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Abstract: We examine the first phase of a known NP-hard 2-stage assembly
problem. It consists of sequencing a set of jobs having multiple components to be
processed. Each job has to be worked on independently on a specific machine. We
consider these jobs to form a vector of tasks. Our objective is to schedule jobs on the
particular machines in order to minimize the completion time before the second
stage starts. We first develop a new mathematical programming formulation of
the problem and test it on a small problem instance using an integer programming
solver. Then, we develop a heuristic algorithm based on Ant Colony Optimization
and Variable Neighborhood Search metaheuristics in order to minimize the total
completion time. The performance of our implementation appears to be efficient
and effective.
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1. INTRODUCTION

The focus of this paper is on solving separately the first stage of the two
stage assembly scheduling problems [2, 3] which various industries are faced
with. For instance, consider the computer hardware industry. Computers are
produced by assembling various components depending on customer specifica-
tions. These components are monitors, hard disks, CD/DVD ROM’s, keyboards,
mouse etc. Each components, having its own specifications, is made separately
on an adequate machine. As computers are manufactured due to customers’
specific requirements, a variety of computers is needed, which is managed by the
combining the components in many different ways. When all the components
are ready, they are sent to a client who does the second stage of assembling. Our
objective is to minimize the waiting time of the client. The specific components
are considered to be a vector of jobs which are independent and manufactured
on a specific machine. The two stage models have been studied in Potts et al
[3]. The results of Chen and Hall [1] give the lower bound on the performance
guarantee, whereas in this paper we study upper bounds by using metaheruistic
approaches. We minimize the customers waiting time while Potts et al [3] inves-
tigated the second stage objective function: minimize the makespan, including
the time for assembling. The assembly departments are spread out and they are
not implicitly included in our model. The completion time of a job is defined as
the maximum time taken to complete the manufacturing all of its components.
The problem is to schedule the vector of jobs such that the sum of the completion
times of all the jobs is minimized. In this way, the assembling of all the final
products will be completed as early as possible. We consider a deterministic for-
mulation of the vector job scheduling problem. Chen and Hall [1] have already
proved NP hardness of the problem. Therefore, it is natural to study Ant Colony
Optimization (ACO) and Variable Neighborhood Search (VNS), general heuristic
approaches, to solve this problem. We first describe the mathematical formula-
tion of the problem. Then, we develop an ACO without local search, proposed
by Dorigo and Carov [10], and implement VNS proposed by Mladenovic and
Hansen [27]. We also develop a hybrid algorithm by combining ACO with VNS,
as the local search, and implement our vector job scheduling problem. Finally
we, compare our results with an integer programming solver.

This paper is organized as follows. In section 2, we review the relevant
literature on this topic, while in section 3, we describe the mathematical model.
Section 4, describe the hybrid algorithm (ACO and VNS). Our experimental results
are discussed in section 5, and finally, the conclusions are given in Section 6.

2. LITERATURE REVIEW

Scheduling problems are high level synthesis problems, classified as compu-
tationally NP complete. To solve these problems means to determine the optimal
time depending upon the objective function (job scheduling), environment, and
characteristics of the jobs and the machines. Although we are concerned with
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assembly line problems, as there are various type of scheduling problems, our
literature survey gives different types of scheduling problems solved by using
various algorithms. Hsu [4] has implemented an approximation algorithm for
the assembly line crew scheduling problem in order to minimize the row sum
by independently permuting the elements in the column. Chong et al [5] com-
pared random generated populations and heuristic created populations with a
genetic algorithm for assembly line balancing problems. Al-Anzi and Allahverdi
[6] implemented a hybrid tabu search algorithm to minimize the completion time
for two stage assembly problems. Webster and Azizgolu [7] used dynamic pro-
gramming algorithms for scheduling parallel machines, incorporating a family
setup time. In this approach, jobs are partitioned into families, where setup time
is required for the first job of each family but not for the later jobs of the same
family. Ishibuchi et al [8] implemented genetic algorithms with neighborhood
search algorithms for fuzzy flow shop scheduling problems. Heinonen and Pet-
tersson [14] solved job shop scheduling problems by using four different variants
of the ACO algorithm. They further implemented a hybrid model which uses
a postprocessing algorithm to improve the resulting schedule. Mladenovic et al
[22] implemented a new variant variable neighborhood search, called 2 level gen-
eral variable neighborhood search (GVNS), for solving travel salesman problems.
They have used GNVS as a local search and show that it outperforms the tabu
search heuristics. Seda [9] has constructed a mathematical model for flow and job
shop problems, where he proposed different methods for small and large prob-
lem instances. The above literature shows that heuristic methods play a vital role
in scheduling problems, where some provide good solutions and some provide
good efficient computational time depending upon the problem size and the con-
straints. We consider ACO, VNS and hybrid(ACO and VNS) heuristic methods
in order to compare and analyze their efficiency.

In recent years, researchers have shown that ACO, a meta-heuristic algorithm,
is a competitive technique in terms of performance and time efficiency for various
combinatorial optimization problems. ACO was initially proposed by Dorigo and
Caro [10] and has been successfully implemented to solve many NP-problems, like
the TSP [19], network routing, and quadratic programming problems. Further-
more, Dorigo and Stutzle [11] suggested various ACO approaches for quadratic
assignment problems (QAP), e.g. ant system (AS), Rank based ant system (RAS),
MAX-MIN Ant System (MMAS) and compared the results. Other researchers
have implemented these ant based algorithms in various optimization problems
like scheduling, vehicle routing, networking, option pricing, etc. Colorni et al [12]
implement ACO for the job shop scheduling problem. Rajendran and Ziegler [13]
proposed ACO for permutation flow shop scheduling to minimize makespan/total
flow time of jobs. Huang and Liao [15] presented a hybrid algorithm, combin-
ing an ACO algorithm with a tabu search algorithm for the job shop problem to
improve the solution quality. Zhang et al [20] implemented an ant system for a
small job shop problem and compared it with traditional optimization methods.
Eswaramurthy and Tamilarasi [16] proposed tabu search with ant colony opti-
mization for job shop scheduling. They used dynamic tabu search strategies with
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neighborhood search depending on the ant colony. Surekha and Sumathi [17]
used a genetic algorithm and ant colony for solving fuzzy based job shop prob-
lems so that the sequence of jobs are scheduled using fuzzy logic and optimized
using a genetic algorithm and ACO. Ponnambalam et al [18] proposed an ACO
algorithm for flexible job shop scheduling problems that focus on scheduling
tasks for the manufacturing industry in terms of improving machine utilization
or reducing time.

Sevkli and Aydin [23] have proposed VNS for a job shop scheduling problem
with makespan criterion. They have compared their results with the best known
results in the literature and concluded that the VNS provides better quality solu-
tions. Guohui at el [24] have proposed a hybrid algorithm, combining VNS with
a genetic algorithm, for flexible job shop scheduling problems. They have used
VNS to improve the quality of the individual in the GA by strengthening the local
search ability. Liao and Cheng at el [25] proposed a new hybrid metaheuristic
which uses tabu search within VNS to minimize the total weighted earliness and
tardiness with a restrictive common due date in a single machine environment.
They have examined 280 benchmark problem instances and showed that their al-
gorithm produced a better quality solution and faster computational time. From
this literature review we see that ACO is competitive with other metaheuristic
approaches in terms of computational time and solution quality.

We consider the first stage of the two stage assembly scheduling problem
where we use the ACO and VNS algorithm to solve this problem and compare the
results with ACO,VNS and integer programming(CPLEX). We propose a hybrid
algorithm, ACO with VNS. We further use VNS as the local search proposed
within ACO. VNS uses shaking and local search neighborhood techniques.

3. MATHEMATICAL PROGRAMMING FORMULATION

The vector job shop problem (VJS) is to schedule the jobs on the correspond-
ing machines so that the time of the assembly machine to process the jobs is
minimized. The processing jobs should remain in the same sequence on each ma-
chine and no job is allowed to be interrupted on the machine. The mathematical
programming formulation is given below.

Indices

• J = {1, 2, . . . , j, . . . ,n} denotes a set of jobs,

• M = {1, 2, .., i, .,m} denotes a set of machines.

Data
• ti j be the time spent on the machine i by job j.

Variables

• C j be the time when job j is completed,
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• x jk a binary variable that gets value 1 if job j is performed before job k.

x jk =

{
1 if job j is before k
0 otherwise.

The complete mathematical programming formulation can be written as:

min
n∑

j=1

C j (1)

subject to

C j ≥ ti j +

n∑
k=1k, j

tikxkj, ∀ j ∈ J,∀ i ∈M (2)

x jk + xkj = 1, ∀ j, k ∈ J, j , k (3)

x jk + xkl + xl j ≤ 2, ∀ j, k, l ∈ J, j , l , k (4)

x jk ∈ {0, 1},∀ j, k ∈ J. (5)

The objective function is to minimize the total completion time. The constraint
group (2) determines the earliest completion time of each job by considering the
time of its completion on every machine. The summation term ensures that all
earlier tasks on this machine are completed before this task. The constraint group
(3) ensures that job j is performed always before job k, or job k is completed before
job j. In case that job j is before job k then, it must be true for all machines. The
constraint group (4) is a cycle breaking constraint, i.e., it ensures that the ordering
of jobs doesn’t fall into a cycle. Thus, if job j is before job k and job k is before job
l, then job j must be before job l.

4. HYBRID ALGORITHM FOR VJS

For solving the VJS problem in this section we first present two metaheuristic
based approaches, ACO and VNS and then we propose a hybrid heuristic which
combines them.

4.1. ACO
The algorithm (ACO) [10] is a metaheuristic inspired by behavior and char-

acteristics of ants. In general, real ants deposit a chemical substance called
pheromone λ while travelling in search for food. Pheromone acts as a scent to
attract the ant back along the same path when returning to the nest. Initially, the
pheromone value is set to zero. As the ants travel in search for food, pheromone
is deposited along the path so that other ants are attracted this path. During the
course of time, more ants get attracted to the shortest path, since on the longer
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paths the pheromone tends to evaporate and ants find it to be an unproductive
path. We use this approach in our vector job scheduling problem.

In our VJS problem, we establish the sequence of jobs in order to minimize
the completion time. We could formulate the VJS problem by constructing an
edge between the jobs only if the corresponding job can be performed by the
corresponding machine component. This process could be modelled in the form
of a matrix. Table 1 is a sample of the constructed matrix with m machines and n
jobs, where the rows represent the machines and the columns represent the jobs.
Each matrix cell represents the processing time ti j. Our objective is to sequence
the jobs in such a way that the total processing time C is minimized.

Table 1: m machines and n jobs

Machine/Job 1 2 3 4 .. j .. n
1 t11 t12 t13 t14 .. t1 j .. t1n
2 t21 t22 t23 t24 .. t2 j .. t2n
3 t31 t32 t33 t34 .. t3 j .. t3n
4 t41 t42 t43 t44 .. t4 j .. t4n
. .. .. .. .. .. t.. .. ..
i ti1 ti2 ti3 ti4 .. ti j .. tin
. .. .. .. .. .. t.. .. ..

m tm1 tm2 tm3 tm4 .. tmj .. tmn

4.1.1. Solution Construction
We construct a disjunctive graph G = (N,E) where N is the set of nodes that

represent processing times ti j, job j on machine i. The initial node N0 and the final
node Nn+1 are considered as dummy nodes that are used to indicate the start and
the end node for the ants. E is a set of edges, each edge has a measure associated
with the amount of pheromone λ scent deposited while the heuristic information
is the inverse of processing time on the nodes. In figure 1, we consider 3 jobs sets
J1, J2, J3 to be processed on a machines i1. Each job set consists of permutation
of jobs j′1, j′2, j′3. The circle represents the processing time ti j in which a job j is
performed on a machine i. An ant k starts from the initial node, finds its own path
and creates a solution by forming a sequence of visiting nodes. We have to verify
that the ants do not violate any of the constraints such as maintaining the correct
job ordering on each machine. The visiting of nodes is in sequential ordering.
Each path on the graph from node N0 to node N10 which does not violate any
of the constraints represents one permutation of jobs, i.e. one solution of the
problem. Thus if the first node is job j1 on machine i1 then, the ant k might have a
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choice of choosing j2 or j3 on machine i1, hence allocating all corresponding jobs
in machine i1. The same job sequence is followed on all other machines.

Figure 1: 3 set job sequence for machine 1(i1)

Initially, the memory is empty and is updated according to the ants movements
through different nodes. The ant memory can be separated into three parts. Part
1 is the set of nodes not yet visited. Part 2 consists of the set of nodes that the
ants are able to visit in the current iteration in order to satisfy the constraints, and
finally, part 3 contains the set of all nodes that have been visited so far. Hence
when the ant is placed at the initial node it travels accordingly after completion of
one cycle, each ant should have a sequence of nodes in group 3 that satisfies the
constraints of visiting one node only and the job machine ordering constraints’
too. The parameters for ACO are as follows.

• k - the number of Ants,

• λ(x, y) - the pheromone deposit on the edge (x, y),

• ρ - the pheromone evaporation parameter,

• α - the level of pheromone scent deposited by the current ants,

• β - the heuristic information determined by the ants,

• η(y) - the heuristic information stored at node y,

• N - the set of all nodes,

• V - the set of visited nodes,
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• U - the set of unvisited nodes.

Starting from the initial node, each ant chooses the next node by using the
transition probability rule, which uses the amount of pheromone deposited on its
path and the heuristic information. Given U is the set of unvisited nodes, let us
consider an ant that has travelled to node x. The probability of choosing the next
node y is given by

Pk(x, y) =

 [λ(x,y)]α.η(y)β∑
yεU[λ(x,y)]α.η(y)β if yεU,

0 otherwise.

where Pk(x, y) is the probability with which ant k chooses to move from node x to
node y; η(y) = 1/p(y), which is the inverse of the processing time of operations y,
where p(y) = ti j and y represents job j on machine i.

4.1.2. Pheromone Update
Once the ant completes the tour we use a procedure called pheromone update.

The pheromone trail updates globally and locally. A global pheromone update,
focuses on edges belonging to the trail travelled by ant within the shortest time.
Once the time is completed, the best ant deposits pheromone on visited edges,
while the other edges remain unchanged. The amount of pheromone deposited,
∆ λ(x, y), on each visited edge (x, y) by the best ant is inversely proportional to
the length of the time of the tour. The shorter the time, the greater the amount of
pheromone deposited on the edges. The global updating of pheromone is given
by

λ(x, y) = (1 − ρ)λ(x, y) + ρ∆λ(x, y)best

where,

∆λ(x, y)best =

{
1

Lbest
if the best ant uses the edge (x,y) in its sequence,

0 otherwise.

ρ is the evaporating parameter, 0 < ρ < 1. Lbest is the length of the best sequence
in the current iteration. Hence the best sequence determines the amount of
pheromone deposited in each iteration. Searching continues while the current
pheromone level is below the previous value.

The local pheromone update is focuss to avoiding a strong edge being chosen
by all the ants. This is done by changing the amount of pheromone update when
an edge is chosen by a specific ant. The local update is given by

∆λ(x, y) = (1 − ρ)λ(x, y) + ρ∆λ0

where ∆λ0 is a parameter which is set to 1.
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Algorithm 1: ACO

1 Initialize all edges to pheromone level λ0 = 1;
2 Place each ant k on a randomly chosen job j on a particular machine i;
3 for each iteration t do
4 while each ant k has not completed its set of jobs J do
5 for each ant k do
6 Move ant k to the next job j by the probability function Pk;
7 end
8 for each ant k with a complete set of jobs J do
9 Evaporate pheromone ρ;

10 Apply pheromone updates;
11 if ant k time is the shortest then
12 global pheromone update;
13 Update global solution;
14 end
15 end
16 end
17 end

4.2. Variable Neighborhood Search (VNS)
VNS is a metaheuristic that explores distant neighborhood structures of grow-

ing size to identify better local optima with local search strategies [27]. During
the local search, VNS systematically changes different neighborhoods. The VNS
is based on three key factors namely, (i) A local optimal solution of one neighbor-
hood structure is not necessary to be that of another neighborhood structure; (ii)
A global optimal solution is a local minimum with respect to all neighborhood
structures; (iii) Local optimum solutions with respect to different neighborhoods
are relatively close to each other. For more details about VNS and its applications
see e.g. [28, 29, 30, 31].

In our implementation, the solution of the problem is represented by two
arrays. (i) A sequence of jobs j1, j2, ..., jn; (ii) The sequence of corresponding
completion time, C j. Therefore we present a solution S as S = ( J́,C). Our proposed
algorithm is based on general VNS that comprises of shaking and local search
techniques. The proposed algorithm uses 3 neighborhood structures, the first is
the 1-opt moves, the second is the insertion, and the third is the swap. Below is
the description of all these operations. Let S be the initial solution and S̈ the new
solution after applying the respective neighborhoods, then

• 1-Opt neighborhood: A new solution is reached by interchanging two consec-
utive elements in the current array (J́,C).

• Insert neighborhood: A new sequence is generated by inserting one job be-
tween any two other jobs. For example the job 7 is inserted between jobs 4
and 5 to get a new sequence of jobs, J́.
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Initial solution 3 4 5 6 7 1

After Insert 3 4 7 5 6 1

• Swap neighborhood structure: A new sequence is generated by interchanging
the position of jobs in the sequence of jobs J́. For example, job 6 in the 4th

position is interchanged with job 3 which is in the 1st position.

Initial Solution 3 4 5 6 7 1

The swap neighborhood structure is used in the shaking step to improve the
initial solution S i.e., neighborhood Nk(S) is defined by consecutive swaps of jobs
J́ followed by updating its corresponding values of C j to get a better solution Ṡ.
In order to improve the solution Ṡ, we use a local search step, consisting of a
one opt neighborhood, by changing the consecutive jobs J́; then, we change the
neighborhood to insertion by inserting job ji between any two jobs ju, jv in the job
sequence J́. At each neighborhood, a solution S̈ is generated and the best solution,
if improved, is updated. The process of VNS pseudo code is presented below.
The shaking is executed in step 4 with local search steps in 5-16, which are used
to improve the solution; n represents the maximum number of loops.

Algorithm 2: VNS

1 Generate an initial solution S randomly;
2 Iteration t← 0;
3 do
4 Ṡ = Swap(S);
5 loop← 0;
6 do
7 count← 0;
8 max← 2;
9 do

10 if count← 0 then S̈ = Swap(Ṡ);
11 if count← 1 then S̈ = Insert(one −Opt(Ṡ));
12 if f (S̈) ≤ f (Ṡ) then count← 0; Ṡ← S̈ ;
13 else count + +;
14 while count < max;
15 loop + +;
16 while loop < n(n − 1);
17 if ( f (Ṡ) ≤ f (S)) then S← Ṡ ;
18 t + +;
19 while stopping condition is not met;
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After Swap 6 4 5 3 7 1

4.3. Hybrid Algorithm
In the previous section, the proposed VNS algorithm randomly generated

the initial solution. This may not be an appropriate way to solve large problem
instance as it might take more computational time to converge to an optimal
solution. In our proposed hybrid approach, we use the ACO algorithm to generate
the initial solution and then VNS to find a better solution, which will improve the
performance. Our hybrid approach combines ACO and VNS. This approach is
the same as the VNS algorithm except that the initial solution is generated by the
ACO algorithm.

Algorithm 3: Hybrid ACO+VNS

1 Generate solution from ACO algorithm 1;
2 Iteration t← 0;
3 do
4 Ṡ = Swap(S);
5 loop← 0;
6 do
7 count← 0;
8 max← 2;
9 do

10 if count← 0 then S̈ = Swap(Ṡ);
11 if count← 1 then S̈ = Insert(one −Opt(Ṡ));
12 if f (S̈) ≤ f (Ṡ) then count← 0; Ṡ← S̈ ;
13 else count + +;
14 while count < max;
15 loop + +;
16 while loop < n(n − 1);
17 if ( f (Ṡ) ≤ f (S)) then S← Ṡ ;
18 t + +;
19 while stopping condition is not met;

5. COMPUTATIONAL RESULTS

We have used an Intel core dual i7 processor, 3.4GHz with windows 7, 64-bit
operating system with 16GB RAM. The ACO and VNS have been developed in
the C# language. Since our problem is new, we are unable to find any benchmark
instances for it, we have implemented our algorithms on 15 various well known
benchmark instances from the literature that were not originally designed for
solving VJS problem.

We have used the following test instances:

• Fisher and Thompson job instances for 10x10 and 6x6 [32];
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• Lawrence instances for 15x15, 30x10, 15x10, 20x5 [33];

• Storer, Wu and Vaccari job instances for 20x10, 20x15, 50x10 size problems
[34];

• Talliard flow shop instances for dimensions 100x5, 100x10, 100x20, 200x10,
500x20 [35];

• Yamada and Nakano for job instances of 20x20 [36].

For each instance, the stopping criteria for ACO and VNS was set to 1000
iterations. The best solutions are reported in Table 2. The following section
contains the parameter setting for the ant system and the results discussion.

5.1. Setting parameter values for ACO
The choice of parameter values of the ACO algorithm play an important role

in the final solution quality. The ACO algorithm literature proposed by Liouane
et al [21] reviews various parameter values. In VJS we set various parameter
values accordingly to obtain the best solution. We only consider the values in the
range detailed in [21].

• α determines the quantity of pheromone deposited by the ants when they
build their solution. The higher the value, the more restrictive the ants ability
becomes in exploring new sequences. The lower the value, the more the ant
is able to travel to more unvisited edges, but this uses more computational
time. From our analysis, we have found the value to be in the range 1-10
and overall the algorithm performs best with a value of approximately 1.

• β determines the heuristic information used by the ants. The value ranges
between 1- 4. From our results we have observed that the value 1 gives the
best results.

• ρ is the pheromone evaporation parameter. A higher value enables the ants
to carry out more searches. It has been noted that the value ranges between
0.1 - 0.7 for obtaining good solutions. We have observed that 0.7 is the best
value.

• k defines the number of ants belonging to the colony. There is a trade-off
between creating too many sequences, namely too many ants, versus fewer
sequences namely fewer ants. If the number of ants is low, the algorithm
speeds up because of fewer searches; in contrast, if the number of ants is
high, the algorithm slowdowns because of more search, but many more
sequences are created with the scope of finding a better solution. Our
experiments suggest that the number of ants in the colony is best to be
between the ranges of 8 - 10.We have used 10 ants for our entire job instance.
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5.2. Results
Table 2 contains the results. We have computed the solutions for ACO, VNS,

ACO+VNS and CPLEX. Three heuristic methods are run 1000 times and the best
solution obtained is reported in the table. The computing time for 1000 iteration of
each heuristic method and the total CPU time(seconds) are given in the brackets.
The following conclusion can be derived:

Table 2: Best solutions for VSJ instances
Instance ACO VNS ACO+VNS CPLEX
[20] × [5] 11392(331) 10883(9654) 10883(9844) 10883(46020)
[10] × [10] 3211(30) 3205(9321) 3205(9735) 3205(1170)
[15] × [10] 7637 (35) 7530 (9638) 7530(9975) 7530(25522)
[15] × [15] 6958(96) 6870(9644) 6870(9980) 6870(31278)
[20] × [10] 11794(238) 11341(9875) 11341(10677) 11341(2067290)
[20] × [15] 12402(351) 12021(9967) 12021(10831) NA
[20] × [20] 6664(181) 6486(9998) 6486(11456) NA
[30] × [10] 24824(461) 23268(14771) 23268(16543) NA
[50] × [10] 68243(2538) 62841(65244) 62781(68022) NA
[100] × [5] 263505(13205) 233971(302640) 233944(351108) NA

[100] × [20] 267499(20193) 242959(1041607) 242930 (1053421) NA
[100] × [10] 274356(16010) 248109(566441) 248025(598007) NA
[200] × [10] 1056487(122576) 931889(4930348) 931429(5035668) NA
[500] × [20] 6418210(672757) 5847759(19968785) 5846398(20851539) NA

(i) In terms of solution quality, it is clear that ACO + VNS performs better than
the other algorithms, especially for larger problem instances. However, it
uses more computational effort than our general VNS algorithm;

(ii) CPLEX is unable to find results for large instances;

(iii) VNS outperforms ACO in all instances significantly, but uses more cpu time.

6. CONCLUSION

In this paper, we observed that the first phase of the known assembly schedul-
ing problem [3] may have its own practical implementation, i.e., when the second
assembly phase is omitted. We call the first phase, proposed by Patkar et al [26] a
vector scheduling problem, we have proposed a new mathematical programming
formulation and solved it with a commercial solver CPLEX. Further, we have pre-
sented four different types of computational techniques to solve the VJS problem:
(i) an exact method based on our mathematical programming formulation; (ii) a
heuristic method based on ACO meta heuristic; (iii) a heuristic method based on
VNS and finally (iv) as hybrid of ACO that uses VNS as the local search method.
Our goal was to identify the performance of these techniques for the vector job
scheduling problem. The performance analyzes were carried out by using the
proposed method with our data sets and the results were compared. Our results
show that the ant colony algorithm with variable neighborhood search as the local
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search finds high quality solution to the VJS or at least comparable to the other
algorithms proposed for the VJS, particularly as the size of the problem instance
is increased. Even though ACO with VNS performs well, it depends upon setting
the right parameter values and selecting the number of ants for each problem.
From our analysis we have shown that the pheromone trail updates between the
nodes plays a vital role in constructing the best solution.

Future work may include development of more advanced VNS based tech-
niques such as skewed general VNS. Another task could be investigation in find-
ing more applications of VJS model.
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Research University, Higher School of Economics, Russia and supported by RSF
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REFERENCES

[1] Chen, Z.L., and Hall, N.G., “Supply chain scheduling conflict and cooperaion in assembly
systems”, Operation Research, 55 (6) (2007) 1072-1089.

[2] Potts, C.N., “An algorithm for the single machine sequencing problem with precedence con-
straints”. Mathematical Programming Studies, 13 (1980) 78-87.

[3] Potts, C.N., Sevastjanov, S.V., Strusevich, V.A., Van Wassenhove, L.N., and Zwaneveld, C.M.,
“Two stage assembly scheduling problem:complexity and approximation”, Operation Research,
43 (2) (1995) 346-355.

[4] Hsu, W.N., “Approximation algorithms for the assembly line crew scheduling problem”, Math-
ematics of Operation Research, 9 (3) (1984) 376-383.

[5] Chong K.E., Omar, M.K., and Bakar, N.A., “Solving assembly line balancing problem using
genetic algorithm with heuristics treated initial population”, Proceedings of The World Congress
on Engineering, 2 (2008) 1273-1277.

[6] Al-Anzi, F.S., and Allahverdi, A., “A hybrid tabu search heuristic for the two-stage assembly
scheduling problem”, International Journal of Operations Research, 3 (2) (2006) 106-119.

[7] Webster, S., and Azizgolu, M., “Dynamic programming algorithm for scheduling parallel ma-
chines with family setup time”, Computer and Operation Research, 28 (2) (2001) 127-137.

[8] Ishibuchi, H., Yamamoto, N., Murata, T., and Tanaka, H., “Genetic algorithms and neighborhood
search algorithms for fuzzy flowshop scheduling problems”, Fuzzy Sets and Systems, 67 (1)
(1994) 81-100.

[9] Seda, M., “Mathematical model for flow job and job shop problems”, World Academy of Science,
Engineering and Technology, 18 (3) (2007) 331-342.

[10] Dorigo, M., and Caro, D.G., “The ant colony optimization meta-heuristic”, New Ideas in Opti-
mization, McGraw-Hill, London, UK, (1999) 11-22.

[11] Dorigo, M., and Stutzle, T., “Ant colony algorithms for quadratic assignment problem”, New
Ideas in Optimization, McGraw-Hill, London, UK, 1999.

[12] Colorni, A., Dorigo, M., Maniezzo, V., and Trubian, M., “Ant system for job shop scheduling”,
Belgian Journal of Operations Research, Statistics and Computer Science, 34 (1) (1994) 39-53.

[13] Rajendran, C., and Ziegler, H., “Ant colony algorithms for permutation flowshop scheduling to
minimize makespan total flowtime of jobs”, European Journal of Operational Research, 155 (2)
(2004) 426-438.

[14] Heinonen, J., and Pettersson, F., “Job-shop scheduling and visibility studies with a hybrid ACO
algorithm”, Applied Mathematics and Computation, 187 (3) (2007) 989-998.

[15] Huang, K., and Liao, C., “Ant colony optimization combined with tabu search for the job shop
scheduling problem”, Computers and Operations Research, 35 (4) (2008) 1038-1046.

[16] Eswaramurthy, V.P., and Tamilarasi, A., “Hybridizing tabu search with ant colony optimization
for solving job shop scheduling problems”, International Journal of Advance Manufacturing
Technololgy, 40 (2008) 1004-1015.



N.I.Lawrance Amaldass, C.Lucas, N.Mladenovic / Heuristic Hybrid Framework 45

[17] Surekha, P., and Sumathi, S., “Solving fuzzy based job shop scheduling problems using GA and
ACO”, Journal of Emerging Trends in Computing and Information Sciences, 1 (2) (2010) 95-102.

[18] Ponnambalam, S. G., N. Jawahar, N., and Girish, B. S., “An ant colony optimization algorithm
for flexible job shop scheduling problem”, New Advanced Technologies, 4 (2010) 73-94.

[19] Dorigo, M., and Gambardella, L. M., “Ant colonies for the traveling salesman problem”, Biosys-
tems, 43 (1997) 73-81.

[20] Zhang,J., Hu,X., Tan,X., Zhong, J.H., and Huang, Q., “Implementation of an ant colony optimiza-
tion technique for job shop scheduling problem”, Transactions of the Institute of Measurement
and Control, 28 (1) (2006) 93-108.

[21] Liouane, N., Saad, I., Hammadi, S., and Borne, P., “Ant systems and local search optimization for
flexible job shop scheduling production”, International Journal of Computers, Communications
and Control, 2 (2) (2007) 174-184.

[22] Mladenovic, N., Todosijevic, R., and Urosevic, D., “Two level general variable neighborhood
search for attractive traveling salesman problem”, Yugoslav Journal of Operations Research, 23
(1) (2012) 19-30.

[23] Sevkli, M., and Aydin, M., “Variable neighborhood search algorithm for job shop scheduling
problems”, Evolutionary Computation in Combinatorial Optimization, 3906 (2006) 261-271.

[24] Zhang, G., Gao, L., Li, X., and Li, P., “Variable neighborhood genetic algorithm for the flexible
job shop scheduling problem”, Intelligent Robotics and Applications, 5315 (2008) 503-512.

[25] Liao, C., and Cheng, C., “Variable neighborhood search for minimizing single machine weighted
earliness and tardiness with common due date”, Computers and Industrial Engineering, 52 (4)
(2007) 404-413.

[26] Patkar, S., Poojari, C., and Porwal, P., “An investigation into approximate solutions for de-
terministic and stochastic multi-dimensional sequencing”, Brunel University, Archive, Brunel,
2005.

[27] Mladenovic, N., and Hansen, P., “Variable neighborhood Search”, Computers and Operations
Research, 24 (11) (1997) 1097-1100.

[28] Hansen, P., Mladenovic, N., Brimberg, J., and Moreno Prez, JA., “Variable neighbourhood search,
Handbook of Metaheuristics, 2nd edition (Gendreau and Potvin Eds)”, International Series in
Operations Research & Management Sciences, 146, Kluwer, (2010) 61–86.

[29] Brimberg, J., Hansen, P., and Mladenovic, N., “Attraction probabilities in variable neighborhood
search”,4OR, 8 (2010) 181-194.

[30] Mladenovic, N., Urosevic, D., and Dionisio Perez-Brito., “Variable neighborhood search for
Minimum Linear Arrangement Problem”, Yugoslav Journal of Operations Research, 26 (1) (2016)
3-16.

[31] Todosijevic, R., Hanafi, S., Lazic, J., and Mladenovic, N., “Variable and Single Neighbourhood
Diving for MIP Feasibility”, Yugoslav Journal of Operations Research, 26 (2) (2016) 131-157.

[32] Fisher, H., and Thompson, G.L., “ Probabilistic learning combinations of local job-shop schedul-
ing rules, J.F. Muth, G.L. Thompson (eds.)”, Industrial Scheduling, Prentice Hall, Englewood
Cliffs, New Jersey, 1963.

[33] Lawrence, S.,“ Resource constrained project scheduling: an experimental investigation of
heuristic scheduling techniques (Supplement)”, Graduate School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1984.

[34] Storer, R.H., Wu, S.D., and Vaccari, R.,“New search spaces for sequencing instances with appli-
cation to job shop scheduling”, Management Science, 38 (1992) 1495-1509.

[35] Taillard, E., “Benchmarks for basic scheduling problems”, European Journal of Operational
Research, 64 (1993) 278-285.

[36] Yamada, T., and Nakano, R.,“A genetic algorithm applicable to large-scale job-shop instances, R.
Manner, B. Manderick (eds.)”, Parallel instance solving from nature 2, North-Holland, Amster-
dam, 1992, 281-290.


