
 A Genetic Algorithm Enhanced Automatic Data Flow Management

Solution for Facilitating Data Intensive Applications in the Cloud

Siguang Li1,2, Zhengwen Huang3 and Liangxiu Han4

1The Key Laboratory of Embedded Systems and Service Computing, Tongji University, Shanghai, China
2 College of Electrical Engineering, Binzhou University, Binzhou, Shandong, China.

3 Department of Electronic and Computer Engineering, Brunel University London, Uxbridge, UB8 3PH, UK.
4School of Computing, Mathematics and Digital Technology, Manchester Metropolitan University, M1 5GD, UK.

Abstract

The past few years have witnessed a rapid deployment of computing infrastructures in the cloud in support of data

intensive applications. The effort of the existing works is mainly focused on data reusing mechanisms without

considering data processing routes which can significantly affect the computation costs when exchanging data

among the computing node in the cloud. This paper presents a genetic algorithm enhanced Automatic Data Flow

Management Solution (ADFMS) which facilitates automatic routing function and a self-adjustable intermediate data

management mechanism to achieve an efficient data processing structure of cloud computing. Experimental results

show that ADFMS optimizes costs in managing intermediate data in the cloud.

Keywords – cloud computing, genetic algorithm, Petri Net, data flows, computation cost optimization.

1. Introduction

With the rapid development of information technology in the past decades, the complexity of data

processing work on the cloud network has increased significantly. Due to the limited computation

capability of the target cloud network, the management of processing route and intermediate data during

the processing procedure of a computing task significantly influence the delivery efficiency of the data

processing task [1-6]. A higher delivery efficiency depends on a lower processing cost needed for the

target data processing task. The processing cost is determined by the sum of data storage and generation

cost which are mainly restricted by the setting of data processing route and the intermediate data reuse.

The data processing route is the topology of all involved computation stations for a given target data

processing task in the could network. The intermediate data reuse is about storing the intermediate data

which are generated during the execution of current target data processing task for the execution of next

task. The storage cost may be cheaper than the regeneration cost at certain time during the data processing

procedure if the cost difference between storage and generation is well maintained. As a result, balancing

the cost generated by the change of data processing route and the cost generated by the deletion,

preservation and regeneration of intermediate data in order to optimize the delivery efficiency of data

processing task on cloud network becomes a cutting-edge research problem.

A Petri Net [7] is designed to provide a graphical work flow presentation solution which illustrates the

delivery progress of a target job [8]. It has been widely applied for the modelling and optimization works

of concurrency computation field. In [9] a Timed Petri Net (TPN) was proposed to model the time related

activities at workstation level. The manufacturing process of a target item is analyzed with the time spent

on its component production steps. The model provides an adjustable platform for the time management

of production process. In [10] adjustable management mechanism is equipped with price parameter to

create a Priced Timed Petri Net (PTPN). It considers event timing, real-time constraints, and computation

costing together. This characteristic makes it particular suitable for optimization work of data processing

task in cloud computing area. In work [11], [12] the concept of PTPN model is further extended to

investigate the cost of large-scale scientific workflows in cloud network. The obtained results indicate

that the efficiency of intermediate data storage mechanism could significantly influence the delivery

efficiency of the target data processing task on cloud platform. Based on that result, Augmented Petri

Nets Cost Model [11] was introduced for the optimization of large bioinformatics work flows. This work

well solved the performance optimization of cloud network by a well-designed data reusing mechanism.

However, data processing routes are neglected when the majority of attention has been only put on

building the data reusing mechanisms in previous mentioned works. The selection of route could reflect to

the performance of intermediate data reuse. The performance of intermediate data reuse further influences

the optimization of data processing task on a target cloud network. In precious works, the processing

route and the reuse of intermediated data are not considered simultaneously to ensure the cloud network

working in an efficient manner. In order to address this problem, this paper presents an Genetic

Algorithm(GA) [13] enhanced Automatic Data Flow Management Solution (ADFMS). ADFMS

facilitates automatic routing function and a self-adjustable intermediate data management mechanism to

achieve an efficient data processing structure of cloud computing. The data processing route and

intermediate data reuse are considered simultaneously in proposed solution. The contributions of this

paper are listed below.

 It presents a novel GA bitstream like route representation structure for data processing task in

cloud network. It maintains the topology of routes and the setting of each involved node. It is

used to construct and determine the best route of a given task on cloud network.

 It further proposes an optimized data analyses routing solution which is driven by a Petri Net

based fitness evaluation mechanism. This solution can provide simultaneous adjustment of cost

contribution provided by the change of target processing route and the cost contribution generated

by the deletion, preservation and regeneration of intermediate data.

The rest of this paper is organized as follows. Section 2 provides a general review of previous related

work. Section 3 introduces a Genetic Algorithms enhanced Automatic Data Flow Management Solution.

Section 4 illustrates an experiment which verifies the performance of proposed GA enhanced ADFMS.

Section 5 concludes the paper and points out some potential future investigation directions.

2. Related Work

2.1 Genetic Algorithms

The original GAs uses a fixed length string to represent the solution to given problem. The simplest

representation is a fixed stream of zeros and ones (0 and 1). The chromosomes are used to maintain the

information learned from the target system. With a well-structured exploring mechanism of searching

space GA has been wildly applied for optimization problems [14]. The solution of optimization problem

is considered as a point in a X-dimensions space. The X represents the number of involved factors in the

target problem. A number of bit stream like chromosomes are created to represent a group of points in

such space. Each chromosome maintains the coordinate information of a point in the space. At the end of

evolution procedure, the best chromosome containing the coordinate of the near or best point is found.

The best solution to target problem is then further extracted from the best chromosome.

The GA based optimization solutions mainly use chromosome to maintain the obtained coordinate

information and to perform searching operations. The focus of search is set on (a) specific value(s) of

involved factor(s). In work [15], GA was also applied to evolve the structure of Petri Nets itself. With the

inhibitor arcs, this extended version of Petri Nets even was further developed as a Genetic

Programming(GP) [16] like platform. The traditional parse tree of GP is replaced with the directed graph

format representation of Petri Nets. This work combines the evolutionary algorithm concept into the Petri

Net and empowers it with self-adapt ability. This kind of combination inspires us that the GA can also be

employed to further explore the target space in aspect of route selection.

In this paper we take a GA bitstream like chromosome to represent the processing route of a dataset in a

target cloud network. During the evolution process the processing route is refined by accumulating

subnets which provide positive feedback to the target requirement (time or money-oriented cost fitness

function). At the end of evolution process, the information of optimal route can be generated from the

best chromosome to build a near ideal route. The detail is discussed in section 3.

2.2 Augmented Petri Nets Cost Model

Petri Nets was employed in many previous works [17-20] to build a representation platform for work

optimization of cloud network. In our previous works [11] [12], the Augmented Petri Nets Cost Model

(APNCM) was proposed to provide an evaluation and optimization platform for the reuse of intermediate

data in cloud network. Our objective was focused on data management work of data intensive application

(DIA) in cloud network. A DIA was modeled with the directed graph representation structure of Petri Net.

Two types of nodes, “Place” nodes and “Transition” nodes, were employed to create a data processing

application route. The “Transition” and the “Place” nodes present the processing elements of cloud

network and their input/outputs respectively. The “Edge” was used to connect the two types of nodes. It is

worth noting that only different types of nodes can be connected with a “Edge”. The “Edge” also defines

the direction of a transmission. Based these components, Petri Nets can represent the work flow of a DIA

graphically if a processing sequence of such DIA task is given.

The cost model part [12] was designed to minimal the storage cost and computing cost. Based on the

route presented with Petri Net, the total cost for a data intensive application in a time duration from 𝑡0 to

𝑡𝑛 can be calculated with (1).

𝐶𝑜𝑠𝑡𝐷𝐼𝐴 = ∫ ∑ 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝐷𝑖 ∗ 𝑑𝑡
𝑛
𝑖=1

𝑡𝑛

𝑡0
 (1)

𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝐷𝑖 is the unit cost of the 𝑖𝑡ℎ dataset. The 𝐶𝑜𝑠𝑡𝐷𝐼𝐴 includes contributions from the storage cost

of dataset and the computing cost of dataset generation work. For the dataset storage cost rate,

𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝐷𝑖 can be represented as

 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝐷𝑖 = 𝐷𝑠𝑖𝑧𝑒𝑖
∗ 𝐶𝑜𝑠𝑡𝑆 (2)

where 𝐷𝑠𝑖𝑧𝑒𝑖
 is the size of the 𝑖𝑡ℎ Dataset, the 𝐶𝑜𝑠𝑡𝑆 is the price for storing dataset.

For the generation cost rate, 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝐷𝑖 is expressed with

 𝐶𝑜𝑠𝑡𝑅𝑎𝑡𝑒𝐷𝑖 = 𝐺𝐶𝑜𝑠𝑡𝑖/𝑈𝑠𝑒𝑅𝑎𝑡𝑒𝐷𝑖 (3)

where 𝑈𝑠𝑒𝑅𝑎𝑡𝑒𝐷𝑖 is the time window between the usage of the intermediate dataset 𝑖. When the 𝐺𝐶𝑜𝑠𝑡𝑖

is used for the regeneration cost of an intermediate dataset, it is interpreted as

 𝐺𝐶𝑜𝑠𝑡𝑖 = (𝑇𝑖 + ∑ 𝑇𝑘
𝑞
𝑘=1) ∗ 𝐶𝑜𝑠𝑡𝐶 + ∑ 𝐷𝑠𝑖𝑧𝑒𝑟

∗ 𝐶𝑜𝑠𝑡𝑆𝑢
𝑟 (4)

Where

• 𝑇𝑖 is the 𝑖𝑡ℎ transition time cost.

• 𝑞 is the number of detected intermediate datasets.

• ∑ 𝑇𝑘
𝑞
𝑘=1 represents the total cost of regenerating intermediate datasets,

the predecessors of the 𝑖𝑡ℎ dataset.

• 𝐶𝑜𝑠𝑡𝐶 is the price for computing cost.

• 𝑢 is the number of stored intermediate dataset.

• ∑ 𝐷𝑠𝑖𝑧𝑒𝑟
∗ 𝐶𝑜𝑠𝑡𝑆𝑢

𝑟=1 represents the total storage cost of the predecessors

of the 𝑖𝑡ℎ dataset.

Considering (1), (2) and (3), the total cost of a DIA can be represented with (5)

 𝐶𝑜𝑠𝑡𝐷𝐼𝐴 = {
∫ ∑ (𝐷𝑠𝑖

∗ 𝐶𝑜𝑠𝑡𝑆) ∗ 𝑑𝑡
𝑛
𝑖=1

𝑡𝑛

𝑡0

∫ ∑ (𝐺𝐶𝑜𝑠𝑡𝑖/𝑈𝑠𝑒𝑅𝑎𝑡𝑒𝐷𝑖) ∗ 𝑑𝑡
𝑛
𝑖=1

𝑡𝑛

𝑡0

 (5)

Eq. (5) can be further applied as an objective function of data processing optimization work. The cost of

deletion and regeneration of intermediate datasets are adjusted with the output of (5) in order to achieve a

minimal cost in terms of money or time.

The APNCM provides an ideal candidate of fitness function for the evolution procedure of GA part in the

proposed GA enhanced ADFMS. The route extracted from the bitstream like chromosome mentioned in

II.A can be further evaluated with the APNCM. The result of evaluation provides a feedback to the

evolution process of GA enhanced ADFMS. Such feedback is used to guide the direction of evolution

progress efficiently. The detail of proposed GA enhanced solution is presented in next section.

3. Genetic Algorithms enhanced Automatic Data Flow Management Solution

The GA enhanced Automatic Data Flow Management Solution are developed with GA and APNCM. A

novel GA bitstream like chromosome is created to represent the route of target date processing task and

the setting of each involved nodes simultaneously. The APNCM is employed to construct fitness function

of evolution process. The four core parameters of our solution are introduced first.

3.1 Core components of Augmented Petri Nets Cost Model

There are four components are employed from original Petri Net model to create data processing route.

• Transition - The transition is a node where the dataset is processed. In a transition node the

computation task is performed on dataset.

• Place - The place is a node where the data is stored. In a place node some in/output dataset(s)

of different transmission is(are) stored.

• Arc - The Arc represents the direction of data flow. It is used to connect two nodes (transition

or place node) in the Petri Net.

• Settings of nodes - The settings of node are profiles information of the nodes. The format of

settings are numerical values.

If the detail information of a data processing work flow is given, with the above core components, a

complete Petri Net can be constructed. In order to represent a data processing route in a cloud network we

developed a GA bitstream like chromosome structure.

3.2 Chromosome Structure

In this section we introduce the chromosome structure of the GA enhanced ADFMS. In order to maintain

and refine the detail construction information of a data processing route which is presented with a Petri

Net, we employ a GA bitstream like structure to code corresponding information. In the GA bitstream like

chromosome structure, each component of a Petri Net is assigned with a unique genetic code which is

used to represent its appearance on a Petri Net. Figure 2 shows an example of chromosome structure

employed in our approach. This chromosome contains two functionality parts. The former part is

designed to represent the topology of Petri Net; the later part is designed to maintain the settings of each

parameter which are constant values. The detail of each part is discussed in following sections.

Figure 2. An example of gene.

• Transition Segment

Transition node in Petri Net model is a procedure which takes data input(s) and generates data output(s).

In this paper we propose a binary fragment to represent a transition node. A transition fragment is

identified by the number of its input(s)/output(s) and its connected space nodes. The number of input(s)

and output(s) are represented with the same number of bits. The fragments in Figure 3 shows an example

representing a transition that has up to four input(s) and four output(s). The first bitstream (4 bits) of the

fragments represents the input(s) part of transition. An enabled connection to a place is represented with

‘1’. If there is no connection is established, the corresponding bit is set to ‘0’. The last 4 bits represents

the output(s) part of transition. And the connection is set with same way as input(s) part. The transition

segment of chromosome consists of a number of such single transition binary fragments.

Figure 3. An example of Transition binary fragment.

1 1 0 1 0 1 0 0 C

1

C

2

C

3

C

4

C

5

C

6

C

7

C

8

1 0 1 0 1 0 1 0

… … … … … … …

• Place Segment

Place node in Petri Net model is a platform where the input and out data(s) are stored. In our paper we

consider place as an intermediate exchange platform (between two transitions). The appearance of a place

depends on its neighbor transitions (a neighbor transition takes input from or sends output to such place).

It is worth noting that the starting/ending place is a special case which only has one type of transition

(only input/output) node involved.

Based on the size of cloud network, a place node is indexed with an ID number. The ID number of a place

node is the allocation connector of transition nodes. Two transition nodes sharing same place node (same

ID number) can also be allocated in the host cloud network with the ID number of their connector place

node. The whole topology of data processing route can be further constructed with the location

information provided by ID numbers. For example, if a transition node has an input from place node A

and an output to place node B then we can locate the transition node between place node A and B. The ID

numbers of place nodes are further coded into a binary fragment and put on the later part (just after

transition segment) of the bitstream like chromosome. The number of bits needed in each binary fragment

is depended on the size of target cloud. Figure 4 shows an example of place segment which contains two

place binary fragments for two place nodes. The former one has four bits to represent a place node index

with ID number 13 (8 + 4 + 0 + 1); the later four bits fragment represents a place node with ID number 4

(0 + 4 + 0 + 0).

Figure 4. An example of Place binary fragment.

• Arcs Segment

Arc in Petri net model is a notation representing the movement direction of a dataset in the cloud network.

It is designed to provide a connection between transition node and place node in the same cloud network.

In this paper we use the sequence of transition binary fragments and ID number of place node to represent

the direction of a dataset movement. A transition fragment appears on the position which is located closer

to the first position on the transition segment is always trigged before the later one. That means the arcs

function can be represented with such sequence mechanism. As a result, the arc acutely becomes a virtual

component of our solution and does not need to appear on the chromosome physically. The connection

functionality is achieved by using the information in the transition segment and the place segment

corporately.

• Arguments segment

In an Augmented Petri Net Cost Model (APNCM), the efficiency of a could computing platform is

considered with two cost contribution factors, the computation cost and the storage cost. The computation

cost depends on the computing time and the rent needed to finish a target task. The storage cost is based

the leasing time and the price of the cloud storage to finish a target data processing job.

1 1 0 1 0 1 0 0

In the proposed GA enhanced ADFMS, we take four cost sensitive factors into the account of the total

cost. The four factors of a transition node on a target cloud network are listed below:

(1) the computing times

The computing time is the CPU time needed to finish a given target computation job. If it is set for

route detection purpose, its value depends on the complexity of the given task. If it is set for

optimization purpose, the value of computing time depends on the hardware specification of target

computation platform. It is also can be defined by user as a configuration parameter.

(2) the unit price of computation platform

The unit price of computation platform is the price needed for leasing the target computation platform.

Its value is can be defined by user as a configuration parameter of target cloud network.

(3) the unit price of cloud storage

This unit price is the cost paid for the incurred intermediate cloud storage. Its value is also can be

defined by user as a configuration parameter of target cloud network.

(4) the intermediate data size

The intermediate data size is the size of dataset which is generated with transition nodes on a cloud

network. Its value depends on the task which is under processing. If it is set for route detection

purpose, the value of intermediate data size depends on requirement of data processing task. If it is set

for optimization purpose, its value depends on the bandwidth of target computation platform. It is also

can be defined by user as a configuration parameter of target cloud network.

Figure 5. An example of Arguments segment.

Since these four factors are constant values, following our previous work [21], instead of binary fragment

we create a GEP [22] style constant segment to represent the corresponding settings of transition nodes.

The arguments segment of chromosome consists of a number of constant fragments. A fragment consists

of eleven constant elements. First three constant elements represent one setting of the first three factors

mentioned above, the computing time, the unit price of computation platform, and the unit price of cloud

storage respectively. The last eight elements represent the settings of the corresponding intermediate

datasets of a transition node. In Figure 5, an arguments segment which contains one transition node is

provided. The T1 part contains the first three factors. The T2 part contains eight constant values for

intermediate datasets. It is worth noting that only transition node has its corresponding fragment in the

arguments segment. The number of fragments in arguments segment is same as the number of transition

nodes contained in the whole chromosome.

T1 T2

C

1

C

2

C

3

C

4

C

5

C

6

C

7

C

8

C

2

C

3

C

4

Figure 6. Full chromosome structure.

A full chromosome of our solution is provided in Figure 6. The transition segment, the places segment

and the arguments segment are linked sequentially. The genetic operator of ordinary GA, crossover and

mutation are applied to provide variation on the transition and place segment of chromosome. The

constant segment is operated with the classical GEP constant operator.

Input: A chromosome;

Output: An image of route of data processing task in a cloud network;

1: FOR x=1 TO number of transitions DO

2: Get a transition fragment transition_x;

2: Check sender(s) Segment information of the transition_x;

3: Set sender Place(s) list;

4: Check receiver(s) Segment information of transition_x;

5: Set receiver Place(s) list;

6: Get the constant fragment of transition_x to extract the constant value(s) to fill sender

place(s) list and receiver place(s) list;

7: Build node transition_x on petri net model;

8: x++;

9: ENDFOR

10: Return a complete petri net;

Algorithm 1: Decoding process implementation.

Arguments segment

1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0

Transition segment

0 1 0 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0

Place segment

C

1

C

2

C

3

C

4

C

5

C

6

C

7

C

8

C

1

C

2

C

3

C

4

3.3 Decoding Mechanism

In ADFMS we use GA bitstream like chromosome to maintain an image of route of data processing task

in a cloud network. This image contains the topology of a solution route and its corresponding constant

argument settings. In order to generate such image, a decoding mechanism which extracts the information

from chromosome to build a solution of a given data processing task in cloud network was developed.

With such mechanism a complete Petri Net model which contains topology and corresponding constant

argument setting of every node of the solution route can be extracted from the chromosome. The detail

algorithm of decoding process is presented in Algorithm 1.

3.4 Fitness Function Design

The fitness function of GA enhanced ADFMS is based on the Augmented Petri Nets Cost Model.

It uses the same calculation mechanism to evaluate the performance of a solution provided by GA part of

ADFMS. The performance evaluation can be delivered with different target objectives. The route

detection oriented fitness function is designed to provide a feasible path of target data processing task.

The cost oriented fitness function gives user the cheapest solution (in terms of money or time spent on

data processing task) by balancing the cost on computing and generation of the intermediate dataset.

For route detection purpose:

𝐹𝑖𝑡𝑛𝑒𝑒𝑠𝑉𝑎𝑙𝑢𝑒 =

∑ ({
𝑡ℎ𝑒 𝑛𝑜. 𝑜𝑓 𝑓𝑖𝑡𝑡𝑒𝑑 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠

𝑡ℎ𝑒 𝑛𝑜. 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠⁄ , 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑤𝑜𝑟𝑘 𝑠𝑒𝑢𝑞𝑒𝑛𝑐𝑒

0, 𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑒 𝑛𝑜𝑑𝑒

) 𝑛
𝑖=1

 (6)

For optimization purpose:

𝐹𝑖𝑡𝑛𝑒𝑒𝑠𝑉𝑎𝑙𝑢𝑒𝑡𝑖𝑚𝑒 = ∑ 𝑇𝑐𝑜𝑚𝑝𝑖
𝑛
𝑖=0 (7)

𝐹𝑖𝑡𝑛𝑒𝑒𝑠𝑉𝑎𝑙𝑢𝑒𝑐𝑜𝑠𝑡 = {
∫ ∑ (𝐷𝑠𝑖

∗ 𝐶𝑜𝑠𝑡𝑆) ∗ 𝑑𝑡
𝑛
𝑖=1

𝑡𝑛

𝑡0

∫ ∑ (𝐺𝐶𝑜𝑠𝑡𝑖/𝑈𝑠𝑒𝑅𝑎𝑡𝑒𝐷𝑖) ∗ 𝑑𝑡
𝑛
𝑖=1

𝑡𝑛

𝑡0

 (8)

4 Performance Evaluation

To evaluate the performance of the GA enhanced Automatic Data Flow Management Solution, a

number of experiments were designed to validate its chromosome structure for the presentation of Petri

Net model and its optimization performance on a data intensive application case.

4.1 Dataset

 A real data intensive task biomedical application [23] [24] [25] is employed as our benchmark input

task. The detail of input task is provided in Table 1.

Table 1. A data intensive task information.

Task id Dataset size(GBs) Computing time(hours) Task description

1 78 1.9 Image Processing

2 60 1.2 Feature Generation

3 30 0.7 Feature Selection and Extraction

4 30 0.6

5 0.1 0.8 Classifier Construction and

prediction evaluation 6 5 0.5

7 5 0.5

8 0.4 0.1 Cost Controlling feedback

A Petri Net presentation of input task in given in Figure 7. It is also a target route which is selected to

validate the proposed solution. In Figure 7, the 𝑃𝐸𝑥 is the 𝑥𝑡ℎ transition node. The 𝑂𝑥 represents 𝑥𝑡ℎ

place node. This data processing task is investigated with two aspects, route detection and optimization

for cost related problem.

Figure 7. The target Petri Net example.

4.2 Parameter Settings

The settings of GA evolution process are listed in Table 2. Due to the GEP style constant operation is

involved, the parameters were set with the classical values used for a traditional GEP.

Table 2: GA evolution parameter settings.

Parameters Values

Population size 1000

Number of

Generation

20000

Genetic

modifications

Cross rate 30%

Mutation 0.44%

Constant Mutation rate 10%

Constant High boundary -1000

Low boundary +1000

Since the purpose of evaluation experiment is the verification of concept, we selected a PC with an

ordinary specification to perform our experiment. The specification of computing platform is listed in

Table 3.

Table 3: The computing platform.

CPU Model Intel core i7-4700mq

No. of Cores 4

No. of Threads 8

Frequency 2.4G

Memory 8 GB

Operation system Ubuntu 16.04 LTS

4.3 Route Detection Analysis

In order to evaluate the performance of the proposed GA bitstream like chromosome for route detection.

Ten executions of the GA enhanced ADFMS were conducted with input data processing task. With the

data size, the sequence of task, the computing time of task and the route detection fitness function, the GA

enhanced ADFMS generated a chromosome which contains the route information. Since the size of

chromosome too big to be demonstrated, only part of the best chromosome that we found in evolution

process is listed in Figure 8.

0 0 1 0 0 0 1 1

0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 0 0

Place Fragment 1

0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0

Place Fragment 2 Place Fragment 3

Transition fragment 1 Transition fragment 3Transition fragment 2

`

 Figure 8. Part of transition segment and place segment

In Figure 8, the first three transition fragments and their corresponding place fragment are provided.

Based on the representation mechanism of GA enhanced ADFMS, we can generate a part of Petri Net

from the above chromosome segment. The result is shown in Figure 9. 𝑇𝑥 represent Transition node 𝑥.

𝑃𝑥 is Place node 𝑥. 𝑃0 is the start Place node.

P0 T1 P1 P2T2 T3

P3

P4

Figure 9. Part of Petri Net.

As shown in Figure 9, an identical part of the original Petri Net shown in Figure 8 can be extracted from

the segment of chromosome generated with the GA enhanced ADFMS. It is worth noting that the

constant segment was set to default value (integer value 1). The reason is that the evolution procedure was

set for route detection purpose.

4.4 Optimization Results

In order to evaluate the performance of the proposed the GA enhanced ADFMS for optimization purpose,

we follow the work [12] to investigate the intermediate data reuse optimization problem in cloud network.

Three scenarios, keep all intermediate dataset, regenerate all intermediate dataset and dynamic regenerate

intermediate dataset, were considered. Ten executions of ADFMS were conducted for the three scenarios.

The minimalization of the cost caused by intermediate dataset was set as fitness function for the scenario

dynamic regenerate intermediate dataset. The best results are listed in Table 4.

Table 4. Optimization results of ADFMS.

Time

(executions)

Keep all cost

($)

Regenerate all

cost ($)

Optimization

applied

cost ($)

1 0.875838889 0.875839 0.875838889

2 1.163636111 1.631839 0.892508897

3 1.619391667 2.387839 1.101186333

4 2.243105556 3.143839 1.480449667

5 3.034777778 3.899839 1.972605556

6 3.994408333 4.655839 2.476533167

7 5.121997222 5.411839 3.073198333

8 6.417544444 6.167839 3.669864139

9 7.88105 6.923839 3.704253806

10 9.512513889 7.679839 3.916717833

The optimization performance of GA enhanced ADFMS was also compared with the Automatic Data

Reuse Model with Petri Net, ADRMPN [11]. A time unit (a period which is longer than a complete single

execution of given data intensive application task) was selected as check point to observe the optimization

performance. On each check point the speed up ratio of two algorithms are compared. As shown in Figure

10, the GA enhanced ADFMS provides similar performance as the Automatic Data Reuse Model with

Petri Net. It is worth noting that with the elapsed time the speed up ratio are increasing. That means the

more data and the longer computing time requests on the cloud network the better optimization

performance can be expected.

5. Conclusion

In this paper we propose a novel Genetic Algorithm enhanced Automatic Data Flow Management

solution for accelerating data intensive applications in cloud network. It provides an automatic route

detection solution for complex data intensive application. It also can be used to balance the cost generated

by the change of target processing route and the cost generated by the deletion, preservation and

regeneration of intermediate data in order to optimize the performance of data processing task on the

cloud computing platform. A near ideal data flow management solution can be generated with our

proposed work.

3 4 5 6 7 8 9 10

0

20

40

60

80

100

120

140

160

180

200

220

S
p
e
e
d
 u

p
 (

%
)

Check Time(unit)

 ADFMS

 ADRMPN

Figure 10. Optimization performance comparison.

Since the combination of GA and GEP chromosome structure is newly introduced in this work, the

genetic operation efficiency of the proposed GA system is not well tuned. The application of genetic

operation was based on classical GA or GEP implementation cases. Its performance can still be further

improved to generate a faster and more accurate result at the convergence stage of evolution process.

 Acknowledgment

This research is partially supported by the National Basic Research Program (973) of China under grant

2014CB340404 and the Science and Technology Commission of Shanghai Municipality under grant

16JC1401300.

References

[1] J. Cao, D. P. Spooner, S. A. Jarvis, and G. R. Nudd, “Grid Load Balancing Using Intelligent Agents,” Future

Generation Computer Systems, vol. 21, Issue 1 ,January 2005.

[2] C.A. Petri, “Kommunikation mit Automaten,” Ph.D. thesis, University of Bonn, 1962.

[3] C. Jie, D. Zhu, and B. Zhu. "Improved algorithms for intermediate dataset storage in a cloud-based dataflow."

Theoretical Computer Science 657 (2017): 48-53.

[4] E. Deel man, G. Singh, M. Livny, B. Berriman, and J. Good, “The cost of doing science on the cloud: the

montage example,” in Proceedings of the2008 ACM/IEEE conference on Supercomputing, 2008, pp. 1–12.

[5] D. Yuan, Y. Yang, X. Liu, G. Zhang, and J. Chen, “A data dependency based strategy for intermediate data

storage in scientific cloud workflow systems,” CONCURRENCY AND COMPUTATION: PRACTICE AND

EXPERIENCE, vol. 24, pp. 956–976, 2012.

[6] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The cost of doing science on the cloud: the

montage example,” in Proceedings of the 2008 ACM/IEEE conference on Supercomputing, 2008, pp. 1–12.

[7] J.L. Peterson, “Petri Nets,” Computing Surveys 9(3), 1977, pp. 221–252.

[8] M. Tadao. "Petri nets: Properties, analysis and applications." Proceedings of the IEEE 77.4 (1989): 541-580.

[9] M. Gonzalo. "Timed Petri net modeling and optimization with heuristic search for flexible manufacturing

workstations." Emerging Technologies and Factory Automation, 2003. Proceedings. ETFA'03. IEEE

Conference. Vol. 1. IEEE, 2003.

[10] P. A. Abdulla, R. Mayr, “Petri Nets with Time and Cost (Tutorial),” Proceedings 14th International Workshop

on Verification of Infinite-State Systems, Paris, France, 27th August 2012, pp. 9–24.

[11] L. Han, Z. Xie, and B. Richard, "Automatic data reuse for accelerating data intensive applications in the Cloud."

Internet Technology and Secured Transactions (ICITST), 2013 8th International Conference for. IEEE, 2013.

[12] Z. Xie, L. Han, and B. Richard, "Augmented Petri Net Cost Model for Optimisation of Large Bioinformatics

Workflows Using Cloud." Modelling Symposium (EMS), 2013 European. IEEE, 2013.

[13] JH. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to

Biology, Control, and Artificial Intelligence, U Michigan Press, 1975.

[14] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming,

Genetic Algorithms, 1996.

[15] M. Holger. "Evolving Petri nets with a genetic algorithm." Genetic and Evolutionary Computation Conference.

Springer, Berlin, Heidelberg, 2003.

[16] J. R. Koza, “Genetic Programming as a Means for Programming Computers by Natural Selection”, Stat.

Comput., vol. 4, no. 2, pp. 87–112, 1994.

[17] M. Gonzalo, et al. "Petri nets and genetic algorithms for complex manufacturing systems scheduling."

International Journal of Production Research 50.3 (2012): 791-803.

[18] N. Odrey, Y. Ma, “A Multi-Level Multi-Layer Petri Net Based Approach for Manufacturing Systems Control”.

Proceedings of the 11th FAIM International Conference, July 16-18, 2001. Dublin, Ireland.

[19] D. Yuan, Y. Yang, X. Liu, G. Zhang, and J. Chen, “A data dependency based strategy for intermediate data

storage in scientific cloud workflow systems,” CONCURRENCY AND COMPUTATION: PRACTICE AND

EXPERIENCE, vol. 24, pp. 956–976, 2012.

[20] Simon S. Woo, and M. Jelena, "Optimal application allocation on multiple public clouds." Computer Networks

68 (2014): 138-148.

[21] Z. Huang, M. Li, C. Chousidis, A. Mousavi, & C. Jiang, “Schema Theory Based Data Engineering in Gene

Expression Programming for Big Data Analytics,” IEEE Transactions on Evolutionary Computation.

DOI:10.1109/TEVC.2017.2771445, 2017.

[22] C. Ferreira, “Gene Expression Programming: a New Adaptive Algorithm for Solving Problems”, Complex

Systems, vol.13, no.2, pp.22, 2001.

[23] L. Han, J. I. van Hemert, and R. Baldock, “Automatically identifying and annotating mouse embryo gene

expression patterns,” Bioinformatics, vol. 27, no. 8, pp. 1101–1107, 2011.

[24] L. Han and H.-Y. Ong, “Accelerating biomedical data-intensive applications using mapreduce,” in 2012

ACM/IEEE 13th International Conference on Grid Computing (GRID), 2012, pp. 49 – 57.

[25] Z. Xie, L. Han, and R. Baldock, “Enhancing parallelism of data-intensive bioinformatics applications,” in

Proceedings of 8th EUROSIM Congress on Modelling and Simulation, IEEE, 2013, pp. 519–524.

