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Title: An Analytical Solution for the Run-out of Submarine Debris flows 1 

 2 

Abstract 3 

Submarine debris flows have a significant impact on offshore and coastal facilities. The 4 

unique characteristics of submarine debris flows involve large mass movements and long 5 

travel distances over very gentle slopes. To improve our insight and knowledge of the basic 6 

mechanism behind submarine debris flows, an analytical model was derived for the mobility of 7 

submarine debris flows. This model takes into account the mass change of debris flows 8 

induced by deposition, stagnation pressure and the topography of the depositional area. One 9 

case study on the Palos Verdes debris flow proves its ability to predict the run-out distance of 10 

a submarine debris flow to a reasonable level of accuracy. On the gentle slopes, the 11 

submarine debris flow progressively loses mass due to deposition, which in turn influence the 12 

flow velocity. In addition, the results show that the slope angle and spreading angle of the 13 

debris depositional zone play important roles in the sliding process. 14 
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𝜃:                the direction of seismic acceleration 1 

b0:              the initial width of debris flow  2 

λ:                the spreading angle of debris deposition zone 3 

β2:              the slope angle of debris deposition zone 4 

L:                the length of moving block 5 

𝜎:                the density of particles 6 

D:                the diameter of particles 7 

 8 

 9 

1. Introduction 10 

Submarine debris flows are considered to be one of the most serious geohazards in offshore 11 

and coastal areas. Due to the large affected area, even small-scale debris flows in coastal 12 

areas can pose severe danger. Coastal infrastructure and populations, and offshore facilities 13 

related to resource development and transport facilities, such as pipelines and communication 14 

cables, are at risk from submarine debris flows, and must be designed to withstand their 15 

impact. An example of submarine cable damage has been found in the Grand Banks debris 16 

flow of 1929 where the debris flow and resulting turbidity current broke a series of submarine 17 

cables nearly 600 km away from the beginning of the submarine debris flow (Hampton et al., 18 

1996; Mason et al., 2006). Another case of infrastructure destruction occurred when 19 

Hurricane Camille hit the Mississippi delta in 1969, causing a debris flow that damaged 20 

several offshore drilling platforms (Locat and Lee, 2002). 21 

 22 

Submarine debris flows are difficult to observe directly, and so it is difficult to obtain an insight 23 

into their behaviour. Many lab experiments have been carried out as small-scale analogues to 24 

investigate the roles of slurry properties and water content in debris flow dynamics and 25 

depositional structures (Mohrig et al., 1999; Marr et al., 2001; Breien et al., 2007; Boylan et al., 26 

2010; Yin and Rui, 2017; Yin et al., 2018). However, these experiments are usually expensive, 27 

and the results are not easily transferable to large-scale conditions. To avoid these issues, a 28 
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considerable amount of numerical work has been done to use computer models to simulate 1 

the failure or sliding of submarine debris flows (Imran et al., 2001; Marr et al., 2001; Gauer et 2 

al., 2006; Zhu and Randolph, 2009; Steffen et al., 2008; Pudasaini, 2014; Soundararajan, 3 

2015; Kafle et al. 2016). One early example is the Norem–Irgens–Schieldrop (NIS) model 4 

proposed by Norem et al. (1990). The original purpose of the NIS model was to analyse snow 5 

avalanches, however through analysis of the results it has been shown that the model is also 6 

appropriate for use with submarine debris flows. Later Imran et al. (2001) proposed the BING 7 

model, which is developed by incorporation of the Bingham, Herschel-Bulkley and Bilinear 8 

rheologies. In the BING model the debris flow motion is considered as two coupled layers that 9 

refer to a plug layer and a shear layer. Subsequent research (De Blasio et al., 2005) extended 10 

the BING model to be able to calculate run-out behaviour with hydroplaning and shear-wetting. 11 

Pudasaini (2012) presented a generalized two-phase debris flow model, which can 12 

adequately simulate the complicated dynamics of submarine debris flows and related 13 

phenomena. Based on this mode, Kattel et al. (2016) simulated a glacial lake outburst flood, 14 

and showed that this model can be applied to simulate particle-fluid flow in conduits that is 15 

important for decommissioning of the endangered reservoirs. In addition, Pudasaini (2014) 16 

and Kafle et al. (2016) simulated two-phase debris impacting a reservoir, modeling the 17 

landslide-induced tsunami, flow transformation, turbidity currents and sediment transports in 18 

bathymetric slopes. On the other hand, Mergili et al. (2017, 2018)  developed an open source, 19 

efficient and high-resolution computational tool (r.avaflow) for routing mass flows from a 20 

release area down to a deposition. This innovative tool showed many advantages over other 21 

existing tools, such as (i) employment of a two-phase mixture model (Pudasaini, 2012); (ii) 22 

capability of modelling complex process chains/interactions; (iii) modelling of multiple release 23 

masses and/or hydrographs.   24 

 25 

Although numerical models can offer a more accurate and detailed method of modelling flow 26 

dynamics, there are also some limitations to these numerical techniques, such as the amount 27 

of computing power needed and possible calculation errors. Other studies include empirical, 28 

semi-empirical and analytical modelling based on field observations and experimental data. 29 

Hampton et al. (1996) proposed that submarine debris flows can be described using rigid 30 
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body or continuum models. De Blasio et al. (2006) focused on the extraordinary mobility of 1 

submarine debris flows, and concluded that the run-out ratios of vertical fall height to 2 

horizontal travel distance may reach values as low as 0.05–0.01. Legros (2002) proposed 3 

another closed solution for the mobility of long run-out debris flows, which indicates that the 4 

debris flow spreading is essentially controlled by the volume, not the fall height. Boukpeti et al. 5 

(2012) presented analytical models for different rheological models of the debris flow material, 6 

but no solution was given and the run-out distance was not discussed. In addition, Pudasaini 7 

and Miller (2013) presented a mass or volume dependent model for hypermobility of huge 8 

landslides and avalanches. The model can be used to estimate the overrun area and volume 9 

in terms of known mobility data. 10 

 11 

Generally, analytical solutions for submarine debris flows require simplification of some 12 

conditions by making assumptions on flow dynamics, since it is not possible to solve 13 

complicated questions involving uncertain characteristics of soil/rock sediments, the 14 

geometrical complexity of the sea bed, the interaction between a debris flow and the ambient 15 

water, and the complicated mechanism behind sliding. However, these investigations are 16 

widely considered to be important because they help to clarify the fundamental characteristics 17 

of the phenomenon, and improve our insight and knowledge of the basic mechanism behind 18 

submarine debris flows (Tinti and Bortolucci, 2000). This paper discusses and develops an 19 

analytical approach to the run-out distance of submarine debris flows. This approach has 20 

taken into account the impacts of mass change, stagnation pressure and depositional shape. 21 

 22 

2. An analytical model for the submarine debris flow dynamics 23 

Submarine debris flows describe the downward movement of a disturbed mass, after shear 24 

failure on the sliding surfaces. The disturbed mass travels down the slope in different 25 

manners according to the material attributes, topography and boundary conditions. 26 

Accordingly, the mobility behaviour of submarine debris flows can be divided into two 27 

categories. On a steep slope, the component of gravity in the downslope direction is usually 28 

larger than the friction between the moving mass and the base of the slope, and the mass of 29 

the whole submarine debris flow body remains constant without leaving deposits, as shown in 30 
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Figure 1. Similar assumptions could be found in the analytical model by Hürlimann et al. 1 

(2000). On a gentle slope, due to the basal friction being higher than the component of gravity 2 

force downslope, the material at the bottom of the displaced mass decelerates quickly until 3 

completely stopped, but the upper part of the mass still moves downwards due to inertia. 4 

Such depositional behaviours have also been simulated and shown with analytical models by 5 

Legros (2002), Pudasaini and Kroener (2008), and Pudasaini (2011). This process indicates 6 

deposition at the base of the debris flow, which thus progressively runs out of all of the 7 

material. The mechanisms for submarine debris flows on steep and gentle slopes are quite 8 

different, and hence two analytical models are needed for these two different cases. 9 

 10 

 11 

Figure 1. Evolution of a submarine debris flow. 12 

 13 

2.1 Constant-mass model 14 

In the first model, the height and volume of debris flow are assumed to remain constant 15 

through the flow process. Hence, this simplified model is called constant-mass model. Once 16 

failure occurs, it is assumed that the debris flow comprises a homogenous mass which moves 17 

over a fixed slope. On a steep slope, when the displaced mass has sufficient strength, the 18 

submarine debris flow may avoid fragmentation and remain as one single body. Considering 19 

the simplified process of a submarine debris flow as represented in Figure 2, several 20 

assumptions are made: (a) the debris flow is considered to have a constant mass, and (b) the 21 

height, length and width of the debris flow remain constant during the flow process (means it 22 

does not deposit). 23 

 24 

 25 

Figure 2. Schematic of a submarine debris flow (mass conservation) where Xmax = maximum 26 

distance travelled. 27 

 28 

The driving forces acting on the debris flow are proportional to the gravitational acceleration 29 

component parallel to the slope bed. Opposing these forces, as shown in Figure 2, are the 30 
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friction with the slope bed and the drag force due to the surrounding fluid, caused by the 1 

stagnation pressure (De Blasio, et.al, 2004). From Bernoulli’s principle, the stagnation 2 

pressure is given by: 3 

P =
1

2
𝜌𝑤𝑣2,                                                  (1) 4 

where 𝜌𝑤  is the water density and  𝑣 is the flow velocity of submarine debris. The friction 5 

between the debris flow and the bed surface is assumed to follow classical Coulomb law, and 6 

therefore can be presented as: 7 

T = F′ ∙ tan α ,                          (2) 8 

where T is the friction force between the debris flow and the bed surface, F′ is the effective 9 

static pressure due the overburden with consideration of buoyancy, and α is the friction angle, 10 

considering the effects of water as a fluidized medium. (Pudasaini and Miller, 2013) The 11 

effective static pressure, F′ can be expressed as: 12 

F′ = (ρf − ρw)gV cos β,                     (3) 13 

where ρf is the density of the sliding material, h is its height, and β is the slope angle, V is the 14 

volume of the moving block, and V≈b∙ h ∙ l (width, height and length of moving block). The 15 

gravity component of the force in the downslope direction with consideration of buoyancy is: 16 

         Gx
′ = (ρf − ρw) gVsin β.                                               (4) 17 

 18 

Accordingly, based on the conservation of energy, the debris flow mechanics can be 19 

approximated by the following equation: 20 

dE = F𝑗 ∙ dx,                                                             (5) 21 

where F𝑗 is the net driving force given by (1), (2) and (4), x is the flow displacement, and E is 22 

the kinetic energy.  23 

F𝑗 = Gx
′ − T − P ∙ hb,                                                (6) 24 

𝐸 =
1

2
m𝑣2.                                                           (7) 25 

Hence, for constant m, equation (5) can be expanded as:  26 

m𝑣
d𝑣

dx
= m′g sin β − m′gcosβ tanα −

1

2
ρw𝑣2hb,                              (8) 27 

where the mass of the sliding material, m = ρfblh, m′ =(ρf − ρw)blh. This can be simplified to: 28 

𝑣
d𝑣

dx
= g

ρf−ρw

ρf
sin β −

ρf−ρw

ρf
gcosβ tanα −

1

2l

ρw

ρf
𝑣2.                            (9) 29 
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 1 

Equation (9) can be expressed in the form: 2 

d(v2)

dx
= A − B𝑣2,                                                         (10) 3 

where: 4 

A = 2
ρf−ρw

ρf
gsinβ − 2

ρf−ρw

ρf
gcosβ tanα，                                  (11) 5 

B=
ρw

ρfl
.                                                                    (12) 6 

 7 

This simplified constant-mass model is also mentioned by Hürlimann et al. (2000). The 8 

difference is that Hürlimann’s model is derived based on Newton's second law. In some cases 9 

where the submarine debris flows are induced by the earthquake, the effect of the seismic 10 

load on the moving mass needs to be included. This seismic load can be simplified as the 11 

product of mass times constant seismic acceleration, 𝑢̈𝑠𝑒𝑖𝑠𝑚𝑖𝑐 , in the direction of 𝜃 . This 12 

seismic load is applied to the moving mass, as shown in Figure 2. Hence A can be expressed 13 

as: 14 

A = 2
ρf−ρw

ρf
gsinβ + 2𝑢̈𝑠𝑒𝑖𝑠𝑚𝑖𝑐 cos(𝜃 − β) − 2

ρf−ρw

ρf
gcosβ tanα − 2𝑢̈𝑠𝑒𝑖𝑠𝑚𝑖𝑐 sin(𝜃 − β)  tanα.           15 

(13) 16 

 17 

The flow displacement is obtained by integrating Equation (10) between X0  and Xi  which 18 

correspond to the velocities 𝑣0 and 𝑣i, respectively: 19 

−
1

B
ln(A − B𝑣2) = Xi − X0        |𝑣0

𝑣𝑖                                             (14) 20 

 21 

Accordingly, if the initial flow velocity is known, Equation (15) can be used to predict the value 22 

of the velocity after a certain flow displacement. 23 

 24 

2.2 Changing-mass model 25 

During the run-out process the debris flow mass may change, due to deposition of material or 26 

accretion of material from the bed, which is the case in general during erosion and deposition 27 

process (Pudasaini and Fischer, 2016). Cannon and Savage (1988), Gassen and Cruden, 28 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/newton-second-law
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(1989), and Voight and Sousa (1994) showed that the impact of progressive changes to mass 1 

due to deposition will increase the run-out distance of debris flow. Therefore, we may wonder 2 

whether a debris flow that progressively loses mass due to deposition might not maintain a 3 

higher velocity and travel further than a debris flow that moves and stops as a single block 4 

(Legros, 2002; Pudasaini and Fischer 2016). According to this assumption, as presented in 5 

Figure 3, mass loss occurs at some point where the debris flow starts to deposit material, and 6 

only the upper part of debris proceed in the flow regime. Hence, a deposition model, which 7 

could be used to simulate the erosion and spreading behaviour of submarine debris flow, 8 

needs to be introduced. Pudasaini and Fischer (2016) indicated that the deposition models 9 

can be divided into two categories: empirical and mechanical ones. Empirical model is always 10 

calibrated by specific case and hence become case dependent. Process-based mechanical 11 

models are based on the mass and momentum exchanges between the slope bed and sliding 12 

debris, and the magnitude of erosion rate is shows a proportional relationship with the shear 13 

stress difference between entraining and resisting stresses.(Iverson, 2012; Issler, 2014). 14 

Within this framework, Legros (2002) proposed a deposition model, in which the thickness of 15 

the upper part of debris which still proceed in the flow regime was expressed as, 16 

h =
𝑓𝑐𝜎𝐷2𝑐𝑜𝑠𝛼

ρf𝑔
(

dv

𝑑𝑦
)

2

 ,                                                       (15) 17 

where 𝜎 is the density of particles, D is the diameter, 𝑓𝑐 is a positive function of the particle 18 

concentration.  19 

 20 

Assuming that dv/dy = v/ℎ𝑠, where ℎ𝑠 is the typical thickness of the shearing zone, Legros 21 

(2002) simplified Equation (15) into 22 

h =
𝑓𝑐𝜎𝐷2𝑐𝑜𝑠𝛼

ρf𝑔ℎ𝑠
2 𝑣2 = B1𝑣2 ,                                                      (16) 23 

where B1  is the material constant, which is dependent on granular concentration, grain 24 

diameter, density of particles and dispersive pressure. All the parameters in Equation 16 is 25 

assumed independent of v. On the other hand, equation (16) has also been derived 26 

analytically in Pudasaini (2011) in which the constant coefficient is explicitly expressed in 27 

terms of the mechanical and material parameters. It should be noted that mass loss is only 28 
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represented in this model by a rebhnduction in flow height, and not in a real extent. (Legros, 1 

2002). 2 

 3 

Figure 3. Schematic of a submarine debris flow run-out that includes transformation from the 4 

constant-mass model to the non-constant-mass model. 5 

 6 

By assuming that the area, (𝑠 = 𝑏𝑙), of the moving debris flow does not vary with time (Legros, 7 

2002), and that 𝑚 = 𝑏𝑙ℎ𝜌𝑓, therefore: 8 

𝑑𝑚 =  blρf ∙ dh.                                                           (17) 9 

This assumption restricts the analytical model. However, Legros (2002) compared this 10 

assumption and three cases of natural landslides, which shows the errors induced by this 11 

assumption are acceptable. In addition, the results of some numerical simulations (Campbell 12 

et al. 1995) also confirm this assumption. 13 

 14 

Combing equation (5), (6) and (7): 15 

𝑑(
1

2
𝑚𝑣2)

𝑑𝑥
= 𝐺 − 𝑇 − 𝑃hb.                                        (18) 16 

 17 

Substituting equations (1), (2) and (4) into Equation (18): 18 

𝑣2𝑑𝑚

2𝑑𝑥
+

𝑚𝑣𝑑𝑣

𝑑𝑥
= m′g sin β − m′g ∙ tan αcosβ  −

1

2
ρwv2hb.                            (19) 19 

 20 

The length of the moving mass, l, is also a variable based on the debris flow spreading in the 21 

horizontal direction. This debris flow spreading may be very complicated due to the 22 

complexity of the local topography, but it can be simplified as a radially spread deposit, as 23 

shown in Figure 4. The width of the moving mass can be written as b(x) = b0 + λx, where b0 24 

is the initial width and λ  is the spreading angle. Hence, the length of the moving mass 25 

l(x) = s/(b0 + λx). 26 

 27 

  28 

                                   (a)                          (b) 29 

Figure 4. Plan view schematic of a debris flow on a gentle slope. 30 
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 1 

Equation (19) can be rewritten as: 2 

𝑣2

2h

dh

dx
+ 𝑣

dv

dx
= − tan αcosβ

ρf−ρw

ρf
g −

1

2

ρw

ρf
𝑣2 𝑏0+𝜆𝑥

s
+

ρf−ρw

ρf
g sin β.                    (20) 3 

It is essential to this model that the value of h changes with the debris flow, as described in 4 

Equation 16. It is noted that  B1 is eliminated when substituting Equation (16) into Equation 5 

(20), and hence it avoid the determination of those complicated parameters. Therefore 6 

Equation (20) can be expressed in the form:  7 

d(𝑣2)

dx
+ M + N(𝑏0 + 𝜆𝑥)𝑣2 = 0,                                               (21) 8 

where, N =
ρw

2ρfs
, M = tan α × cosβ

ρf−ρw

ρf
g −

ρf−ρw

ρf
gsinβ, which can also include the seismic 9 

load. 10 

 11 

Therefore, a closed-form solution of Equation (21) can be expressed as: 12 

𝑣2 = Ce−N(𝑏0𝑥+
1

2
𝜆𝑥2) + e−N(𝑏0𝑥+

1

2
𝜆𝑥2)

M√π×i×e
−

𝑏0
2

2
N
𝜆 erf(

√2N(𝑏0+𝑥𝜆)×i

2√𝜆
)

√2N𝜆
 ,          (22) 13 

where C is a constant, which can be calculated by the initial condition and 𝑖 = √−1. 14 

 15 

The run-out distance Xmax at which 𝑣 becomes zero can be obtained implicitly by solving the 16 

equation as: 17 

Ce−N(𝑏0𝑥+
1

2
𝜆𝑥2) + e−N(𝑏0𝑥+

1

2
𝜆𝑥2)

M√π×i×e
−

𝑏0
2

2
N
𝜆 erf(

√2N(𝑏0+𝑥𝜆)×i

2√𝜆
)

√2N𝜆
= 0.              (23) 18 

On the other hand, if the mass-changing model (Equation 16) which describes the erosion-19 

deposition behaviour is not considered, Equation (19) can be written as, 20 

1

2
∙

d(𝑣2)

dx
= − tan α cosβ

ρf−ρw

ρf
g +

ρf−ρw

ρf
gsinβ −

ρw

2ρf

𝑏0+𝜆𝑥

s
𝑣2.                              (24) 21 

Accordingly, the final solution of debris flow velocity without considering mass-changing can 22 

be rewritten. So, essentially the mapping N → N/2 was from none-mass-changing solution to 23 

mass-changing solution,  24 

𝑣2 = Ce−2N(𝑏0𝑥+
1

2
𝜆𝑥2) + e−2N(𝑏0𝑥+

1

2
𝜆𝑥2)

M√π×i×e
−𝑏0

2N
𝜆 erf(

√N(𝑏0+𝑥𝜆)×i

√𝜆
)

√N𝜆
.             (25) 25 

 26 
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3. Application of analytical models  1 

The proposed analytical model was used to analyse a well-known event: the Palos Verdes 2 

debris flow (Hampton et al., 1996; Locat and Lee, 2002; Locat et al., 2004), located on the 3 

continental slope near Los Angeles. Based on seismic reflection logs of the local morphology, 4 

the feature of the sea floor lying at the base of the escarpment was recognised as a 5 

submarine rock avalanche (Gorsline et al. 1984). The debris avalanche deposit at the toe of 6 

the escarpment resulted from a failure that took place along the upper part of the escarpment. 7 

The morphology of the escarpment is described in Figure 5. The slope of the escarpment 8 

varies between 10° and 17°. At the toe of the escarpment, the debris avalanche deposit 9 

spread for a distance of about 8 km, over a slope varying between 1.5° and 2°. The Palos 10 

Verdes debris flow process can be divided into two different stages, according to the material 11 

attributes and topography. The first stage refers to a constant-mass debris flow process on 12 

the escarpment (failure plane). The debris flow is simplified as a whole block with constant 13 

mass for the whole sliding process. The sliding distance is about 1km, as shown in Figure 5. 14 

Due to the variety of slope, the calculation is divided into 10 steps, referring to 10 sections of 15 

escarpment in Figure 5(b). In this process, the spreading angle λ is assumed as 0°, and 16 

hence the width b of moving block always equals to the initial value 1000m. Other parameters 17 

are listed in Table 1 and Table 2. The initial velocity v0 is 0m/s, and the final velocity in 18 

section one v0.1km  (velocity at distance of 0.1km) can be calculated by Equation 14. This 19 

velocity v0.1km would be the initial velocity in the next step. Repeating this calculation could 20 

get the final velocity of constant-mass debris flow v1km, defined as the velocity at the toe of 21 

the escarpment and initial velocity of deposit zone. The second stage refers to the debris flow 22 

in which debris flow was deposited in the debris deposit zone (section 11 in Figure 5(b)). The 23 

debris flow is simplified as a whole block as well, but with varying mass. The final sliding 24 

distance 𝑥𝑓𝑖𝑛𝑎𝑙 can be calculated by solving Equation (23). The change in the slope of deposit 25 

zone is very limited, hence the deposit zone is treated as one whole section. In this model, 26 

the the basal topography changes with the changing mass is not considered, which may 27 

influence the entire flow dynamics. Hence, the future work will focus on the implementation of 28 

the full mechanical models (Pudasaini and Fischer, 2016; Mergili et al., 2017, 2018).  29 

             30 
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          (a)                                                                                       (b) 1 

 Figure 5. San Pedro Escarpment and the Palos Verdes avalanche deposit: (a) plan view 2 

(Google map, 2017); (b) side view (after Locat et al., 2004). 3 

 4 

Table 1 Geometry of escarpment for the Palos Verdes debris flow. 5 

 6 

Locat et al. (2004) conducted a numerical analysis of the mobility of the Palos Verdes debris 7 

avalanche. The analysis of the failure stage indicated that the debris avalanche was caused 8 

by a major earthquake with a magnitude around 7 on the Richter scale, corresponding to a 9 

seismic acceleration of 0.3–0.4 g in the downslope direction, where g is the gravitational 10 

acceleration. Some of the other parameters from Locat et al. (2004) for the Palos Verdes 11 

debris flow were also used in the analytical model, and are listed in Table 2. The variety in the 12 

value of average slope angle of escarpment, slope and spreading angle of debris deposition 13 

zone is used for parametric study. 14 

 15 

Table 2 Parameters for analysis of the Palos Verdes debris flow. 16 

 17 

The above values listed in Table 2 were applied to the analysis. The results are given in 18 

Figure 6, with the dash line indicating the most probable values for the real situation about 19 

8km. (Locat et al., 2004) The figure shows that most of the results are close to the real value. 20 

Most of the relative errors are below 20%. Hence it demonstrates the ability of the analytical 21 

solution to predict the run-out distance of a submarine debris flow to a reasonable level of 22 

accuracy. Figure 6(a) shows the prediction of the run-out distance with varying slope angles 23 

for the escarpment and debris deposition zone. It is shown that the run-out distance increases 24 

with increase in either the average slope angle of the escarpment, β1, or the angle of the 25 

debris deposition zone, β2. When β2 = 2°, variations of β1 from 10° to 17° lead to an increase 26 

in the run-out distance from about 7.9 km to 9.5 km. On the other hand, as β2 increases from 27 

1.5°  to 2° , the average change in the run-out distance of all the cases is about 2 km. 28 

Therefore, this result indicates that β2 has a greater influence on the overall run-out distance 29 
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than β1. Figure 6(b) shows the prediction of the run-out distance with varying escarpment 1 

slope angles and spreading angles of the debris deposition zone. The effect of the spreading 2 

angle of debris deposition zone on the run-out distance was investigated, showing an inverse 3 

relationship between the run-out distance and the spreading angle of the debris deposition 4 

zone. A larger spreading angle, λ, causes a larger width of the moving mass, and hence a 5 

comparatively larger stagnation pressure applied to the front of the moving mass. Therefore, 6 

the overall run-out distance decreases when the spreading angle, λ, increases. In addition, in 7 

order to estimate the effect of mass-changing model, which is described in Equation (16), a 8 

sensitivity analysis has been performed as shown in Figure 6(c). Equation (25) describes this 9 

simplified model. It is shown that the calculated run-out distance decreased about 40% in all 10 

cases when the mass-changing model is not considered. Therefore, it can be concluded that 11 

mass-changing and deposition play important roles in the extraordinary mobility of submarine 12 

debris flow. However, the present model cannot explain the mechanism for why reduction of 13 

sliding mass results in increased mobility. The two-phase mechanical erosion-deposition 14 

model by Pudasaini and Fischer (2016) proved that erosion enhances flow mobility, while 15 

deposition reduces mobility. 16 

 17 

 18 

(a)                                          (b)                                (c) 19 
 20 

Figure 6. Calculated run-out distance: (a) with varying slope angles of the escarpment and the 21 

debris deposition zone; (b) with varying escarpment slope angles and spreading angles of the 22 

debris deposition zone; (c) with and without considering the mass changing model. 23 

 24 

 25 

4. Conclusions 26 

This paper has presented analytical solutions for determining the run-out distance of a 27 

submarine debris flow, with the aim of exploring the sensitivity of the results to different 28 

geomechanical attributes and environmental factors. The following conclusions are derived: 29 

https://en.wikipedia.org/wiki/Geology
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(1) The analytical solutions proposed in this paper consider the erosion and spreading 1 

behaviour of submarine debris flows, and hence are able to predict the run-out distance of 2 

submarine debris flows to a reasonable level of accuracy. 3 

(2) If the debris flow material has sufficient shear strength, the moving block may avoid 4 

fragmentation and remain as one single body on a steep sliding surface. However, debris 5 

deposition occurs on gentle slopes. The debris flow material progressively loses mass due to 6 

deposition, which has a large influence on the flow velocity.  It is shown that the calculated 7 

run-out distance decreased about 40% when neglecting the mass-changing model. But its 8 

mechanical significance still needs future research to be prove, because it contradicts with the 9 

mechanically derived model by Pudasaini and Fischer (2016) which clearly shows that only 10 

relatively increased friction leads to deposition.  11 

(3) Water is an important factor for submarine debris flows. It not only affects the friction angle 12 

as a fluidising medium, but also applies stagnation pressure to the moving block. The 13 

additional resistance from water leads to a decrease in velocity, and hence a decrease of the 14 

final run-out distance of the submarine debris flow. 15 

(4) The run-out distance of submarine is primarily controlled by the local slope of the 16 

depositional zone. This affect is much larger than that from the angle of the escarpment slope. 17 

(5) There is an inverse relationship between the run-out distance and the spreading angle of 18 

the debris deposition zone, since the increase in the stagnation pressure induced by the 19 

spreading of the deposition zone. 20 
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Figure captions 25 

Figure 1 Evolution of a submarine debris flow 26 

Figure 2 Schematic of a slide (mass conservation) where Xmax = maximum distance 27 

travelled 28 

Figure 3 Schematic of a submarine debris flow run-out that includes transformation from the 29 

constant-mass model to the non-constant-mass model 30 
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Figure 4 Plan view schematic of a slide on a gentle slope 1 

Figure 5. San Pedro Escarpment and the Palos Verdes avalanche deposit: (a) plan view 2 

(Google map, 2017); (b) side view (after Locat et al., 2004) 3 

Figure 6 Calculated run-out distance: (a) with varying slope angles of the escarpment and the 4 

debris deposition zone; (b) with varying escarpment slope angles and spreading angles of the 5 

debris deposition zone; (c) with and without considering the mass changing model 6 
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Table captions 8 

Table 1 Geometry of escarpment 9 

Table 2 Parameters for analysis of the Palos Verdes slide 10 
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Figure 1. Evolution of a submarine debris flow 3 
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Figure 2. Schematic of a submarine debris flow (mass conservation) where 1 

Xmax = maximum distance travelled 2 
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Figure 3. Schematic of a submarine debris flow run-out that includes 15 

transformation from the constant-mass model to the non-constant-mass model 16 
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Figure 4. Plan view schematic of a slide on a gentle slope 14 
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(a)                                      (b) 10 

Figure 5. San Pedro Escarpment and the Palos Verdes avalanche deposit: (a) 11 

plan view (Google map, 2017); (b) side view (after Locat et al., 2004) 12 
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 1 

(c) 2 

Figure 6. Calculated run-out distance: (a) with varying slope angles of the 3 

escarpment and the debris deposition zone; (b) with varying escarpment slope 4 

angles and spreading angles of the debris deposition zone; (c) with and without 5 

considering the mass changing model 6 
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Table 1 Geometry of escarpment for the Palos Verdes debris flow 1 

Section ID Length Slope Angle Section ID Length Slope Angle 

1 0.1km 13.5° 7 0.1km 15.4° 

2 0.1km 15.4° 8 0.1km 17° 

3 0.1km 15.9° 9 0.1km 11.3° 

4 0.1km 16.3° 10 0.1km 10° 

5 0.1km 16.7° 11 unknown 1.75° 

6 0.1km 16.2°    

 2 

Table 2 Parameters for analysis of the Palos Verdes debris flow 3 

Unit weight of debris-flow material 

(𝛒𝐟) 

25 kN/m3 Acceleration (𝑢̇𝑠𝑒𝑖𝑠𝑚𝑖𝑐) 0.35 g 

Friction angle (𝛂) 30° Acceleration direction (𝛉) 10° 

Average slope angle of escarpment 

(𝛃𝟏) 

10–17° Length of escarpment 1000 m 

Slope angle of debris deposition 

zone (𝛃𝟐) 

1.5–2° Spreading angle of debris 

deposition zone (𝛌) 

8–16° 

Initial length of moving block (l) 1000 m Initial width of moving block 

(𝐛𝟎) 

1000 m 
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