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Abstract 
 

The past few years have witnessed a rapid deployment of computing infrastructures in the cloud in support of data 

intensive applications. The effort of the existing works is mainly focused on data reusing mechanisms without 

considering data processing routes which can significantly affect the computation costs when exchanging data 

among the computing node in the cloud. This paper presents a genetic algorithm enhanced Automatic Data Flow 

Management Solution (ADFMS) which facilitates automatic routing function and a self-adjustable intermediate data 

management mechanism to achieve an efficient data processing structure of cloud computing. Experimental results 

show that ADFMS optimizes costs in managing intermediate data in the cloud. 
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1. Introduction  

With the rapid development of information technology in the past decades, the complexity of data 

processing work on the cloud network has increased significantly. Due to the limited computation 

capability of the target cloud network, the management of processing route and intermediate data during 

the processing procedure of a computing task significantly influence the delivery efficiency of the data 

processing task [1-6]. A higher delivery efficiency depends on a lower processing cost needed for the 

target data processing task. The processing cost is determined by the sum of data storage and generation 

cost which are mainly restricted by the setting of data processing route and the intermediate data reuse. 

The data processing route is the topology of all involved computation stations for a given target data 

processing task in the could network. The intermediate data reuse is about storing the intermediate data 

which are generated during the execution of current target data processing task for the execution of next 

task. The storage cost may be cheaper than the regeneration cost at certain time during the data processing 

procedure if the cost difference between storage and generation is well maintained. As a result, balancing 

the cost generated by the change of data processing route and the cost generated by the deletion, 

preservation and regeneration of intermediate data in order to optimize the delivery efficiency of data 

processing task on cloud network becomes a cutting-edge research problem.  

A Petri Net [7] is designed to provide a graphical work flow presentation solution which illustrates the 

delivery progress of a target job [8]. It has been widely applied for the modelling and optimization works 

of concurrency computation field. In [9] a Timed Petri Net (TPN) was proposed to model the time related 

activities at workstation level. The manufacturing process of a target item is analyzed with the time spent 

on its component production steps. The model provides an adjustable platform for the time management 

of production process. In [10] adjustable management mechanism is equipped with price parameter to 



create a Priced Timed Petri Net (PTPN). It considers event timing, real-time constraints, and computation 

costing together. This characteristic makes it particular suitable for optimization work of data processing 

task in cloud computing area. In work [11], [12] the concept of PTPN model is further extended to 

investigate the cost of large-scale scientific workflows in cloud network. The obtained results indicate 

that the efficiency of intermediate data storage mechanism could significantly influence the delivery 

efficiency of the target data processing task on cloud platform. Based on that result, Augmented Petri 

Nets Cost Model [11] was introduced for the optimization of large bioinformatics work flows. This work 

well solved the performance optimization of cloud network by a well-designed data reusing mechanism.  

However, data processing routes are neglected when the majority of attention has been only put on 

building the data reusing mechanisms in previous mentioned works. The selection of route could reflect to 

the performance of intermediate data reuse. The performance of intermediate data reuse further influences 

the optimization of data processing task on a target cloud network. In precious works, the processing 

route and the reuse of intermediated data are not considered simultaneously to ensure the cloud network 

working in an efficient manner. In order to address this problem, this paper presents an Genetic 

Algorithm(GA) [13] enhanced Automatic Data Flow Management Solution (ADFMS). ADFMS 

facilitates automatic routing function and a self-adjustable intermediate data management mechanism to 

achieve an efficient data processing structure of cloud computing. The data processing route and 

intermediate data reuse are considered simultaneously in proposed solution. The contributions of this 

paper are listed below. 

 It presents a novel GA bitstream like route representation structure for data processing task in 

cloud network. It maintains the topology of routes and the setting of each involved node. It is 

used to construct and determine the best route of a given task on cloud network.  

 It further proposes an optimized data analyses routing solution which is driven by a Petri Net 

based fitness evaluation mechanism. This solution can provide simultaneous adjustment of cost 

contribution provided by the change of target processing route and the cost contribution generated 

by the deletion, preservation and regeneration of intermediate data. 

The rest of this paper is organized as follows. Section 2 provides a general review of previous related 

work. Section 3 introduces a Genetic Algorithms enhanced Automatic Data Flow Management Solution. 

Section 4 illustrates an experiment which verifies the performance of proposed GA enhanced ADFMS. 

Section 5 concludes the paper and points out some potential future investigation directions. 

 

2. Related Work 

2.1 Genetic Algorithms  

The original GAs uses a fixed length string to represent the solution to given problem. The simplest 

representation is a fixed stream of zeros and ones (0 and 1). The chromosomes are used to maintain the 

information learned from the target system. With a well-structured exploring mechanism of searching 

space GA has been wildly applied for optimization problems [14]. The solution of optimization problem 

is considered as a point in a X-dimensions space. The X represents the number of involved factors in the 



target problem. A number of bit stream like chromosomes are created to represent a group of points in 

such space. Each chromosome maintains the coordinate information of a point in the space. At the end of 

evolution procedure, the best chromosome containing the coordinate of the near or best point is found. 

The best solution to target problem is then further extracted from the best chromosome.  

The GA based optimization solutions mainly use chromosome to maintain the obtained coordinate 

information and to perform searching operations. The focus of search is set on (a) specific value(s) of 

involved factor(s). In work [15], GA was also applied to evolve the structure of Petri Nets itself. With the 

inhibitor arcs, this extended version of Petri Nets even was further developed as a Genetic 

Programming(GP) [16] like platform. The traditional parse tree of GP is replaced with the directed graph 

format representation of Petri Nets. This work combines the evolutionary algorithm concept into the Petri 

Net and empowers it with self-adapt ability. This kind of combination inspires us that the GA can also be 

employed to further explore the target space in aspect of route selection.  

In this paper we take a GA bitstream like chromosome to represent the processing route of a dataset in a 

target cloud network. During the evolution process the processing route is refined by accumulating 

subnets which provide positive feedback to the target requirement (time or money-oriented cost fitness 

function). At the end of evolution process, the information of optimal route can be generated from the 

best chromosome to build a near ideal route. The detail is discussed in section 3. 

2.2 Augmented Petri Nets Cost Model 

Petri Nets was employed in many previous works [17-20] to build a representation platform for work 

optimization of cloud network. In our previous works [11] [12], the Augmented Petri Nets Cost Model 

(APNCM) was proposed to provide an evaluation and optimization platform for the reuse of intermediate 

data in cloud network. Our objective was focused on data management work of data intensive application 

(DIA) in cloud network. A DIA was modeled with the directed graph representation structure of Petri Net. 

Two types of nodes, “Place” nodes and “Transition” nodes, were employed to create a data processing 

application route. The “Transition” and the “Place” nodes present the processing elements of cloud 

network and their input/outputs respectively. The “Edge” was used to connect the two types of nodes. It is 

worth noting that only different types of nodes can be connected with a “Edge”. The “Edge” also defines 

the direction of a transmission. Based these components, Petri Nets can represent the work flow of a DIA 

graphically if a processing sequence of such DIA task is given. 

The cost model part [12] was designed to minimal the storage cost and computing cost.  Based on the 

route presented with Petri Net, the total cost for a data intensive application in a time duration from 𝑡0 to 

𝑡𝑛 can be calculated with (1). 

𝐶𝑜𝑠𝑡𝐷𝐼𝐴 = ∫ ∑ 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝐷𝑖 ∗ 𝑑𝑡
𝑛
𝑖=1

𝑡𝑛

𝑡0
     (1) 

𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝐷𝑖 is the unit cost of the 𝑖𝑡ℎ dataset. The 𝐶𝑜𝑠𝑡𝐷𝐼𝐴 includes contributions from the storage cost 

of dataset and the computing cost of dataset generation work. For the dataset storage cost rate, 

𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝐷𝑖 can be represented as  

 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝐷𝑖 = 𝐷𝑠𝑖𝑧𝑒𝑖
∗ 𝐶𝑜𝑠𝑡𝑆      (2) 



where 𝐷𝑠𝑖𝑧𝑒𝑖
 is the size of the 𝑖𝑡ℎ Dataset, the 𝐶𝑜𝑠𝑡𝑆 is the price for storing dataset. 

For the generation cost rate, 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝐷𝑖 is expressed with 

   𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝐷𝑖 = 𝐺𝐶𝑜𝑠𝑡𝑖/𝑈𝑠𝑒𝑅𝑎𝑡𝑒𝐷𝑖     (3) 

where 𝑈𝑠𝑒𝑅𝑎𝑡𝑒𝐷𝑖 is the time window between the usage of the intermediate dataset 𝑖. When the 𝐺𝐶𝑜𝑠𝑡𝑖 

is used for the regeneration cost of an intermediate dataset, it is interpreted as 

    𝐺𝐶𝑜𝑠𝑡𝑖 = (𝑇𝑖 + ∑ 𝑇𝑘
𝑞
𝑘=1 ) ∗ 𝐶𝑜𝑠𝑡𝐶 + ∑ 𝐷𝑠𝑖𝑧𝑒𝑟

∗ 𝐶𝑜𝑠𝑡𝑆𝑢
𝑟     (4) 

Where   

• 𝑇𝑖 is the 𝑖𝑡ℎ transition time cost. 

• 𝑞 is the number of detected intermediate datasets. 

• ∑ 𝑇𝑘
𝑞
𝑘=1  represents the total cost of regenerating intermediate datasets, 

the predecessors of the 𝑖𝑡ℎ dataset. 

• 𝐶𝑜𝑠𝑡𝐶 is the price for computing cost. 

• 𝑢 is the number of stored intermediate dataset. 

• ∑ 𝐷𝑠𝑖𝑧𝑒𝑟
∗ 𝐶𝑜𝑠𝑡𝑆𝑢

𝑟=1  represents the total storage cost of the predecessors 

of the 𝑖𝑡ℎ dataset.  

Considering (1), (2) and (3), the total cost of a DIA can be represented with (5)  

 𝐶𝑜𝑠𝑡𝐷𝐼𝐴 = {
∫ ∑ (𝐷𝑠𝑖

∗ 𝐶𝑜𝑠𝑡𝑆) ∗ 𝑑𝑡
𝑛
𝑖=1

𝑡𝑛

𝑡0

∫ ∑ (𝐺𝐶𝑜𝑠𝑡𝑖/𝑈𝑠𝑒𝑅𝑎𝑡𝑒𝐷𝑖) ∗ 𝑑𝑡
𝑛
𝑖=1

𝑡𝑛

𝑡0

      (5) 

Eq. (5) can be further applied as an objective function of data processing optimization work. The cost of 

deletion and regeneration of intermediate datasets are adjusted with the output of (5) in order to achieve a 

minimal cost in terms of money or time. 

The APNCM provides an ideal candidate of fitness function for the evolution procedure of GA part in the 

proposed GA enhanced ADFMS. The route extracted from the bitstream like chromosome mentioned in 

II.A can be further evaluated with the APNCM. The result of evaluation provides a feedback to the 

evolution process of GA enhanced ADFMS. Such feedback is used to guide the direction of evolution 

progress efficiently. The detail of proposed GA enhanced solution is presented in next section. 

3. Genetic Algorithms enhanced Automatic Data Flow Management Solution 

The GA enhanced Automatic Data Flow Management Solution are developed with GA and APNCM. A 

novel GA bitstream like chromosome is created to represent the route of target date processing task and 

the setting of each involved nodes simultaneously. The APNCM is employed to construct fitness function 

of evolution process. The four core parameters of our solution are introduced first.   

3.1 Core components of Augmented Petri Nets Cost Model 



There are four components are employed from original Petri Net model to create data processing route.  

• Transition - The transition is a node where the dataset is processed. In a transition node the 

computation task is performed on dataset.  

• Place - The place is a node where the data is stored. In a place node some in/output dataset(s) 

of different transmission is(are) stored.  

• Arc - The Arc represents the direction of data flow. It is used to connect two nodes (transition 

or place node) in the Petri Net.   

• Settings of nodes - The settings of node are profiles information of the nodes. The format of 

settings are numerical values.  

If the detail information of a data processing work flow is given, with the above core components, a 

complete Petri Net can be constructed. In order to represent a data processing route in a cloud network we 

developed a GA bitstream like chromosome structure.  

3.2  Chromosome Structure 

In this section we introduce the chromosome structure of the GA enhanced ADFMS. In order to maintain 

and refine the detail construction information of a data processing route which is presented with a Petri 

Net, we employ a GA bitstream like structure to code corresponding information. In the GA bitstream like 

chromosome structure, each component of a Petri Net is assigned with a unique genetic code which is 

used to represent its appearance on a Petri Net. Figure 2 shows an example of chromosome structure 

employed in our approach. This chromosome contains two functionality parts. The former part is 

designed to represent the topology of Petri Net; the later part is designed to maintain the settings of each 

parameter which are constant values. The detail of each part is discussed in following sections. 

 

Figure 2.  An example of gene. 

• Transition Segment 

Transition node in Petri Net model is a procedure which takes data input(s) and generates data output(s). 

In this paper we propose a binary fragment to represent a transition node. A transition fragment is 

identified by the number of its input(s)/output(s) and its connected space nodes. The number of input(s) 

and output(s) are represented with the same number of bits. The fragments in Figure 3 shows an example 

representing a transition that has up to four input(s) and four output(s). The first bitstream (4 bits) of the 

fragments represents the input(s) part of transition. An enabled connection to a place is represented with 

‘1’. If there is no connection is established, the corresponding bit is set to ‘0’. The last 4 bits represents 

the output(s) part of transition. And the connection is set with same way as input(s) part. The transition 

segment of chromosome consists of a number of such single transition binary fragments.  

   

 

Figure 3. An example of Transition binary fragment. 
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• Place Segment 

Place node in Petri Net model is a platform where the input and out data(s) are stored. In our paper we 

consider place as an intermediate exchange platform (between two transitions). The appearance of a place 

depends on its neighbor transitions (a neighbor transition takes input from or sends output to such place). 

It is worth noting that the starting/ending place is a special case which only has one type of transition 

(only input/output) node involved.  

Based on the size of cloud network, a place node is indexed with an ID number. The ID number of a place 

node is the allocation connector of transition nodes. Two transition nodes sharing same place node (same 

ID number) can also be allocated in the host cloud network with the ID number of their connector place 

node. The whole topology of data processing route can be further constructed with the location 

information provided by ID numbers. For example, if a transition node has an input from place node A 

and an output to place node B then we can locate the transition node between place node A and B. The ID 

numbers of place nodes are further coded into a binary fragment and put on the later part (just after 

transition segment) of the bitstream like chromosome. The number of bits needed in each binary fragment 

is depended on the size of target cloud.  Figure 4 shows an example of place segment which contains two 

place binary fragments for two place nodes. The former one has four bits to represent a place node index 

with ID number 13 (8 + 4 + 0 + 1); the later four bits fragment represents a place node with ID number 4 

(0 + 4 + 0 + 0). 

 

 

Figure 4. An example of Place binary fragment. 

• Arcs Segment 

Arc in Petri net model is a notation representing the movement direction of a dataset in the cloud network. 

It is designed to provide a connection between transition node and place node in the same cloud network.  

In this paper we use the sequence of transition binary fragments and ID number of place node to represent 

the direction of a dataset movement. A transition fragment appears on the position which is located closer 

to the first position on the transition segment is always trigged before the later one. That means the arcs 

function can be represented with such sequence mechanism. As a result, the arc acutely becomes a virtual 

component of our solution and does not need to appear on the chromosome physically. The connection 

functionality is achieved by using the information in the transition segment and the place segment 

corporately. 

• Arguments segment 

In an Augmented Petri Net Cost Model (APNCM), the efficiency of a could computing platform is 

considered with two cost contribution factors, the computation cost and the storage cost. The computation 

cost depends on the computing time and the rent needed to finish a target task. The storage cost is based 

the leasing time and the price of the cloud storage to finish a target data processing job. 

1 1 0 1 0 1 0 0 



In the proposed GA enhanced ADFMS, we take four cost sensitive factors into the account of the total 

cost. The four factors of a transition node on a target cloud network are listed below: 

(1) the computing times  

The computing time is the CPU time needed to finish a given target computation job.  If it is set for 

route detection purpose, its value depends on the complexity of the given task. If it is set for 

optimization purpose, the value of computing time depends on the hardware specification of target 

computation platform. It is also can be defined by user as a configuration parameter. 

 

(2) the unit price of computation platform  

The unit price of computation platform is the price needed for leasing the target computation platform. 

Its value is can be defined by user as a configuration parameter of target cloud network. 

 

(3) the unit price of cloud storage 

This unit price is the cost paid for the incurred intermediate cloud storage. Its value is also can be 

defined by user as a configuration parameter of target cloud network. 

 

(4) the intermediate data size 

The intermediate data size is the size of dataset which is generated with transition nodes on a cloud 

network. Its value depends on the task which is under processing. If it is set for route detection 

purpose, the value of intermediate data size depends on requirement of data processing task. If it is set 

for optimization purpose, its value depends on the bandwidth of target computation platform. It is also 

can be defined by user as a configuration parameter of target cloud network. 

 

 

 

 

 

Figure 5. An example of Arguments segment. 

Since these four factors are constant values, following our previous work [21], instead of binary fragment 

we create a GEP [22] style constant segment to represent the corresponding settings of transition nodes. 

The arguments segment of chromosome consists of a number of constant fragments. A fragment consists 

of eleven constant elements. First three constant elements represent one setting of the first three factors 

mentioned above, the computing time, the unit price of computation platform, and the unit price of cloud 

storage respectively. The last eight elements represent the settings of the corresponding intermediate 

datasets of a transition node. In Figure 5, an arguments segment which contains one transition node is 

provided. The T1 part contains the first three factors. The T2 part contains eight constant values for 

intermediate datasets. It is worth noting that only transition node has its corresponding fragment in the 

arguments segment. The number of fragments in arguments segment is same as the number of transition 

nodes contained in the whole chromosome. 
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Figure 6. Full chromosome structure. 

A full chromosome of our solution is provided in Figure 6. The transition segment, the places segment 

and the arguments segment are linked sequentially. The genetic operator of ordinary GA, crossover and 

mutation are applied to provide variation on the transition and place segment of chromosome. The 

constant segment is operated with the classical GEP constant operator. 

Input: A chromosome; 

Output: An image of route of data processing task in a cloud network; 

 

1:  FOR x=1 TO number of transitions DO 

2:      Get a transition fragment transition_x; 

2:      Check sender(s) Segment information of the transition_x;  

3:      Set sender Place(s) list;  

4:      Check receiver(s) Segment information of transition_x; 

5:      Set receiver Place(s) list;  

6:      Get the constant fragment of transition_x to extract the constant value(s) to fill sender   

place(s) list and receiver place(s) list; 

7:      Build node transition_x on petri net model;  

8:      x++; 

9:   ENDFOR 

10: Return a complete petri net; 
 

Algorithm 1: Decoding process implementation. 
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3.3 Decoding Mechanism  

In ADFMS we use GA bitstream like chromosome to maintain an image of route of data processing task 

in a cloud network. This image contains the topology of a solution route and its corresponding constant 

argument settings. In order to generate such image, a decoding mechanism which extracts the information 

from chromosome to build a solution of a given data processing task in cloud network was developed. 

With such mechanism a complete Petri Net model which contains topology and corresponding constant 

argument setting of every node of the solution route can be extracted from the chromosome. The detail 

algorithm of decoding process is presented in Algorithm 1. 

3.4 Fitness Function Design  

The fitness function of GA enhanced ADFMS is based on the Augmented Petri Nets Cost Model. 

It uses the same calculation mechanism to evaluate the performance of a solution provided by GA part of 

ADFMS. The performance evaluation can be delivered with different target objectives. The route 

detection oriented fitness function is designed to provide a feasible path of target data processing task. 

The cost oriented fitness function gives user the cheapest solution (in terms of money or time spent on 

data processing task) by balancing the cost on computing and generation of the intermediate dataset. 

For route detection purpose: 

𝐹𝑖𝑡𝑛𝑒𝑒𝑠𝑉𝑎𝑙𝑢𝑒 = 

∑ ({
𝑡ℎ𝑒 𝑛𝑜. 𝑜𝑓 𝑓𝑖𝑡𝑡𝑒𝑑 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 

𝑡ℎ𝑒 𝑛𝑜. 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠⁄ , 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑤𝑜𝑟𝑘 𝑠𝑒𝑢𝑞𝑒𝑛𝑐𝑒 

0, 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑒 𝑛𝑜𝑑𝑒 

) 𝑛
𝑖=1   

  (6) 

For optimization purpose: 

𝐹𝑖𝑡𝑛𝑒𝑒𝑠𝑉𝑎𝑙𝑢𝑒𝑡𝑖𝑚𝑒 = ∑ 𝑇𝑐𝑜𝑚𝑝𝑖
𝑛
𝑖=0      (7) 

𝐹𝑖𝑡𝑛𝑒𝑒𝑠𝑉𝑎𝑙𝑢𝑒𝑐𝑜𝑠𝑡 = {
∫ ∑ (𝐷𝑠𝑖

∗ 𝐶𝑜𝑠𝑡𝑆) ∗ 𝑑𝑡
𝑛
𝑖=1

𝑡𝑛

𝑡0

∫ ∑ (𝐺𝐶𝑜𝑠𝑡𝑖/𝑈𝑠𝑒𝑅𝑎𝑡𝑒𝐷𝑖) ∗ 𝑑𝑡
𝑛
𝑖=1

𝑡𝑛

𝑡0

   (8) 

 

4 Performance Evaluation  

To evaluate the performance of the GA enhanced Automatic Data Flow Management Solution, a 

number of experiments were designed to validate its chromosome structure for the presentation of Petri 

Net model and its optimization performance on a data intensive application case.  

4.1 Dataset  

      A real data intensive task biomedical application [23] [24] [25] is employed as our benchmark input 

task. The detail of input task is provided in Table 1. 



 

Table 1. A data intensive task information. 

Task id Dataset size(GBs) Computing time(hours) Task description 

1 78 1.9 Image Processing 

2 60 1.2 Feature Generation 

3 30 0.7 Feature Selection and Extraction 

4 30 0.6 

5 0.1 0.8 Classifier Construction and 

prediction evaluation 6 5 0.5 

7 5 0.5 

8 0.4 0.1 Cost Controlling feedback 

 

A Petri Net presentation of input task in given in Figure 7. It is also a target route which is selected to 

validate the proposed solution. In Figure 7, the 𝑃𝐸𝑥  is the 𝑥𝑡ℎ  transition node. The 𝑂𝑥  represents 𝑥𝑡ℎ 

place node. This data processing task is investigated with two aspects, route detection and optimization 

for cost related problem.  

 

Figure 7. The target Petri Net example. 

4.2 Parameter Settings 

The settings of GA evolution process are listed in Table 2. Due to the GEP style constant operation is 

involved, the parameters were set with the classical values used for a traditional GEP.  

 

Table 2: GA evolution parameter settings. 

Parameters Values 

Population size 1000 

Number of 

Generation 

20000 

 

Genetic 

modifications  

Cross rate 30% 

Mutation 0.44% 

Constant Mutation rate 10% 

Constant  High boundary  -1000 

Low boundary +1000 

 



Since the purpose of evaluation experiment is the verification of concept, we selected a PC with an 

ordinary specification to perform our experiment. The specification of computing platform is listed in 

Table 3. 

Table 3: The computing platform. 

CPU Model  Intel core i7-4700mq   

No. of Cores 4 

No. of Threads 8 

Frequency  2.4G 

Memory 8 GB 

Operation system Ubuntu 16.04 LTS 

 

4.3 Route Detection Analysis 

In order to evaluate the performance of the proposed GA bitstream like chromosome for route detection. 

Ten executions of the GA enhanced ADFMS were conducted with input data processing task. With the 

data size, the sequence of task, the computing time of task and the route detection fitness function, the GA 

enhanced ADFMS generated a chromosome which contains the route information. Since the size of 

chromosome too big to be demonstrated, only part of the best chromosome that we found in evolution 

process is listed in Figure 8. 

 

0 0 1 0 0 0 1 1 

 

0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 0 0 

Place Fragment 1  

0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 

Place Fragment 2 Place Fragment 3 

Transition fragment 1 Transition fragment 3Transition fragment 2

`

 

  Figure 8. Part of transition segment and place segment 

In Figure 8, the first three transition fragments and their corresponding place fragment are provided. 

Based on the representation mechanism of GA enhanced ADFMS, we can generate a part of Petri Net 

from the above chromosome segment. The result is shown in Figure 9. 𝑇𝑥 represent Transition node 𝑥. 

𝑃𝑥 is Place node 𝑥. 𝑃0 is the start Place node.  

    

P0 T1 P1 P2T2 T3

P3

P4
 

Figure 9. Part of Petri Net. 



As shown in Figure 9, an identical part of the original Petri Net shown in Figure 8 can be extracted from 

the segment of chromosome generated with the GA enhanced ADFMS. It is worth noting that the 

constant segment was set to default value (integer value 1). The reason is that the evolution procedure was 

set for route detection purpose. 

4.4 Optimization Results 

In order to evaluate the performance of the proposed the GA enhanced ADFMS for optimization purpose, 

we follow the work [12] to investigate the intermediate data reuse optimization problem in cloud network. 

Three scenarios, keep all intermediate dataset, regenerate all intermediate dataset and dynamic regenerate 

intermediate dataset, were considered. Ten executions of ADFMS were conducted for the three scenarios. 

The minimalization of the cost caused by intermediate dataset was set as fitness function for the scenario 

dynamic regenerate intermediate dataset. The best results are listed in Table 4. 

Table 4. Optimization results of ADFMS. 

Time 

(executions) 

Keep all cost 

($) 

Regenerate all 

cost ($) 

Optimization 

applied  

cost ($) 

1 0.875838889 0.875839 0.875838889 

2 1.163636111 1.631839 0.892508897 

3 1.619391667 2.387839 1.101186333 

4 2.243105556 3.143839 1.480449667 

5 3.034777778 3.899839 1.972605556 

6 3.994408333 4.655839 2.476533167 

7 5.121997222 5.411839 3.073198333 

8 6.417544444 6.167839 3.669864139 

9 7.88105 6.923839 3.704253806 

10 9.512513889 7.679839 3.916717833 

 

The optimization performance of GA enhanced ADFMS was also compared with the Automatic Data 

Reuse Model with Petri Net, ADRMPN [11]. A time unit (a period which is longer than a complete single 

execution of given data intensive application task) was selected as check point to observe the optimization 

performance. On each check point the speed up ratio of two algorithms are compared. As shown in Figure 

10, the GA enhanced ADFMS provides similar performance as the Automatic Data Reuse Model with 

Petri Net. It is worth noting that with the elapsed time the speed up ratio are increasing. That means the 

more data and the longer computing time requests on the cloud network the better optimization 

performance can be expected. 

5. Conclusion  

In this paper we propose a novel Genetic Algorithm enhanced Automatic Data Flow Management 

solution for accelerating data intensive applications in cloud network. It provides an automatic route 

detection solution for complex data intensive application. It also can be used to balance the cost generated 

by the change of target processing route and the cost generated by the deletion, preservation and 

regeneration of intermediate data in order to optimize the performance of data processing task on the 



cloud computing platform. A near ideal data flow management solution can be generated with our 

proposed work.   
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Figure 10. Optimization performance comparison. 

Since the combination of GA and GEP chromosome structure is newly introduced in this work, the 

genetic operation efficiency of the proposed GA system is not well tuned. The application of genetic 

operation was based on classical GA or GEP implementation cases. Its performance can still be further 

improved to generate a faster and more accurate result at the convergence stage of evolution process. 
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