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Abstract: The Boundary Element Method (BEM) and the Embedded Cell Approach 

(ECA) have been used to analyse the effects of constituent material properties and fibre 

spatial distribution on the localised behaviour of a transversely loaded, unidirectional 

fibre-reinforced composite. The geometrical structures examined were perfectly 

periodic, uniformly spaced fibre arrangements in square and hexagonal embedded cells 

and ten cells in which 60 fibres were randomly placed within the matrix. The models 

involve both elastic fibres and matrix, with the interfaces between the different phases 

being fully bonded. The results indicate that both the fibre packing and the material 

properties of the constituent phases have a significant effect on the overall stress 

distribution and the magnitude of localised stress concentrations within a composite. 

Non-periodic arrangements give rise to higher local stresses, and the magnitudes of 

these stress concentrations have a strong dependence on the ligament length (distance 

between the two neighbouring fibres that have a common high-stress region), and to a 

lesser extent on the angle relative to the applied load (angle between a plane containing 

the two fibre centres and the applied load). Furthermore, analysis of a three-phase 

composite, comprised of a mixture of both stiff and compliant fibres, had higher stress 

concentrations than the equivalent two-phase composites.  

 

Keywords: boundary element method, multi-phase materials, embedded cell approach, 

periodic and random arrangements. 



 

1 INTRODUCTION 

Many industrial and engineering materials, as well as the majority of ‘natural’ materials, 

are inhomogeneous, i.e. they consist of dissimilar constituents (or ‘phases’) that          

are distinguishable at some length scale(s). Each constituent shows different material 

properties and/or material orientations, and may again be inhomogeneous at some 

smaller length scale. Some typical representatives of inhomogeneous materials are 

composites, polycrystalline materials, porous and cellular materials, functionally 

graded materials, wood, and bone. However, within this paper, only structural 

composite materials will be considered. The advantage of composite materials is that, if 

well designed, they usually exhibit the best qualities of their constituents and often 

some qualities that neither constituent possesses. Some of the properties that can be 

improved by forming a composite material include stiffness, strength, wear resistance, 

and fatigue life. 

Because of the inherently heterogeneous nature of composite materials, they are 

conveniently studied from two points of view: macromechanics and micromechanics. 

Macromechanics is the study of material behaviour wherein the material is presumed 

homogeneous, and the effects of constituent materials are detected only as averaged 

apparent macroscopic properties. In the present paper, macromechanics will not be 

considered, hence for a more formal treatment of the underlying concepts see e.g.  

Jones, 1999.    

The term micromechanics implies the study of material behaviour wherein the 

interaction of the constituent phases is examined on a microscopic scale to determine 

their effect on the properties of the composite. There are many theoretical 

micromechanics models that have been developed and applied to predict the effective 

properties of composite materials in terms of size, shape, volume fraction and 

distribution of the constituent phases. In particular, predictions of elastic properties 

such as Young's modulus, shear modulus, and the Poisson's ratio of two-phase materials 

have been studied extensively, and comparisons with experimental data have been 



 

widely examined (Hashin, 1962; Hashin and Shtrikman, 1963; Hashin and Rosen, 1964; 

Budiansky, 1965; Hill, 1965; Walpole, 1966; Foye, 1966; Adams and Doner, 1967; 

Halpin and Tsai, 1967; Mori and Tanaka, 1973; Willis, 1977; Christensen, 1990).  

Although these analytical models are attractive, because they offer better physical 

insight, any attempt to extend them to complex geometries invariably leads to 

mathematical intractability. However, in recent years, the growing accessibility of fast 

computers has allowed the development of advanced computational methods to replace 

the time-consuming analytical procedures. Among the various numerical methods 

available, the most popular are the Finite Difference Method (FDM), Finite Element 

Method (FEM) and the Boundary Element Method (BEM).  

In this study, an in-house developed BEM program has been implemented to analyse 

the transverse tensile response of a ‘composite construct’. A composite construct refers 

to a simplified model that closely represents the local behaviour within a real composite 

material. In the present paper, a unidirectional composite is simplified to a 

two-dimensional model representing the geometrical characteristics within an arbitrary 

cross-sectional plane perpendicular to the fibre axes, where the fibres are assumed to be 

equally sized and circular, and either distributed periodically or randomly within the 

embedding matrix. The BEM is particularly well suited for this type of problem, since 

variations in the geometrical detail can be considered with only very minor adaptations 

of the elements being required. By comparison with the FEM, it also has the advantage 

that, due to the higher order of accuracy of the computed stresses, a lesser degree of 

mesh refinement is needed to obtain similar accuracies. This is important within the 

present study, as high stress concentrations would be expected in regions of 

near-touching inclusions (Knight et al., 2002).   

The literature describing this powerful technique has grown in recent years (see 

Brebbia et al., 1984; and Becker, 1992; and, more recently, Wrobel and Aliabadi, 2002). 

Hence, only a brief explanation of the technique relevant to the present analyses will be 

presented.   



 

The boundary, surface or interface, is divided into a number of segments, each of the 

segments being known as an ‘element’, and the whole assembly of elements being 

known as the ‘mesh’. Over these discretised boundaries the transformed governing 

differential equations, in the form of integral identities, are then numerically integrated. 

Therefore, provided that the boundary conditions are satisfied, a system of linear 

algebraic equations emerges, for which a unique solution can be obtained.  

Many of the early numerical models of composite materials were restricted to a 

unit-cell approach, in which the real structure is approximated by a periodic array of 

certain regular geometries. For example, Eischen and Torquato (1993) applied the BEM 

to a simplified unit-cell, for the determination of the effective elastic moduli of a 

fibrous composite material. An idealised hexagonal array of infinitely long fibres was 

considered together with a variety of inclusions, which were either stiffer or weaker 

than the matrix; and a wide range of volume fractions of fibres were examined. Chati 

and Mitra (1998) then extended this work to account for transversely isotropic materials 

and the effects of crenulations and interfacial debonding of the fibres. In most cases, the 

results from these and other similar numerical models compare well with experimental 

data. However, as with particulate composites, no single approach has been universally 

recognised to simply and accurately model the elastic response of real fibre-reinforced 

composites, for all practical situations. 

The purpose of the current work is to apply a numerical tool to a parametric 

investigation of the micromechanics of composite materials, and thus provide an 

improved knowledge of the influence of fibre arrangement and phase properties on the 

local stresses. A range of geometrical parameters and materials properties has been 

modelled with a view to designing composite materials with improved properties that 

are more closely optimised for the particular specification required.  

The present paper describes the micromechanical response within a transversely loaded, 

unidirectionally reinforced composite, where the effects of fibre distribution and 

constituent material properties are parametrically examined. The fibres are assumed to 



 

be circular and equal in area, the matrix and fibres follow an elastic response, and the 

interface between the fibres and the matrix is fully bonded. The numerical simulations 

include several simple geometric arrangements, i.e. square and hexagonally arranged 

fibres. These models are then extended to accommodate random distributions, so that 

the effects of fibre clustering on the localised stress distributions could be investigated. 

In addition, a range of material combinations, i.e. relatively stiff or flexible fibres or a 

mixture of both, relative to the matrix, is considered. An embedded cell approach (ECA) 

is employed to apply far field loading, as discussed within the following section, and a 

statistical method, based on the Weibull distribution, has been used to describe the 

distribution of stress concentrations.  

2 MODEL DESCRIPTION 

2.1. EMBEDDED CELL APPROACH (ECA) 

The embedded cell approach is a combination of macro- and micromechanics 

modelling, which aims at predicting the microfields in inhomogeneous materials at 

high spatial resolution. This technique approximates the real inhomogeneous material 

by a model consisting of a core containing a discrete phase arrangement (‘local 

heterogeneous region’), which is embedded within some outer region to which far field 

loads or displacements are applied. A schematic depiction of the technique can be seen 

in Fig. 1. The material characteristics of the inner core can range from relatively simple 

idealised configurations to highly detailed experimentally obtained phase arrangements. 

The outer region may be described by some macroscopic constitutive law (Wulf et al., 

1996; and Monaghan and Brazil, 1997), determined self-consistently from the 

behaviour of the core (Chen et al., 1994; and Dong and Schmauder, 1996), or it may 

take the form of a coarse description and/or discretisation of the global phase 

arrangement (Sautter et al., 1993).  
 



 

 

Figure 1 Concept of the Embedded Cell Approach (ECA). 

ECAs have been successfully used for materials characterisation, and they are also very 

well suited for studying regions of special interest, e.g. local evolution of damage 

around a crack tip (Wulf et al., 1996). However, a suitable description of the outer 

region must be chosen, so that errors in the accommodation of stresses and strains are 

avoided, and some care is required with respect to spurious ‘boundary layers’ that may 

occur at the interface between the core and the surrounding material. Note that these 

boundary layers are a consequence of the modelling approach only, and do not have any 

physical background. Typically, they have a thickness of about an inclusion diameter 

for elastic materials, but they may be longer ranged for nonlinear material behaviour 

(Böhm, 2000).  

2.2.  GEOMETRY AND MATERIALS 

The distribution of the unidirectional fibres within a matrix is modelled using several 

different packing arrangements, which can be classified into two groups: (i) embedded 

cells containing regularly spaced periodic fibre arrangements and (ii) embedded cells 

containing randomly distributed fibres. For the embedded cells with uniformly spaced 

fibre arrangements, the fibres were packed in square or hexagonal arrays as shown in 



 

Fig. 2. These two idealised distributions are the most common arrangements used in 

many previous ‘unit-cell’ analyses (Foye, 1966; Adams and Doner, 1967; Aboudi, 1989; 

Guild and Young, 1989; Achenbach and Zhu, 1989). 

 

Figure 2 Schematic of regularly spaced periodic fibre packing arrangements. (a) 25 

square packed fibres, and (b) 19 hexagonally packed fibres. 

For the square (SQ) and hexagonal (HEX) periodic arrangements, as shown in Fig. 2(a) 

and 2(b), respectively, only one-quarter of the problem needs to be modelled, due to the 

symmetry. Along these symmetry planes the BE model need not be discretised and 

symmetry boundary conditions are applied. In the particular models shown, 25 and 19 

equally sized fibres form the square and hexagonal lattices, respectively. However, as 

discussed in section 3.1.1, further models of differing numbers of inclusions are 

analysed to quantify the ‘boundary layer’ produced by the ECA. In each case, the 

embedding region is subjected to a remote unit tensile stress (σo) in the y direction, at a 

sufficient distance from the core such that free surface effects can be neglected. 

In addition to the uniformly spaced fibre arrangements in Fig. 2, numerical simulations 

were conducted using embedded cells containing 60 equally sized, randomly (RAND) 

distributed fibres, as shown in Fig. 3. These random-fibre embedded cells were 

generated using an in-house developed program. Within this program, the stipulated 



 

fibre volume fraction and number of inclusions determines the size of the embedded 

cell, and the location of each fibre is randomly selected such that fibres neither overlap 

with each other nor with the cell boundaries. Note that by restricting fibres from 

overlapping with the cell boundaries, modelling the problem is greatly simplified. 

However, the localised fibre volume fraction close to the cell walls becomes lower than 

that of the central region (or kernel), as shown later. The effect of this geometric 

characterisation is discussed in section 3.2.1. Furthermore, the ligament size (distance 

between the fibres) is controlled such that numerical problems could be avoided, as 

discussed in section 2.3. Although the number of fibres chosen does not guarantee that 

the sample size accurately represents the response of a real composite, previous studies 

have confirmed that the representative volume element (RVE) selected is sufficient in 

size to adequately capture the behaviour of an inhomogeneous material (Nakamura and 

Suresh, 1993; Drugan and Willis, 1996; Gusev, 1997). 

 

Figure 3 Schematic representation of an embedded cell containing 60 randomly 

distributed fibres. 

 

 



 

In this study, ten different randomly distributed embedded cells are analysed so that a 

sample of results could be used within a statistical analysis, without increasing the 

model size and computational resources required. In addition, by conducting multiple 

simulations, a greater insight into the effect of random inclusion dispersion could then 

be achieved. 

Representative material properties were chosen for the analysis, such that the results 

may be examined parametrically. Hence, the overall trends presented are equally valid 

for any fibre-reinforced composite with similar materials and interfacial characteristics. 

The volume fraction of fibres (Vf) used within the numerical models is 0.2, 0.4 and 0.6 

for the periodic arrangements, and 0.54 (which corresponds to a kernel fibre volume 

fraction of approximately 0.6, as shown in section 3.2.1) for the random arrangements. 

These values were deemed to cover the scope of typical reinforcement concentrations 

for fibre-reinforced composites, with the emphasis on the higher concentration (Vf  = 0.6) 

used within both the periodic and random models.  

For the initial models considered, the Young’s modulus ratio selected for the two phases 

is Ef  / Em = 10, and the Poisson’s ratio υf = υm = 0.3, where the subscript f = fibres and 

m = matrix. Further studies then consider the effect of varying the Young’s moduli ratio 

(Ef  / Em), and Poisson’s ratio mismatch (υf /υm) on the localised stress concentrations. 

The cases considered were; the fibres are nearly rigid (Ef  / Em = 100), the fibres are 

compliant (Ef  / Em = 0.1), the fibres have a higher Poisson’s ratio than the matrix (υf = 

0.4, υm = 0.2), and finally the fibres have a lower Poisson’s ratio than the matrix (υf = 

0.2, υm = 0.4). In the first two models the Poisson’s ratio of each constituent is 0.3, 

whereas, the latter models have an elastic moduli ratio of 10. 

Finally, composite models comprising mixtures of both stiff and compliant fibres 

relative to that of the matrix were analysed. This has direct relevance to the recent 

development of improved fracture toughness composites that contain mixtures of both 

high and low Young's moduli particles (Hornsby and Premphet, 1997,1998). 

Considering an idealised composite, which contains particles whose Young's modulus 



 

is greater than the matrix, it would generally be expected that the overall strength would 

increase, but inadvertently the toughness generally decreases. In contrast, composites 

containing particles whose Young's modulus is less than the matrix may be significantly 

tougher, but they are also generally relatively weak. Therefore, by manufacturing a 

material with a dispersion of high and low Young's moduli inclusions, both strength and 

toughness could possibly be enhanced, due to the combined reinforcing and toughening 

effects of the three-phase system. The material properties chosen were a 50:50 mixture 

of stiff fibres (Ef  / Em = 10), and compliant fibres (Ef  / Em = 0.1), with each constituent 

having a Poisson’s ratio of 0.3. Ten arrangements were analysed, whose geometric 

characteristics were kept constant, however the distribution of fibre property was 

randomly varied.         

For all the models considered, the material properties (E*, υ*) employed for the 

embedding region were obtained using semi-empirical expressions proposed by Halpin 

and Tsai (1967), as follows: 
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in which:   
M  =   Material property (E2, G12, υ12) 

   Vf  =   Fibre-volume fraction 
ξ =  Adjustable parameter (depends on the fibre geometry, packing 

geometry, and loading conditions) 

Although the given expressions only form an approximate representation of more 

complicated micromechanics models, they in general give good agreement with 

experiment over the complete range of fibre content (Wolfenden and Wolla, 1989). The 

only difficulty in using the Halpin-Tsai equations is in the determination of a suitable 

value of ξ. For the present study, ξ = 2 was used in the transverse material calculations, 

as it was found to give excellent agreement with Foye’s (1966) results for fibres with 



 

square cross sections in a diamond array, and Adams and Doner’s (1967) results for 

circular fibres in a square array.   

2.3.  BOUNDARY ELEMENT ANALYSIS 

In this study, an in-house developed BEM program has been used to examine the 

different facets of the research. This BEM code is suitable for two-dimensional (plane 

strain and plane stress) problems, and allows the use of linear and quadratic boundary 

elements. An iterative solver, namely the generalized minimal residual (GMRES) 

method (Saad and Schultz, 1986), is implemented within the code to substantially 

reduce the computational time to solve large systems of equations. For instance, a 

problem involving 8000 degrees of freedom (dof) solved on a typical desktop computer 

took in the region of six hours using LU decomposition (direct method), compared to 

approximately forty minutes using GMRES, for similar accuracies. 

The BEM meshes for the plane strain models (which are equivalent to the inclusions 

representing fibres) have been carefully developed, such that finer elements are placed 

along the fibre/matrix interfaces in regions where the fibres are nearly touching. This is 

to ensure accurate results where possible high stress gradients occur. Although rigorous 

studies of mesh refinement were not carried out for all the models, due to the high 

computational cost, we are confident that all the results presented in this study pertain 

to boundary element meshes which are sufficiently fine to provide mesh-independent 

results. Typical BEM meshes comprised of up to 3000 and 6500 linear elements for the 

periodic and randomly distributed models, respectively. Fig. 4 illustrates a typical BEM 

discretisation used to represent a random-fibre composite undergoing transverse 

deformation, and Fig. 5 shows the local mesh refinements in regions where fibres come 

into close proximity with each other.  

 



 

 

Figure 4 Typical 2D BEM model, showing (a) the full discretised model and (b) an enlarged 

view of the embedded cell.  (H/L = 10.7, r/L = 0.107) 

 

 

Figure 5 Close-up view BEM discretisation, indicating localised mesh refinements 

for near-touching boundaries. 

 



 

In the full model shown (Fig. 4), the upper and lower edges of the embedding region are 

subjected to a unit tensile stress (σo) in the y direction, and the model geometry is 

defined by: H/L = 10.7, r/L = 0.107, where H, L and r represent the embedding region 

size, cell size and the fibre radius, respectively. In addition, each fibre has the same 

radius, and the minimum ligament length is defined as ten percent of the fibre radius. 

The latter condition is stipulated such that the ligament size is of the same order of 

magnitude or greater than the elemental size in those regions. The reason for this 

restriction is to avoid the stresses becoming unbounded when the fibres touch, hence 

the problem to be considered has a contiguity (C) value of zero. 

3 RESULTS AND DISCUSSION 

In this section, firstly embedded cell models containing regularly spaced periodic fibre 

arrangements are considered, followed by the more complex analysis involving 

embedded cells containing 60 randomly distributed fibres. The regular arrays are 

employed as benchmark studies to validate the modelling techniques and the numerical 

method. The random-fibre representations are used to investigate further the roles 

played by fibre distribution and constituent material properties on the localised 

response of ‘real’ fibre-reinforced materials.  

3.1. PERIODIC ARRANGEMENTS 

3.1.1 Effect of cell size and spurious ‘boundary layer’  

To quantify the ‘boundary layer’ produced by the ECA, a number of simulations were 

conducted using increasing size embedding cells (RVEs), which have a fibre volume 

fraction of 0.6. For the square (SQ) arrangement, normal (Tn) and tangential (Tt) 

tractions were taken around the central fibre within a single, nine, and twenty-five 

inclusion RVEs, as shown in Fig. 6(a). The corresponding results for a single, seven, 

and nineteen inclusion hexagonal (HEX) arrangements can be seen in Fig. 6(b). Note 

that, in all cases, the tractions have been normalized by the applied stress (σo). 
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Figure 6 Effect of the periodic cell size on the normal and tangential interfacial 

tractions around the central inclusion: (a) Square arrangement; (b) 

Hexagonal arrangement. (Vf  = 0.6, Ef  / Em = 10, υf = υm = 0.3) 

From these figures, it is noticeable that the distributions presented for the two larger 

embedded cells are very similar, however the values obtained from a single inclusion 

model are clearly dissimilar. This would suggest that, in both cases of square and 



 

hexagonal packing, the single inclusion model is insufficient in size to capture the 

localised behaviour, with the boundary layer introducing a noticeable effect. 

Nevertheless, for the resulting trends of the two larger embedded cells to be so similar, 

the boundary layer must be limited to a range of approximately one inclusion diameter, 

which is in agreement with literature (Böhm, 2000). 

3.1.2  Validation of the modelling techniques and the numerical method 

A comparison between the results presented for the largest embedded cells and the 

authors’ FEM simulations using unit cell models with periodic boundary conditions, 

generally shows good agreement (see Fig.7). A range of volume fractions were 

analysed and the slight differences between the results have been found to be due to the 

approximated effective properties of the embedding region. As expected, the normal 

interfacial tractions (Tn) are highest at θ = 0°, the direction of the imposed tensile stress, 

and the magnitude of these tractions increases as the volume fraction rises, with values 

being slightly higher for the square packing than the hexagonal array. At θ = 90°, the 

square-packed array predicts that the normal traction becomes compressive, whereas 

the hexagonal array remains tensile. The interfacial shear traction (Tt) rises to a 

maximum for values of θ between 20° and 45° in both the square and hexagonal arrays. 

Further studies considering periodic arrangements with different material properties 

were also undertaken, analysing the effect of varying the elastic moduli ratio (Ef  / Em) 

and Poisson’s ratio mismatch (υf /υm) on the local stress concentrations. Discussion of 

these results, as well as a direct comparison with random arrangements, is given in 

section 3.2.3.   
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Figure 7 Comparison between BEM embedded cell models (symbols), and FEM 

unit cell models, with periodic boundary conditions (lines): (a) Square 

arrangement - 25 inclusions; (b) Hexagonal arrangement - 19 inclusions. 

(Ef  / Em = 10, υf = υm = 0.3) 
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3.2. RANDOM ARRANGEMENTS 

3.2.1 Geometric characterisation of the model 

As mentioned in section 2.2, the random-fibre embedded cell models were generated 

such that fibres do not overlap with the cell boundaries. Hence, the localised fibre 

volume fraction close to the cell walls would be expected to be less than that of the 

central region (or kernel). Therefore, to analyse the extent of this geometric variation, 

‘test’ windows were placed within the embedded cell and the resulting sample’s fibre 

volume fraction (Vf) were numerically evaluated. The test window initially took the 

dimensions of the embedded cell, and the window boundaries were shifted inwards 

from the cell boundaries in steps of 0.1r, calculating Vf at each step. The variation of Vf 

within 10 random (RAND) embedding cells can be seen in Fig. 8. When the test 

window exactly matches the embedded cell, the average volume fraction of fibres is 

obtained. However, as the test window shrinks towards the central region (or kernel), 

the concentration of fibres increases in each model to a reasonably constant value at 

about one-inclusion diameter in from the cell walls. Although slightly deceptive in the 

figure due to its scaling, a consistency of the geometric characteristics is shown. The 

average kernel volume fraction (Vf ≈ 0.6) has a variation of less than 2%, and all ten 

arrangements are within a 5% scatter band.   

From these statistical variations, and the observations found within the previous section 

regarding the size of the ‘boundary layer’ produced by the ECA, results taken within 

one-inclusion diameter from the cell walls are less representative. Hence, within 

subsequent analyses, results will only be taken within the embedded cell kernel. 
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Figure 8 The variation in the fibre volume fraction (Vf) within 10 random 

embedding cells. (Symbols indicate the individual geometric models 

analysed and the line shows the average variation) 

3.2.2 Local analysis of the composite  

Figure 9 shows a contour plot of the variation of the first principal stress (S1) within a 

typical random-fibre embedded cell model. Many interesting features are noticeable 

from this figure. For instance, tensile bands seem to be formed linking fibres which 

have centers aligned in a direction close to that of the applied load. This is clearly seen 

on the left-hand side of the figure, where two visible fibre chains (shaded in green 

through to red) are shown. This would indicate that the load is being transferred 

between neighbouring inclusions in such a way that direct load paths are formed, 

linking the upper and lower surfaces of the cell. Within these bands, high localised 

stresses can also be found at the fibre/matrix interface or within the matrix ligament, for 

inclusions that are nearly touching and are closely aligned with the applied stress. These 

stress concentrations are typically twice the applied stress, but can be even greater. 



 

 

Figure 9 Contour plot of the variation of the first principal stress (S1) within a 

typical random-fibre embedded cell model. (Vf  = 0.54, Ef  / Em = 10, υf = 

υm = 0.3) 

For a periodic arrangement, consideration of the stress distribution within and around a 

single representative inclusion is sufficient to characterize the overall stress state. 

However, for the random arrays, the consideration of the stress distribution is not as 

straightforward, hence, alternative methods of considering and describing the results 

have to be used. As there is no standard conventional approach to this, new methods of 

general applicability are proposed, with the present results being used as particular 

examples.  

From observations of the stress raiser locations and the local geometric arrangements of 

the fibres, it would seem that the magnitude of the stress concentrations are dependent 

on both the ligament length (d) (distance between the two neighbouring fibres that have 

a common high-stress region, in units of r), and their angle (δ) relative to the applied 



 

load (angle between a plane containing the two fibre centres and the applied load). To 

investigate this phenomenon, maximum first principal stresses (S1)max were taken from 

each fibre and its surrounding matrix, within the kernel of ten random arrangements, as 

well as the corresponding values for d and δ. Figure 10 shows two scatter graphs, which 

relate to; (a) the results obtained within the fibres and (b) the results obtained from the 

surrounding matrix. In Fig. 10(a), the maximum fibre values were always at the 

interface between the inclusion and matrix, whereas, the maximum matrix values, Fig. 

10(b), were either taken from the interface or within the ligament. In addition, the 

results tended to be slightly higher within the matrix, when compared to the 

corresponding values within the fibres. 

Trends indicated within these figures seem to suggest that the magnitudes of the stress 

concentrations have a strong dependence on the ligament length (d), and to a lesser 

extent on the angle (δ) relative to the applied load. For example, data points that are 

distant from the two axes have lower values of stress than points close to the origin, and 

points of highest stress (shaded in red) are generally within a band d = 0.1-0.2r and δ = 

0-30°. 

To examine the data shown in Fig. 10 in terms of statistical variations, the applicability 

of a Weibull analysis (Weibull, 1951) was considered. This distribution was chosen 

because it is generally used to analyse the failure statistics for brittle materials. A 

cumulative probability distribution was obtained by summing the number of stress 

results above a certain stress concentration factor (K) and dividing this value by the 

total number of results in the set. This process was carried out over the range of stress 

concentrations, in intervals of 0.05, as shown in Fig. 11. The triangular and diamond 

shaped symbols indicate the raw data corresponding to the matrix and fibres, 

respectively.  
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b) 

Figure 10 Scatter graph showing the dependence of the localised maximum first 

principal stresses (S1)max within the 10 random arrangements on the 

ligament length and the alignment of the fibres relative to the applied load. 

Values are taken within (a) the fibres, and (b) the matrix. 



 

To obtain a curve fit to the data points, the standard three-parameter Weibull reliability 

function was employed, where the general form of the function R(x) is given by: 

( ) e
x

R x
βγ

α
−⎛ ⎞−⎜ ⎟

⎝ ⎠=  

where α (scale parameter), β (shape parameter) and γ (location parameter) are positive 

constants.  

To estimate the parameters that gave the ‘best fit’ to the data, a procedure involving 

linear transformation of the above equation, linear regression (to obtain α and β), and a 

simple iterative scheme to minimise any curvature within the transformed data (to 

obtain γ) was applied. As the results from the fibres and matrix are very similar (see    

Fig. 11) a single curve fit was made, using averaged values. From results shown in      

Fig. 11, it is first noticeable that the stress concentrations in the fibres and matrix are 

greater than unity, for all analysed cases. In addition, the shape parameter would seem 

to indicate that there is a reasonably high degree of variability in the stress 

concentration factors (taking a value of β ≤ 3 as indicating high degree of scatter).     

3.2.3 Effect of the constituent elastic properties on the local behaviour 

To analyse whether the constituent material properties play a significant role on the 

local stress concentrations, further simulations were conducted using the values 

indicated in Table 1. As mentioned previously, the elastic moduli ratio (Ef  / Em) and 

Poisson’s ratio mismatch (υf /υm) of the phases will be isolated, and the maximum first 

principal stresses (S1)max retrieved from the different fibre packings. Two sets of results 

were obtained, corresponding to the fibres and matrix (in the same manner as those 

presented in Fig. 10). 
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Figure 11 Cumulative Weibull distributions of the localised maximum first principal 

stresses (S1)max within the fibres and matrix. (Vf  = 0.54, Ef  / Em = 10, υf = 

υm = 0.3) 

Considering first the effect of the elastic moduli, it is noticeable that for almost rigid 

fibres (Ef  / Em = 100) the maximum stress within the fibres and matrix increases, when 

compared to the previously analysed case (Ef  / Em = 10), as expected. This is prevalent 

in each of the geometric arrangements, although the effect is greatest for the 

random-fibre model (~33% increase), and then the square array (~11% increase), and 

finally the hexagonal array (~2% increase). Next, considering a composite comprised 

of relatively compliant fibres (Ef  / Em = 0.1), the maximum stresses within the fibres 

decrease, whereas within the matrix values substantially increase. This is due to the fact 

that the matrix has to carry the majority of load, and also the transmission of this load is 

generally across very small ligament lengths. 

By introducing a Poisson’s ratio mismatch the local stress magnitudes are slightly 

affected, as shown in Table 1. If the Poisson’s ratio of the matrix is higher than that of 

the fibres (υf /υm = 0.5), the stresses tended to be between 6-10% higher than the 



 

original model, where the Poisson’s ratio of the phases were the same (υf /υm = 1). 

Whereas, if the Poisson’s ratio of the matrix is lower than that of the fibres (υf /υm = 2), 

the stresses tended to be 2-7% lower than the original model.      

 

Constituent 

Material 

Properties 

Square (SQ) 

Arrangement 

(25 inclusions)  

Hexagonal (HEX) 

Arrangement 

(19 inclusions) 

Random (RAND) 

Arrangement 

(60 inclusions) 

Ef  / Em = 100,  

υf = υm = 0.3 

1.855 (m) 

1.800 (f) 

1.500 (m) 

1.426 (f) 

3.060 (m) 

3.012 (f) 

Ef  / Em = 10,  

υf = υm = 0.3 

1.675 (m) 

1.625 (f) 

1.469 (m) 

1.397 (f) 

2.305 (m) 

2.273 (f) 

Ef  / Em = 0.1,  

υf = υm = 0.3 

4.906 (m) 

0.518 (f) 

5.047 (m) 

0.537 (f) 

7.084 (m) 

0.916 (f) 

Ef  / Em = 10,  

υf =0.2, υm = 0.4 

1.798 (m) 

1.719 (f) 

1.684 (m) 

1.564 (f) 

2.537 (m) 

2.486 (f) 

Ef  / Em = 10,  

υf =0.4, υm = 0.2 

1.618 (m) 

1.590 (f) 

1.369 (m) 

1.329 (f) 

2.231 (m) 

2.215 (f) 

Table 1 The maximum first principal stresses (S1)max within models consisting of 

different fibre arrangements and constituent material properties. (Two sets 

of results are indicated, where results are taken within the fibres (f), and 

matrix (m), respectively.)  

3.2.4 Analysis of a composite with a stiff and compliant fibre mixture 

Finally, composite models comprising of 50:50 mixtures of both stiff and compliant 

fibres relative to that of the matrix are analysed. Figure 12 shows a contour plot of the 

variation of the first principal stress (S1) within a typical random-fibre embedded cell 

model with mixed inclusion properties. Comparing Fig. 9 (contour plot from a model 

whose geometric characteristics are the same, however, all the fibres have the same 



 

material properties) with Fig. 12, significant differences in the stress distribution are 

noticeable. In particular, the compliant inclusions are all virtually unstressed, whereas 

the stiff inclusions are generally experiencing stresses in excess of those present in 

previous models. This would indicate that the higher moduli inclusions are 

predominantly carrying the load, and as there are fewer stiff fibres the stresses within 

each would increase. Furthermore, very high-localised stresses can be found in the 

ligaments between compliant fibres that are generally aligned perpendicular to the 

applied load plane. In the particular model shown, the local stress concentrations are 

over six times higher than the applied stress. High stresses in these regions would be 

due to the transmission of local forces across relatively narrow cross-sections, in a 

similar manner to the results presented in section 3.2.3 for compliant inclusions. 

 

Figure 12 Contour plot indicating the variation of first principal stress (S1) within a 

typical random-fibre embedded cell model. (Vf  = 0.54, 50% fibres - Ef  / 

Em = 10, 50% fibres - Ef  / Em = 0.1, υf = υm = 0.3) 



 

Statistical analysis of this three-phase system, once again, took the form of a Weibull 

distribution. Ten different arrangements were examined and in each case the geometric 

characteristics were kept constant, however the distribution of fibre property was 

randomly varied. Note that the fibre stresses were only taken from the stiff inclusions, 

as the stresses within compliant inclusions were less than the applied load. A similar 

Weibull plot to that of the two-phase system (Fig. 11) can be seen in Fig. 13 for the 

aforementioned three-phase system. Note that in this figure the fibre and matrix 

distributions are distinctly dissimilar, hence two separate curve fits were conducted.   
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Figure 13 Cumulative Weibull distributions of the localised maximum first principal 

stresses (S1)max within the fibres and matrix. (Vf  = 0.54, 50% fibres - Ef  / 

Em = 10, 50% fibres - Ef  / Em = 0.1, υf = υm = 0.3) 

Comparing figures 11 and 13, significant differences in the Weibull distributions are 

noticeable. In particular, the stress concentrations are substantially higher in the case of 

the three-phase system. This is indicated by the large difference in the scale parameters 

α, used in the curve fits (α = 2.26 and 2.46 for stiff fibres and matrix, respectively, in 

the three-phase system, and α = 0.75 for both the fibres and matrix of the two-phase 



 

system). The shape parameter β would seem to indicate that there is a reasonably high 

degree of variability in all the results, and in particular, matrix stresses from the 

mixed-moduli model show a very high degree of variability (β = 1.8). Finally, the 

location parameter γ shows that for the two-phase system, and the matrix of the 

three-phase system, the stress concentration factors (for the analysed cases at least) are 

always greater than one. However, for the stiff fibres of the mixed-moduli models, there 

is a higher likelihood of a stress reduction. 

For a number of stress concentrations factors, i.e. K = 2, 4 and 6, the corresponding 

probabilities can be calculated using the fitted Weibull functions, as shown in Table 2. 

This highlights the possible adverse effect, in terms of high localised stress 

concentrations, of mixing both stiff and compliant fibres relative to that of the matrix 

within a composite. Micro-cracks, which often nucleate in and around the embedded 

phase, would have a higher probability of initiation in the three-phase system, which in 

turn could lower the inherent strength of the composite.  

 

Probability, P(K)  Stress 

Concentration 

Factor, K 
Two-phase, 

fibres and matrix 

Three-phase, 

stiff fibres 

Three-phase, 

matrix 

2.0 1.19 × 10-1 8.01 × 10-1 8.21 × 10-1 

4.0 3.87 × 10-17 6.08 × 10-2 2.39 × 10-1 

6.0 2.64 × 10-63 3.87 × 10-5 2.77 × 10-2 

Table 2 Calculated probabilities of the two-phase and three-phase systems having 

a stress concentration factor (K) of 2, 4, and 6.   

 



 

4 SUMMARY 

In this study, the localised stress distributions within a multi-fibre composite 

undergoing transverse deformation are investigated using computational techniques. A 

combination of the boundary element method (BEM) and an embedded cell approach 

(ECA) allows a number of idealised (periodic) and more practical (random) discrete 

phase arrangements to be analysed in depth. Results obtained are for purely elastic 

material combinations and calculated stresses are given within the fibres, matrix, and 

fibre/matrix interfacial zone (assuming no debonding between the fibres and matrix).  

The main results obtained from this study are: 

• Fibre packing arrangement has a significant effect on the overall stress distribution 

and the magnitude of localised stress concentrations. For the same fibre volume 

fraction significantly higher stresses were observed in the non-periodic, compared 

to the periodic square and hexagonal arrangements. 

• Constituent material properties also control the local response. For an elastic 

moduli ratio greater than unity, stress concentrations were present in the ligaments 

of near-touching inclusions that have centers aligned in a direction close to that of 

the applied load. The magnitudes of these stresses increased as the elastic moduli 

ratio increased. For a system of compliant fibres, very high stresses were present in 

the ligament of near-touching inclusions that have centers aligned in a 

perpendicular direction to that of the applied load. Finally, a Poisson’s ratio 

mismatch only slightly affected the local stress distributions and their magnitudes.         

• For the random arrangements of stiff fibres, the magnitudes of the stress 

concentrations seem to have a strong dependence on the ligament length (d), and to 

a lesser extent on the angle relative to the applied load (δ). 

• By mixing a compliant third-phase material into the composite, local stress 

concentrations substantially increased, which could lead to a reduction in the 



 

materials overall strength.    
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