ftbor 1;

the search capability of the APSO algorithm. In the SPSQ(: = 1,2,3,4) are random numbers which are uniformly
algorithm, the velocity updating model is switched from onédistributed in[0, 1]; m;(£§) andm,(§) represent the intensity
mode to another depending on the evolutionary state predicfadtors of the distributed time-delay terms according to the
by a Markov chain. Furthermore, a switching delayed PS€yolutionary state.

(SDPSO) algorithm has been introduced in [48] where thelt is worth mentioning the relationship between the delayed
delayed information (containing previous personal best aitdration numberr and the current iteration numbér Note
global best particles) has been used to further enhance that the velocity updating model performs according to (5)
searching capability. Moreover, a multimodal delayed PS@hen 7 is smaller thank, and otherwise we set = 0.
(MDPSO) algorithm has been proposed in [34] where th@n the other hand, the selections of the inertia weight and
multimodal time-delays (added in the velocity updating modedicceleration coefficients are very important in implementing
have helped reduce the possibility of getting trapped in tlRSO algorithms. The balance of the local and global searching
local optimum and also expand the search space. Neverthelpssformance is obtained by adjusting the inertia weight. In
there is still much room to further improve the performance afiis paper, the selection of inertia weight adopts the linearly
the aforementioned algorithms especially for high-dimensiordgcreasing strategy proposed in [32] with equation (2). Due
optimization problems with a large number of local optima.to the success in improving the search ability of conventional
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PSO algorithms by employing time-varying acceleration coeffiven as follows:

ficients in [27], we adopt the time-varying strategy to adjust
acceleration coefficients with equations (3) and (4). 1 5 D 5

d; = 51 . ;7&. ;(%k —xjk) )
J=107F1 =

The flowchart of the novel RODDPSO algorithm is given
where S denotes the swarm size afdlrepresents the dimen-

in Fig. 1.
sion of the particle. The evolutionary factor denotediy is

(6)

shown as follows:

dy — dm;
Initialize the parameters of the RODDPSO Ef = d g Zm s (7)
max — Wmin
i whered, represents the global best particle amehgdmin

Evaluate the fitness of all the particles individually, 1, and d,,.x represent the minimum and maximum @fin the
update pbest and gbest and save as historical information

i swarm, respectively.
In this paper, the equal division strategy is employed to
classify the four evolutionary states representedéby) as

Compute the mean distance d; of each particle based on (6)

i follows:
1, 0.00 < Ey < 0.25,
Compute evolutionary factor E; of each particle according to (7) £(k) = 2, 0.25 < Ey <0.50, ®)
l ) 3, 0.50 < E;<0.75,
4, 0.75 < Ef < 1.00.
Determine current evolutionary state §(k) according to (8)
where¢(k) = 1,2,3,4 represent the convergence state, the
i exploitation state, the exploration state, and the jumping-
Update the inertia weight according to (2) out state, respectively. Detailed information about the four
evolutionary states can be found in the literature [34], [36],
: (48], [51].

Update the acceleration coefficients according to (3) and (4)

i C. Velocity Updating Strategy Based on Randomly Occurring
Distributed Time-delay

In this paper, a novel velocity updating strategy with ran-

Update the randomly occurring distributed delayed information
according to Table |

i domly occurring distributed time-delays is demonstrated for
Update the velocity and position according to (5) four aforementioned evolutionary states as below:
I e In the convergence state denoted bfk) = 1, the

particles are trying to fly into the globally optimal region
as soon as possible. Therefore, the velocity updating
model in the traditional PSO algorithm is employed, and
the distributed time-delay terms are ignored by setting the
intensity factor to be zero, i.en;(§) = 0 andmy(§) =0,
respectively.
e In the exploitation state denoted by(k) = 2, the
particles are supposed to exploit the region around per-
sonal best particles. To avoid premature convergence,
randomly occurring distributed time-delays are added in
the velocity updating model, and a certain number of
historical personal best particles are randomly selected
for a more thorough search. In this case, the intensity
factors are set asy;(§) = 0.01 andmg,(§) = 0.
In the exploration state denoted ky(k) = 3, the

k=k+1

Yes

If k < maximum
iteration ?

Fig. 1. Flowchart of the RODDPSO algorithm

B. Evolutionary State

In the proposed RODDPSO algorithm, the velocity and e

position equations are updated according to the evolutionary
state depending on the evolutionary factor as mentioned in
[36], [51]. The searching characteristics of the PSO algorithm
are revealed through the four evolutionary states, i.e., the
convergence state, the exploitation state, the exploration state,
and the jumping-out state denoted bik) = 1, {(k) = 2,
¢(k) = 3 and&(k) = 4, respectively. °
As mentioned in [51], the evolutionary factor is calculated

particles are encouraged to explore the entire search space
thoroughly. Hence, randomly occurring distributed time-
delays are added in the velocity updating model, and
a certain number of historical global best particles are
randomly selected with the intensity factarg({) = 0
andmg(&) = 0.01.

In the jumping-out state denoted kby(k) = 4, the
particles are trying to escape from the region around

based on the distance between the particles. The mean distancethe local optimum. Therefore, distributed time-delays are

between theth particle and other particles denoted dyis

added in the velocity updating model where a certain
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number of historical personal and global best particles are  iteration, the number of clusterS., maximum velocity
randomly selected with the intensity factens(¢) = 0.01 Vimax and intensity factorsn;, my.
andmg(§) = 0.01. 2) Randomly initialize every particle to contaiv. cluster
The discussion of the above strategy can be summarized centroids.
in Table 1, where the intensity factors;(¢) andm,(¢) are  3) Calculate the Euclidean distanéast(F;, M;;) between

determined by the evolutionary states; ahdepresents the the data point and its cluster centroid.
number of current iteration. 4) Assign the data points to the closest cluster.

5) Calculate the fitness of all particles based on the objec-

TABLE | : .
VELOCITY UPDATING STRATEGY FORDISTRIBUTED TIME-DELAYED tive functlon (9) .
INFORMATION 6) Select the personal best particle and the global best
State Mode  mi(6) my(E) particle.
Convergence &(k) =1 0 0 7) Confirm the evolutionary state depending on the calcu-

Exploitation  {(k) =2  0.01 0 lated evolutionary factor.
Exploration  £(k) =3 0 0.01 8) Update the velocity and position equations based on the
Jumping-out ¢(k) =4 001 0.01 evolutionary state according to equation (5).
9) Repeat Steps 3 to 8 till the algorithm reaches the
maximal number of iterations.

IV. ANoVEL RODDPSO-RSED CLUSTERING
ALGORITHM V. SIMULATION AND DiscussioN OF THERODDPSO

In this section, a novel RODDPSO-based clustering al- ALGORITHM

gorithm is devised by employing the proposed RODDPS® Selection of Benchmark Functions
algorithm to improve the basi&-means clustering algorithm. In this paper, eight well-known benchmark functions are
The K-means clustering algorithm is a popular clusteringmployed to evaluate the performance of the proposed ROD-
algorithm due to its low computation cost and simple impld9PSO algorithm. The benchmark functions are shown by (10)
mentation. In this paper, the RODDPSO algorithm is used to (17). It should be pointed out that detailed information of
optimize the cluster centroids where each particle consiststbhé benchmark functions is displayed in Table Il including the
N, cluster centroids in a single vector. Moreover, the proposéshction number, the function name, the dimension, the search
RODDPSO-based clustering algorithm is applied to evaluapace of each dimension, the threshold, and the minimum of
the patients’ triage category using A&E attendance data. the benchmark functions.
Note that all the benchmark functions are high-dimensional
A. Objective Function problems. The Sphere functigh(z) is unimodal and is used
. — . .. to explore the convergence rate of the optimization problem.
In this paper, the goal of the objective function is toI'he Rosenbrock functionfa(x) is a non-convex function
minimize the average distance between the data points to theli]r. . 2 ) .
own centroids, and the objective function is given as followsy ichis also known as the Rosenbrock’s banana function. The
' iickley function f3(z) and the Rastrigin functiorf,(z) are
Z;_V:cl Svpcc, dist(Py, J\/fij)/Np} very difficult to optimize because of a large number of local
R (9) minima. The Schwefel 2.22 functiof(z) and the Schwe-
Ne fel 1.2 function fs(x) are classical unimodal and multimodal
where N, represents the number of cluste€s; denotes the functions, which are hard to find the optimum. The Griewank
Jth cluster of theith particle; M/;; represents thgth cluster function f;(xz) is a popular benchmark function which is
centroid of theith particle; P, denotes thelth data point; widely used to test the convergence of optimization algorithms.
dist(P, M;;) represents the Euclidean distance between th@ie step functiorys(x) is also a typical benchmark function.
data pointP; and its cluster centroid/;;; N, represents the Here,z = (21,2, ,2p) whereD is the dimension of the

number of data points belonging to clustey; andN. denotes search space. In our simulatioB, is taken as 50.
the number of clusters.

J:

D
B. Framework of the RODDPSO-Based Clustering AlgorithmSphere : f;(z) = sz. (20)

The RODDPSO algorithm is used to optimize the cluster i=1
centroids in order to improve the clustering performance. It _ 9 9
is worth mentioning that the powerful search ability of the fvosenbrock: fa(z) = Z(loo(““ — @) + (@ = 1)%).
proposed RODDPSO can reduce the possibility of getting =t (11)
trapped in local optima, and hence improve the clustering
performance. The procedure of the proposed RODDPSO-basetickley : f3(z) = —20e ™2V DXL 420+ e

D—-1

clustering algorithm is demonstrated as follows: _ ob X cos2ma; (12)
1) Initialize the parameters including the population dize D
the velocity and position of the particles, x;, accel-  Ragtrigin : f4(z) = Z(I2 — 10 cos 2mz; + 10). (13)

eration coefficients:, co, inertia weightw, maximum P
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TABLE Il
CONFIGURATION OF BENCHMARK FUNCTIONS

Functions Name Dimension Search space  Threshold Minimum
fi(z) Sphere 50 —100,100]  0.01 0
fa(x) Rosenbrock 50 —30, 30] 100 0
f3(z) Ackley 50 —32,32] 0.01 0
fa(x) Rastrigin 50 —5.12,5.12] 50 0
fs5(x) Schwefel 2.22 50 —10,10] 0.01 0
fo() Schwefel 1.2 50 —100,100]  0.01 0
fr(x) Griewank 50 —600, 600] 0.01 0
fs(x) Step 50 —100,100] 0 0
D D Sphere
Schwefel 2.22 : f5(z) = Z | z; | +H | z; | . (14) 50 o
=1 =1 e e
D . O'F‘*’:‘f:\*:*ii R aE a e ww
Schwefel 1.2: fa(z) = » (Y ;) (15) ol o tteea L
i=1 j=1 o ‘\. M
1 , n 2 é -100 '\;\ Y- V-V V¥V ¥Vy
Griewank : r)=14+— Ty — cos(—). (16 2
W f7( ) 4000 Z i g (\/z) ( ) 8 150 “
D % 2001 - ¢ -pso-LDIW .\\
Step : fs(z) = > ([zi+0.5] (17) = Y heoTvac .
i=1 250 oo e,
— = —SDPSO .
H . - L |~ ®-MDPSO N\
B. Experiment Results of the RODDPSO Algorithm %0 |- e —roboPSO RN

As discussed above, eight benchmark functions are e
ployed to evaluate the performance of the introduced ROI

-350

DPSO algorithm. The superiority of the proposed RODDPSO

algorithm is demonstrated over six popular PSO algorithrfig- 2-
including the PSO-LDIW [31], PSO-TVAC [27], PSO-CK [4],
SPSO [36] SDPSO [48] and MDPSO [34]. The parameters
the experiments are given as follows: the dimension of tl
search space i® = 50, and the population of the swarm
is S = 20. It should be noted that each experiment he
been repeated 20 times independently so as to avoid ranc

influence. The setting of the distributed time-delays de-

termined based on the simulation results. The performance
the RODDPSO algorithm in the 20-dimensional search sps
with different settings of the upper bound of the distribute
time-delay N is shown in Table Ill. It can be seen that the
RODDPSO algorithm demonstrates competitive performan

when N = 100.

The performance tests for the proposed RODDPSO al¢
rithms are shown in Fig. 2 to Fig. 9. The vertical coordinat
represents the logarithmic formation of the mean fitness val

~ @

Mean fitness value
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of all the tested PSO algorithms, and the horizontal coordinawe
denotes the number of iteration for Fig. 2 to Fig. 9. Additionkig, 3. performance test for Rosenbrock functifriz)

ally, detailed information of the optimization performance is
listed in Table IV, where the mean, the minimum, and the
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Generation number

20000

standard deviation of the fitness value with respect to eaalgorithm is smaller than that of other PSO algorithms, which
benchmark function is presented to demonstrate the perfdemonstrates the superiority of RODDPSO in reaching the
mance of various PSO algorithms as well as the successjldbal optimum. Moreover, although the RODDPSO algorithm

convergence ratio.

cannot reach the best mean fitness for function (16), it presents

It can be seen that the proposed RODDPSO algorithtompetitive performance compared with the PSO-LDIW, PSO-
demonstrates superiority over other PSO algorithms in terM¥AC, PSO-CK and SPSO algorithms. Similarly, the RODDP-
of evaluation indices such as the mean, the minimum, and 88 algorithm outperforms the PSO-LDIW, PSO-CK, SPSO,
standard deviation of the fithess values for function (10) &nd SDPSO algorithms for function (17) as shown in Fig. 9.
(17). Specifically, the mean fitness value of the RODDPSO In addition to the mean fitness, the successful convergence
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TABLE Il
PERFORMANCE EVALUATION OFRODDPSOALGORITHM WITH DIFFERENTN
N=25 N=50 N=75 N=100 N=125 N=150 N=175 N=200
f1(z) Minimum 7.33 x 10~ 77 0.0000 0.0000 0.0000 0.0000 8.95 x 10719 2,26 x 10 °%° 8.94 x 10~ °5T
Mean 1.12 x 107142 1.48 x 10732% 4.94 x 107324 4.94 x 10732 0.0000 1.69 x 1073°0 4.45 x 107260 3.52 x 107236
Std. Dev. 4.80 x 10~**2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ratio 100% 100% 100% 100% 100% 100% 100% 100%
f2(x) Minimum 2.03 x 1072 4.19x 107% 228 x 1072 2.29x10°% 1.16x 1072 2.61x10"* 1.60x10°° 5.14x 107
Mean 8.0533 5.1520 1.60 x 102 6.4467 1.02 x 10 1.45 x 10! 1.03 x 10* 7.5699
Std. Dev. 4.5765 4.4331 6.75 x 102 6.2135 1.47 x 10" 2.01 x 10! 1.46 x 10* 4.9529
Ratio 100% 100% 95% 100% 100% 100% 100% 100%
fa(x) Minimum 2.66 x 107°  2.66 x 107° 2.66 x 1071 2.66 x 107'° 2.66 x 107 !° 2.66 x 107 2.66 x 1071° 2.66 x 10~ 1°
Mean 6.04 x 1071% 515 x 107 4.26 x 1071 4.80 x 107'® 5.15 x 107 4.26 x 107'° 5.68 x 107! 4.80 x 1071°
Std. Dev. 7.94 x 10716 1.67x 107 1.81 x 107 1.79 x 1071% 1.67x107*% 1.81 x 107*® 1.30 x 107*® 1.79 x 107 1°
Ratio 100% 100% 100% 100% 100% 100% 100% 100%
fa(x) Minimum 4.9748 5.9698 6.9647 4.9748 4.9748 4.9748 4.9748 4.9748
Mean 1.02 x 10* 1.04 x 10t 1.05 x 10* 1.12 x 10* 1.02 x 10 1.06 x 10! 8.9049 9.8998
Std. Dev. 2.8345 2.9316 3.0874 3.7350 3.2422 3.8096 2.3384 2.9844
Ratio 100% 100% 100% 100% 100% 100% 100% 100%
f5(x) Minimum 5.40 x 107%%  4.34 x 10799 9.26 x 10775 3.17 x 10777  4.56 x 10786 1.28 x 10786 2,22 x 107192 1.04 x 10786
Mean 1.15 x 10731 1.83 x 107%%  6.83x 107 1.63x 107°% 6.02 x 107°% 4.28 x 107°2 4.04 x 107°Y 8.72 x 107°6
Std. Dev. 3.43 x 107! 7.91 x 10733 210 x 107%% 4.94 x 107°% 2.07 x 107°® 1.48 x 107°* 1.75 x 107°% 3.89 x 10~°°
Ratio 100% 100% 100% 100% 100% 100% 100% 100%
fo(x) Minimum 1.47 x 10722 1.39 x 107%° 1.84 x 1075 1.78 x 107%% 2.50 x 107%7 2.35 x 1077 1.18 x 10752 9.19 x 10~°°
Mean 1.23x 10722 228 x 107%% 1.88x 107%% 2.37x107°° 239 x 107°% 543 x 107°% 6.71 x 107°2 1.64 x 10~47
Std. Dev. 2.57 x 10722 6.83 x 107%% 8.35x 107%® 5.03 x 107°° 1.07 x 107°2 2,12 x 107°2 3.00 x 10°°* 6.23 x 1047
Ratio 100% 100% 100% 100% 100% 100% 100% 100%
f7(x) Minimum 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean 3.77x 1072 3.10x 1072  4.47x1072 4.90x 1072 3.32x1072 1.83x1072 1.96x 1072 2.86 x 1072
Std. Dev. 3.24 x 1072 238 x 1072 347 x 1072 4.34x 1072 3.22x1072 1.96x 1072 268x 1072 2.11x 1072
Ratio 25% 15% 10% 15% 15% 45% 50% 20%
fs(x) Minimum 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Std. Dev. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ratio 100% 100% 100% 100% 100% 100% 100% 100%
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Fig. 4. Performance test for Ackley functiofs () Fig. 5. Performance test for Rastrigin functigi(z)

ratio is a very important index to justify the Convergencglgorithms have low successful convergence ratio for function
performance of optimization algorithms. The successful cofl6) which are5%, 25%, 40%, 20%, 30%, 40% and 30%,
vergence ratio is not always 100% because the testing alg@spectively. Nevertheless, the proposed RODDPSO algorithm
rithms cannot always reach the global optimum for all thgan still reach the global minimum with a satisfactory mean
benchmark functions as shown in Table IV. Note that tH&ness value, which demonstrates its competitive performance
RODDPSO algorithm demonstrates competitive performant@n other PSO algorithms.

over other PSO algorithms for function (10) to function (15) The plots of the convergence rate for testing algorithms are
and function (17). Note that the Griewank function has d@epicted in Fig. 2 to Fig. 9. It is clear that the convergence
very large number of local minima, therefore, it is difficulrate of the RODDPSO algorithm is not as fast as the PSO-
to detect the global minimum which leads to a low succes$VAC algorithm and the SDPSO algorithm at the beginning
ful convergence ratio. We can see that all the testing PS@ function (10), however, the RODDPSO algorithm reaches
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TABLE IV
COMPARISONS OF VARIOUSPSOALGORITHMS ON EIGHT OPTIMIZATION BENCHMARK FUNCTIONS
PSO-LDIW PSO-TVAC PSO-CK SPSO SDPSO MDPSO RODDPSO
fi(z)  Minimum 1.83 x 107297 5.19 x 10~ 0.0000 6.35 x 10-177 837 x 10~ 18 3.59 x 10~192  0.0000
Mean 5.00 x 102 4.76 x 10797 5.00 x 102 5.00 x 102 3.85 x 10711 3.59 x 10~67 9.88 x 10324
Std. Dev.  2.24 x 103 1.76 x 10—96 2.24 x 103 2.24 x 103 7.35x 10711 1.60 x 1066 0.0000
Ratio 95% 100% 95% 95% 100% 100% 100%
fo(z)  Minimum  5.38 x 1073 1.2375 6.81 x 10~° 2.70 x 1076 9.41 x 10~1 1.53 x 1072 2.43 x 1072
Mean 1.37 x 10% 1.51 x 10t 9.07 x 103 1.37 x 10% 1.91 x 10t 1.16 x 10% 6.6373
Std. Dev.  3.29 x 10* 1.74 x 10t 2.77 x 104 3.29 x 104 1.78 x 10t 1.39 x 10! 4.7374
Ratio 75% 100% 75% 75% 100% 100% 100%
f3(z)  Minimum  2.66 x 107 2,66 x 1071  6.22x 1071  6.22x 1071  293x 1078  6.22x 1071  2.66 x 10715
Mean 7.68 x 10~1 5.68 x 10~1° 2.2544 2.9002 1.57 x 106 6.93 x 10~1° 4.80 x 10~15
Std. Dev.  3.4329 1.30 x 1015 3.2030 3.3136 1.91 x 106 2.19 x 10~15 1.79 x 10~15
Ratio 95% 100% 15% 10% 100% 100% 100%
fa(z)  Minimum  4.9748 3.9798 1.89 x 10t 3.08 x 10t 2.9850 6.9647 3.9798
Mean 1.29 x 10t 9.8501 5.49 x 101 6.60 x 10t 1.93 x 10t 1.11 x 10t 9.5516
Std. Dev. 1.34 x 10! 4.0435 2.28 x 101 2.12 x 101 1.13 x 10t 3.6845 3.0692
Ratio 95% 100% 50% 25% 100% 100% 100%
fs(z)  Minimum 846 x 107121 2,67 x 10732 574 x 1073 2.08x107% 422 x 107  1.02x107* 879 x 1078
Mean 1.65 x 10" 1.01 x 10~ 6.0000 9.0000 5.00 x 10~ 1.69 x 1028 1.61 x 10752
Std. Dev. 1.18 x 10% 4.50 x 10~19 6.8056 1.21 x 10t 2.2361 7.18 x 10—28 7.18 x 10752
Ratio 20% 100% 50% 45% 95% 100% 100%
fe(z) Minimum 569 x 10726 1.92x 10729 830 x 107193 511 x 107  2.12x 107!  530x 10728  6.62x 1070
Mean 1.00 x 103 4.40 x 10~15 1.25 x 103 2.33 x 102 1.8968 1.31 x 1018 2.42 x 10—48
Std. Dev.  2.05 x 103 1.97 x 10— 14 2.22 x 103 3.88 x 103 1.4415 4.23 x 10~18 1.08 x 10—47
Ratio 80% 100% 75% 65% 0% 100% 100%
fz(z)  Minimum  9.86 x 10—3 0.0000 0.0000 0.0000 2.72 x 10713 0.0000 0.0000
Mean 4.83 x 102 3.22 x 10~2 5.29 x 102 4.5869 1.88 x 102 2.05 x 10~2 2.80 x 102
Std. Dev. 2.79 x 10~2 3.51 x 10~2 1.19 x 1071 2.03 x 10! 1.55 x 102 2.43 x 1072 2.56 x 10~2
Ratio 5% 25% 40% 20% 30% 40% 30%
fs(z)  Minimum  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Mean 0.0000 0.0000 5.01 x 102 6.5500 0.0000 0.0000 0.0000
Std. Dev.  0.0000 0.0000 2.24 x 103 2.70 x 10! 0.0000 0.0000 0.0000
Ratio 100% 100% 80% 85% 100% 100% 100%
Schwefel 2.22 Schwefel 1.2
10 T T T 10 T T T
t
\ *y L B
ol Bt R Tt it S F S SRS S SR aaaM
N\ 0o or —g
’\ e, N ® oo
10t ! e, 1 ) .
® . . ©-10f e "e 1
=] \ ° =] N Se.
S e < v R
> o0t \Z V*FV*FV‘FV““‘W*V‘V*Y*J > \* A\ ahin bl o Sak
2 s . 2 \ ®
2 ® Tt 2-20r . 1
< a0t \ ] < K
3 1 s — ¢ -PSO-LDIW \
= — ¢ ~PSO-LDIW Y = .30+ | v PSO-TVAC LN 4
40+ |- v ~PSO-TVAC N ] PSO-CK o
PSO-CK \ SPSO \.
SPSO \. 20 — = -SDPSO e
. L |~ =-SDPSO = B h [ — & -MDPSO ~ 1
% —®-MDPSO oo ee-ey —® ~RODDPSO '1\
— ® ~RODDPSO \r¢4
-60 . L : .50 . . .
0 5000 10000 15000 20000 0 5000 10000 15000 20000
Generation number Generation number
Fig. 6. Performance test for Schwefel 2.22 functify{z) Fig. 7. Performance test for Schwefel 1.2 functifiy(z)

the global optimum with better mean fitness value than oth@gorithm can solve the optimization problem with satisfactory
PSO algorithms. Moreover, it can be seen that the RODDP$@nvergence speed and convergence accuracy.

algorithm tends to reach the global optimum robustly for all It should be mentioned that the RODDPSO-based clustering
the benchmark functions according to the low mean fitneafgorithm is developed for patient clustering from emergency
value and high successful convergence ratio. The proposkpartments. For the purpose of optimising the cluster cen-
RODDPSO algorithm outperforms six popular PSO algorithmmoids, the dimension of the search space is 50. In this case,
in both unimodal and multimodal optimization benchmark series of experiments have been conducted to evaluate the
functions, which indicate that the RODDPSO algorithm isffectiveness of the proposed RODDPSO algorithm where the
capable of getting rid of local optima. As such, the RODDPSE&karch space i® = 50, the upper bound of the distributed
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TABLE V
COMPARISONS OF VARIOUSPSOALGORITHMS IN 50-DIMENSIONAL SEARCH SPACE
PSO-LDIW PSO-TVAC PSO-CK SPSO SDPSO MDPSO RODDPSO
fi(z)  Minimum 4.03 x 107°F 158 x 10~ 155 x 1079 263 x 10~ ™0 151 x 10T 4.24 x 1027  2.35 x 10~ 118
Mean 3.00 x 103 7.29 x 10710 550 x 103 2.50 x 103 9.3336 2.63 x 10719 7.29 x 10102
Std. Dev.  4.70 x 103 1.49 x 109 7.59 x 103 4.44 % 103 9.8519 1.11 x 10718 2,87 x 10101
Ratio 70% 100% 60% 75% 0% 100% 100%
o (z inimum ~ 5.0985 1.65 x 10 1.23 x 10~ 4.6525 1.83 x 10 4.8925 4.66 x 10~
f ( ) Mini 1 5 2 5
Mean 4.76 x 103 1.40 x 102 4.00 x 106 4.91 x 103 1.02 x 103 5.95 x 10! 1.91 x 102
Std. Dev.  2.01 x 10* 1.41 x 102 1.79 x 107 2.01 x 10* 9.55 x 102 4.41 x 10! 6.67 x 102
Ratio 70% 50% 90% 60% 0% 85% 95%
fs(z) Minimum 133 x 1071 3.85x 107%  4.1669 1.33x 107 744 x 107" 1.72x 1072 2,04 x 107
Mean 5.2116 1.4500 1.11 x 10* 4.6816 1.8167 1.32 x 10~6 5.84 x 10~1
Std. Dev.  6.6150 2.6486 4.3265 4.8179 5.48 x 1071 5.74 x 1076 7.42 x 1071
Ratio 60% 35% 0% 10% 0% 100% 60%
fa(z)  Minimum  4.08 x 10! 5.27 x 10* 1.38 x 102 1.07 x 102 8.98 x 10t 3.48 x 10% 4.68 x 10*
Mean 1.21 x 102 8.86 x 101 2.23 x 102 1.76 x 102 1.38 x 102 7.62 x 10! 7.45 x 101
Std. Dev.  5.57 x 10% 2.18 x 10! 4.28 x 10t 3.19 x 10t 3.93 x 10t 2.10 x 10% 1.45 x 10t
Ratio 5% 0% 0% 0% 0% 10% 5%
5 (z inimum ~ 2.00 x 10 2.34 x 10~ 2.76 x 10~ 1.97 x 10~ 2.23 x 10~ 1.28 x 10~ 3.12 x 10~
f ( ) Mini 1 6 2 60 1 12 17
Mean 5.85 x 101 2.5012 2.86 x 10! 3.70 x 10" 2.49 x 10! 1.0000 1.0000
Std. Dev. 2.54 x 10% 4.4421 1.85 x 10t 1.56 x 10t 2.14 x 10! 3.0779 3.0779
Ratio 0% 70% 0% 10% 0% 90% 90%
6(z inimum ~ 5.01 x 10 3.2281 6.59 x 10~ 1.58 x 10~ 2.84 x 10 3.00 x 10~ 4.49 x 10~
Mini 3 11 4 3 1 4
Mean 2.58 x 10* 3.94 x 103 1.22 x 10% 1.67 x 104 1.30 x 10% 1.11 x 103 5.01 x 102
Std. Dev. 1.41 x 10* 3.80 x 103 1.01 x 10% 1.92 x 104 7.15 x 102 2.30 x 103 1.54 x 103
Ratio 0% 0% 15% 25% 0% 0% 30%
f7z(z)  Minimum  0.0000 1.76 x 1072 1.01 x 10~ 0.0000 3.92 x 10~ 0.0000 1.11 x 10716
Mean 4.52 x 10t 2.37 x 1072 4.54 x 10t 9.1116 8.81 x 1071  3.30 x 10~2 2.13 x 1072
Std. Dev.  6.22 x 10! 2.96 x 10~2 6.88 x 10! 2.78 x 10! 2.28 x 1071 3.43 x 1072 2.80 x 10~2
Ratio 35% 50% 15% 40% 0% 35% 45%
fs(z)  Minimum  0.0000 0.0000 1.30 x 10" 0.0000 6.0000 0.0000 0.0000
Mean 1.50 x 103 2.50 x 10~1 7.38 x 103 2.01 x 103 1.41 x 10" 0.0000 2.50 x 10~1
Std. Dev.  3.66 x 102 5.50 x 10~ 1 6.59 x 103 4.10 x 103 6.2146 0.0000 4.44 x 1071
Ratio 85% 80% 0% 15% 0% 100% 75%
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Fig. 8. Performance test for Griewank functigi(z) Fig. 9. Performance test for Step functigg(x)

time-delay isN = 110, and other parameter settings remaifi” the convergence, accuracy aqd Fhe diversity in the 5_0'
the same. The corresponding experiment results are disp|a9gaen3|onal search space, whlc_h |nd|cat_es that the reliability
in Table V. We can see that the successful convergerften® RODDPSO-based clustering algorithm.

ratio of the RODDPSO algorithm is satisfactory. Moreover,

the proposed RODDPSO algorithm demonstrates competitiél: RESULTS AND ANALYSIS OF THERODDPSO B'SED
performance over other PSO algorithms in terms of the mean, CLUSTERING ALGORITHM

the minimum, and the standard deviation of the fithess valueln A&E departments, an obvious challenge is that patients
via the selected benchmark functions. Therefore, the pmequiring urgent treatment can go straight to the A&E at any
posed RODDPSO algorithm exhibits satisfactory performantimme, thereby causing substantial strain on limited medical
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resources. Hence, the number of emergency cases incre; Silhouette Cluster Evaluation
rapidly in recent years which leads to overcrowding in mar ' '
A&E departments. In response to the revolution of data minir AL
and machine learning techniques, it becomes more and m
convenient for A&E staff to manage medical resources ai
arrange work schedules, thereby meeting 4h®our require-
ment in emergency departments [3]. For instance, compu
simulation models have been widely used for simulating re:
world systems. Mathematical models have been introduced
[5], [9] to simulate the patient flow of emergency department 4r
A discrete-event simulation model has been introduced in [2
to simulate the patient flows in A&E departments, and mult
objective optimization analysis has been conducted for b
management. The relationship between ambient air polluti . . .
and patients’ attendance at emergency departments has t 8 & 0e L
. . Silhouette Value

studied in [17].

Moreover, overcrowding in A&E departments brings mankig. 10. silhouette coefficient of K-means clustering alyoni
adverse effects such as lower treatment quality, increased
working burden and increased patient waiting time. Notably,
an efficient and accurate identification of patients’ severipyealthcare resource group (HRG), HRG description, referral
is of vital importance to improve the efficiency of medicakource, referral source description, A&E department descrip-
treatment and relieve the burden on the human and mediggh, clinical commissioning groups (CCGs), first diagnosis,
resources. Consequently, it is of significance to investigatedgnosis description, and postcode sector of usual address.
proper triage category of the patients. Importantly, an appro-The data is recorded in real-time, especially the arrival date
priate triage category enables patients with serious illnesst@hie, conclusion date time and date time seen for treatment.
injury to be treated. Non-emergency cases can also be ffence, we compute the time interval of treatment time and
routed to other services in the health system. In additiofaiting time in A&E departments for later analysis. Moreover,
the management of medical resources can be allocated intg@ computation cost is effectively reduced by normalizing the
appropriate manner so as to reduce the financial cost. As sugdta. It should be mentioned that the data includes missing
the generation of an accurate triage category is important {@{lues and redundant information. Hen8e778 incidents are
A&E departments. deleted because their treatment date time is null or missing.

In this SeCtion, the CIUStering performance of the intrOdUC%rthermore, redundant information is also removed’ e.g.,
RODDPSO-based clustering algorithm is evaluated by adopgalthcare resource group (HRG) and HRG description, where
ing the silhouette clustering validation method. The triag®e |atter only represents the description of previous attribute.
category is defined to include groups in [24] which are |n addition, the irrelevant attributes such as the provider code

immediate resuscitation, very urgent, urgent, standard and ngRg the GP practice code are also abandoned by employing
urgent. Therefore, the number of clusters is five, and the clugatistical analysis.

tering performance is evaluated by comparing the silhouette
coefficients obtained by thd{-means clustering algorithm _ _
and the FCM clustering algorithm with the RODDPSO-baségt Experiments Results of the RODDPSO Based Clustering

clustering algorithms. Algorithm

Cluster
w

Silhouette is a popular cluster validation method proposed
A. Data Pre-processing in [28]. To evaluate the clustering performance of the pro-
The data is provided by a hospital in West London includingosed RODDPSO-based clustering algorithm, we compare
the urgent care center, the minor injury unit and the A&Ehe silhouette coefficients of the RODDPSO-based clustering
department. The overall number of patient attendances at #igorithm with the/X-means and FCM clustering algorithms.
emergency departmentsig6, 986 over the period examined. In this paper, the squared Euclidean (sgeuclidean) distance
Patient attendances at the A&E department, the urgent caretric is adopted due to its simple implementation. The
center and the minor injury unit argl, 713, 15,151 and MATLAB plots of the silhouette coefficients of th&-means,
60, 122, respectively. the FCM and the RODDPSO-based clustering algorithms are
Each record represents an incident in a single row and eafgypicted in Fig. 10, Fig. 11 and Fig. 12, respectively.
column indicates an attribute with respect to the patient. NoteThe mean silhouette coefficients of themeans, the FCM
that there are totall\25 attributes in the data consisting ofand the RODDPSO-based clustering algorithms @e970,
the pseudo NHS number, general practitioner (GP) practi¢d253 and 0.3166, respectively. We can see that in Fig.
code, patient age, arrival time, departure time, provider codd), most of the silhouette values of té-means clustering
provider name, date time for treatment, fiscal year label, arrivaborithm are positive, which indicates that most of the data
month, arrival date, modal of arrival, mode of arrival descrifpoints are assigned to the proper clusters. In Fig. 11, more than
tion, attendance disposal, attendance disposal description, dwalf of the data points obtain negative values of the silhouette
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Silhouette Cluster Evaluation adjusted depending on the evolutionary state. It is worth

' ' ' mentioning that the distributed time-delay terms containing
historical information of previous personal and global best
E particles are added in the velocity updating model. As such, the
RODDPSO algorithm is capable of escaping from local opti-
ma, and the search space is explored and exploited more thor-
oughly than the classic PSO algorithm. The superiority of the
proposed RODDPSO algorithm is demonstrated over six well-

1 known PSO algorithms on eight popular benchmark functions
including both unimodal and multimodal cases. Finally, the
novel RODDPSO algorithm has been successfully employed to
improve the standaré&’-means clustering algorithm on A&E
attendance data. The effectiveness of the proposed RODDPSO-
based clustering algorithm is demonstrated by comparing the
mean silhouette value with th&-means and FCM clustering
algorithms. Future work can be summarized into three aspects:

0.2 04 0.6
Silhouette Value

-0.4 -0.2 0

Fig. 11. Silhouette coefficient of Fuzzy C-means clusterilgprithm

(1) how to further improve the convergence speed of the

proposed RODDPSO algorithm; (2) how to apply the proposed

Silhouette Cluster Evaluation

Cluster

[2]

(3]

bW N
T
L

;:: ]

-0.5 0 05 1
Silhouette Value

(4]

Fig. 12. Silhouette coefficient of RODDPSO-based clustealyprithm

(5]

coefficients, and the mean silhouette coefficient is much smalls]
er than that of théd{-means and the RODDPSO-based cluster-
ing algorithms. As such, the clustering performance of FCM,
algorithm is not satisfactory. It has been shown in Fig. 12 that
the mean silhouette value of the RODDPSO-based clusterin
algorithm is0.3166 which is higher than the results of the
K-means and the FCM clustering techniques. Furthermore, it9]
is clear that there are fewer negative silhouette values using
the RODDPSO-based clustering algorithm than ieneans [10
and the FCM clustering techniques, which indicate fewer data
points are assigned to the inappropriate clusters. Thus, the
superiority and feasibility of the proposed RODDPSO—baseHll
clustering algorithm is demonstrated and the generated triage
category is reasonable. 12

VIl. CONCLUSION

In this paper, a novel RODDPSO algorithm is proposedt3]
and successfully applied to improve the stand&femeans
clustering algorithm on A&E attendance data. The velocity,
updating model of the RODDPSO algorithm is adaptively

RODDPSO algorithm to other complex systems such as deep
neural networks [49], [50], genetic regulatory networks [42],
and telecommunication systems [15], [45], [46]; and (3) how
to extend our results to other data mining problems in A&E
departments and the wider health system [43].
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