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Previous direct numerical simulations (DNS) of mass transfer across the air-water inter-
face have been limited to low-intensity turbulent flow with turbulent Reynolds numbers
of RT 6 500. This paper presents the first DNS of low-diffusivity interfacial mass transfer
across a clean surface driven by high-intensity (1440 6 RT 6 1856) isotropic turbulent
flow diffusing from below. The detailed results, presented here for Schmidt numbers
Sc = 20 and 500, support the validity of theoretical scaling laws and existing experimen-
tal data obtained at high RT . In the DNS, to properly resolve the turbulent flow and the
scalar transport at Sc = 20 up to 524 × 106 grid points were needed, while 65.5 × 109

grid points were required to resolve the scalar transport at Sc = 500, which is typical
for oxygen in water. Compared to the low RT simulations, where turbulent mass flux is
dominated by large eddies, in the present high RT simulation the contribution of small
eddies to the turbulent mass flux was confirmed to increase significantly. Consequently,

the normalised mass transfer velocity was found to agree with the R
−1/4
T scaling, as

opposed to the R
−1/2
T scaling that is typical for low RT simulations. At constant RT ,

the present results show that the mass transfer velocity KL scales with Sc−1/2, which
is identical to the scaling found in the large-eddy regime for RT 6 500. As previously
found for a no-slip interface, also for a shear-free interface the critical RT separating the
large from the small eddy regime, was confirmed to be about RT = 500.
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1. Introduction

This paper considers the transport of low soluble atmospheric gases, such as oxygen,
across the air-water interface promoted by high-intensity isotropic turbulence diffusing
from below. Because of the very low mass diffusivity of such gases in water, in combina-
tion with the high-intensity turbulence, the corresponding concentration boundary layer
thickness at the surface is significantly smaller than the Kolmogorov length scale of the
turbulent flow (e.g. Jähne & Haussecker 1998; Brumley & Jirka 1988). Hence, an exceed-
ingly fine resolution is needed to fully resolve the scalar transport dynamics. The latter is
extremely challenging both when performing numerical simulations (see e.g. Rodi 2017)
as well as laboratory experiments. Consequently, previously performed direct numerical
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simulations (DNS) and large-eddy simulations (LES) were limited to low turbulence in-
tensities. The DNS were usually confined to relatively low Schmidt numbers, Sc = ν/D,
where ν is the kinematic viscosity and D is the mass diffusivity, (e.g. Schwertfirm &
Manhart 2007; Handler et al. 1999; Khakpour et al. 2011; Yang & Shen 2017). High
Schmidt number DNS were performed for buoyancy-induced mass transfer by Fredriks-
son et al. (2016) and Wissink & Herlina (2016) with surface heat fluxes of 100 W/m2

and up to ∼ 1600 W/m2, respectively, and for isotropic-turbulence induced mass transfer
by Herlina & Wissink (2014, 2016). High Schmidt number LES was e.g. performed by
Magnaudet & Calmet (2006) for open-channel flow, while Hasegawa & Kasagi (2008)
carried out a hybrid DNS-LES of surface-shear driven mass transfer. Similarly, present
experimental techniques still face difficulty in properly resolving the instantaneous scalar
and flow properties within the concentration boundary layer (Chu & Jirka 1992; Atmane
& George 2002; Variano & Cowen 2013). Hence, only in a limited number of experi-
ments (e.g. Herlina & Jirka 2008; Janzen et al. 2010) sufficiently detailed simultaneous
measurements within the concentration boundary layer for varying grid-stirred turbulent
intensities were reported.

The present DNS was motivated by the need for highly-accurate unbiased data in the
high RT regime to further investigate the dynamics of mass transfer across a shear-free
surface dominated by small-scale energy-dissipating turbulent motions (cf. Theofanous
et al. 1976; Theofanous 1984) that need to be fully resolved by the numerical mesh.
These new results complement our previous DNS results obtained for low to moderate
RT , where mass transfer was driven by larger scale energy-containing turbulent motions.
Hence, both the large and small-eddy dominated regimes for isotropic-turbulence driven
mass transfer across a shear-free surface are covered. Note that for severely-contaminated
interfaces - modeled using a no-slip surface boundary condition - both regimes were
already explored in Herlina & Wissink (2016), hereafter referred to as HW16.

The rate of mass transfer across the air-water interface is measured by the global
transfer velocity

KL =
|j|

cs − cb
, (1.1)

where j is the interfacial mass flux and cs and cb are the average gas concentrations
at the surface and in the bulk (well-mixed region), respectively. All conceptual models
assume that the mass transfer is determined by no more than one length scale and one
time scale (Brumley & Jirka 1988). Many empirical relations between KL and measurable
flow quantities have been suggested in the past, ranging from the film model of Lewis
& Whitman (1924) to Danckwerts’ surface renewal model (Danckwerts 1951). Lewis
and Whitman assumed the presence of stagnant films on both sides of the interface
where molecular diffusion controls mass transfer, giving KL = D/δ∗, where δ∗ is the film
thickness. The surface renewal model reads

KL ≈
√
Dr, (1.2)

where r is the surface renewal rate. The main problem for this model is the specification
of the applicable renewal rate, which either requires direct determination or modelling.
Fortescue & Pearson (1967) suggested that r is determined by the time-scale associated
with the largest turbulent eddies, while Banerjee et al. (1968) and Lamont & Scott (1970)
used the time-scale of the small eddies.

In the large-eddy model, r is usually determined using characteristic turbulent velocity
(u∞) and length (Λ) scales, resulting in

KL ≈
√
Du∞/Λ. (1.3)
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On the other hand, in the small-eddy model r =
√
ε/ν is calculated using the Kolmogorov

scales, where ε is the turbulent dissipation rate, giving

KL ≈
√
D (ε/ν)

1/4
. (1.4)

Theofanous et al. (1976) performed a dimensional analysis and subsequently proposed
to combine the large and small-eddy models after concluding that the large eddies are
most important for the smaller turbulent Reynolds numbers RT - defined in (4.2) below
- while the small eddies become important for large RT . The critical turbulent Reynolds
number dividing the two regimes was found to be RT ≈ 500.

As mentioned above, because of limited computational resources, previous numerical
work on interfacial gas transfer has been limited to relatively low turbulent Reynolds
numbers and/or low Schmidt numbers. In this paper, we present the results of a di-
rect numerical simulation performed for a range of high turbulent Reynolds numbers
(1440 6 RT 6 1856) and Schmidt numbers of Sc = 20 and 500, where the latter is char-
acteristic for the transport of atmospheric gases dissolved in water. The present RT is
significantly larger than the critical RT such that the Kolmogorov time-scale will deter-
mine the interfacial mass transfer dynamics. The new high RT results will be compared
to our previous low to moderate RT results from Herlina & Wissink (2014), hereafter
referred to by HW14.

2. Numerical Method

The fluid motion is determined by solving the non-dimensional incompressible Navier-
Stokes equations, where the continuity equation reads

∂uj
∂xj

= 0, (2.1)

and the momentum equations are given by

∂ui
∂t

+
∂uiuj
∂xj

= − ∂p

∂xi
+

1

Re

(
∂2ui
∂xj∂xj

)
for i = 1, 2, 3, (2.2)

where j = 1, 2, 3, x1 = x, x2 = y are the horizontal directions and x3 = z is the
vertical direction, u1 = u, u2 = v and u3 = w are the velocities in the x, y, and z
directions, p is the pressure and t denotes time. Re = UL/ν is the Reynolds number,
where U , L are reference velocity and length scales, respectively. Note that in the absence
of mean shear, to characterise the turbulent flow, it would be more appropriate to use a
turbulent Reynolds number RT , see (4.2). However, the characteristic turbulent velocity
and length scales used to calculate RT can only be determined after the computation and
are basically time dependent owing to the short simulation time. Hence, U and L are used
as place holders for the non-dimensionalisation. In our case, where Re = 1200 (cf. §3), a
convenient choice would be e.g. U = 12 cm/s, L = 1 cm and ν = 10−6 m2/s, which is
relevant for the grid-stirred experiments of e.g. Herlina & Jirka (2008). In the subsequent
analysis, most of the results are renormalised using the characteristic turbulent velocity
and length scales.

The non-dimensional convection-diffusion equation that governs the transport of the
dimensionless passive scalar c∗ = c∗(x, y, z, t) reads

∂c∗

∂t
+
∂ujc

∗

∂xj
=

1

ReSc

(
∂2c∗

∂xj∂xj

)
, (2.3)
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where

c∗ =
c− cb,0
cs − cb,0

, (2.4)

in which cb,0 is the initial concentration in the bulk and cs is the concentration at the
surface, which is assumed to be fully saturated at all times. Hereafter the dimensionless
concentration c∗ will be denoted by c. Note that the above implies that initially c = 1 at
the surface and c = 0 in the bulk.

The present numerical simulation was performed using our solver that was specifi-
cally developed to accurately resolve low-diffusivity interfacial mass transfer. In the past,
the code was extensively verified (e.g. Kubrak et al. 2013; Herlina & Wissink 2014)
and used to solve interfacial mass transfer problems driven by low to moderate levels of
isotropic turbulence (Herlina & Wissink 2014, 2016; Wissink et al. 2017) and by buoyant-
convection (Wissink & Herlina 2016). The 3D incompressible Navier-Stokes equations
were solved using a fourth-order-accurate kinetic energy conserving discretisation of the
convective terms (Wissink 2004) combined with a fourth-order central discretisation of
the diffusive terms. The pressure Poisson equation was solved using the conjugate gradi-
ent method with a simple diagonal preconditioning. The second-order accurate Adams-
Bashforth method was used for time integration.

Together with the flow, convection-diffusion equations for two scalars were solved si-
multaneously. The fifth-order-accurate WENO scheme of Liu et al. (Liu et al. 1994) and
the fourth-order-accurate central discretisation were used to discretise scalar convection
and diffusion, respectively. A third-order Runge-Kutta method was used for the time
integration. Because the scalar diffusivity can be more than two orders of magnitude
smaller than the momentum diffusivity, a dual-meshing strategy was employed using a
refined mesh for the scalar transport equations. The code was parallelised by dividing
the mesh into a number of blocks of equal size. Communication between blocks was per-
formed using the standard message passing interface (MPI) protocol. A more detailed
description of the numerical method can be found in Kubrak et al. (2013).

3. Computational setup

A schematic of the computational domain is shown in figure 1. The interfacial mass
transfer was modeled by a direct numerical simulation. The size of the DNS domain
(upper box in figure 1) was 20L × 20L × 5L in the x, y, z directions, respectively (L is
the reference length scale, cf. §2). To properly resolve the flow field and the scalar with
Sc = 20 a 1024× 1024× 500 base-mesh was used. For the scalar with Sc = 500, a refined
mesh with 5120× 5120× 2500 was employed. In the x and y-directions a uniform mesh
was used, while in the z−direction the mesh was stretched according to

z(k) = z(0) +

[
tanh(zφ)

tanh(z1)

]
(z(nz)− z(0)) (3.1)

for k = 1, ..., nz − 1, with z1 = θ/2 and zφ = k z1/nz where nz is the number of nodes in
the z-direction. The stretching is controlled by the parameter θ, which is set to θ = 4.7.
The grid resolution near the interface is such that (i) the local vertical grid size ∆z is
about 12%LB and (ii) the geometric mean of the grid-cells is less than πLB , where LB is
the Batchelor scale. The two conditions indicate that the Grötzbach criterion is fulfilled
and the scalar distribution is well resolved (Grötzbach 1983).

As in our previous simulations, the isotropic turbulence introduced at the bottom
of the computational domain was generated in a separate large-eddy simulation (LES)
that ran concurrently with the DNS. To achieve a high turbulent Reynolds number RT ,
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Figure 1. Schematic illustration of the computational domain.

a large 20L × 20L × 20L LES domain was combined with a relatively high Reynolds
number of Re = 1200 and a turbulent kinetic energy level of k = 0.09375 U2 (see also
§2). The LES box was discretised using a 256 × 256 × 256 uniform mesh distributed
over 512 processing cores. Periodic boundary conditions were employed for the velocities
in all three directions. The subgrid scale turbulence was modeled using the standard
Smagorinsky method with constant CSmag = 0.22. Every time step the three components
of the velocity field were rescaled so that the isotropy and the turbulence intensity were
maintained.

In the DNS, the surface was assumed to remain flat at all times. For the velocity field,
free-slip boundary conditions were employed at the surface, while periodic boundary con-
ditions were used in the horizontal directions. At the surface, the scalar concentration was
assumed to be at saturation (c = 1) at all times, while the concentration was initialised
by

c = erfc

(
ζ

√
ScRe

4t′

)
(3.2)

where ζ is the distance to the surface, t′ = 120 L/U , and Sc = 20, 500. In the horizontal
directions periodic boundary conditions were employed and at the bottom symmetry
boundary conditions (∂c/∂z = 0) were used.

The interfacial mass transfer simulation was carried out on the Supermuc cluster at
LRZ in Munich using ≈ 18 · 106 CPUh and employing 20,992 cores.

4. Results

4.1. Characteristics of flow field

The interfacial mass transfer simulation was started using a fully developed turbulent
flow field. This initial turbulent flow field was generated by running the simulation with-
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Figure 2. The mean energy spectrum normalised by the Kolmogorov velocity uη and length η
scales. The dashed line indicates the −5/3 slope.
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Figure 3. Flow statistics, ensemble averaged over 103 L/U . (a) turbulent integral length
scale L11, (b) root-mean-square (rms) of horizontal u and vertical w velocity fluctuations, (c)

turbulent Reynolds number. The dotted lines in (a) and (c) correspond to L11(z/L) ±σL and
RT (z/L) ±σR, where σL and σR are the standard deviations of L11 and RT , respectively.

out calculating mass transfer. After a period of about 50L/U , the turbulence in the DNS
domain (upper box in figure 1) was found to be fully developed, as verified by the statis-
tically steady behaviour of the turbulent energy spectrum shown in figure 2. The mean
energy spectrum, which was obtained by averaging the instantaneous energy spectrum
at z = 2.75L over the interval 50L/U 6 t 6 100L/U , clearly showed the existence of
an inertial subrange with a κ−5/3 behaviour, similar to Flores et al. (2017), as well as
a broad dissipative range where κ > η. The same features were found in all spectra
extracted at various other z locations, indicating that the turbulent flow is very well
resolved. Note that in the above κ is the wavenumber and η is the Kolmogorov length
scale. Subsequently, at t = 100L/U the full simulation was started by activating mass
transfer.

The flow statistics shown in figure 3 were obtained by ensemble averaging the flow
properties over the interval 50L/U 6 t 6 153L/U . By combining time averaging with
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averaging in the large homogeneous horizontal directions, the size of this relatively short
interval was deemed to be sufficient to obtain good quality statistics. Figure 3a shows
the variation in z of the time-averaged longitudinal integral length scale L11 ( · denotes
averaging over a period in time), with

L11(z) =

Lx/2∫
0

R11(r, z)dr,

where the longitudinal two-point correlation R11 of the horizontal velocity u is defined
by

R11(r, z) =

Lx/2∫
x=0

Ly∫
y=0

u(x, y, z)u(x+ r, y, z)dydx

Lx/2∫
x=0

Ly∫
y=0

u2(x, y, z)dydx

,

in which Lx×Ly is the size of the horizontal plane. As in the grid-stirred experiments of
e.g. Hopfinger & Toly (1976); Herlina & Jirka (2008), the integral length scale in most of
the lower part of the computational domain was found to increase lineraly with increasing
distance from the turbulent source. Furthermore, it can be seen that the characteristic
integral length scale L∞, defined by

L∞ = L11(z∞), (4.1)

in which z∞ is the location where L11 is maximum, is about 5.67L. The characteristic
integral length scale L∞ identifies the size of the largest eddies in the turbulent flow,
which can only exist undisturbed at distances larger than one-L∞ from the interface.
Closer to the interface, inside the so-called surface-influenced layer, the turbulence starts
to lose its isotropy (cf. e.g. Hunt & Graham 1978; Perot & Moin 1995). Even though
the depth of our DNS domain is somewhat smaller than 5.67L, a reasonable isotropy
(|1 − wrms/urms| < 0.1) in most of the lower region (z/L < 2.5) is obtained (cf. figure
3b). In agreement with (e.g. Perot & Moin 1995; Walker et al. 1996), the figure also shows
an initial gradual decay in both horizontal and vertical fluctuations as the turbulence
diffuses upwards. Close to the surface, a significant increase in decay rate of the vertical
fluctuations wrms is observed, which in turn induces an increase in the horizontal fluc-
tuations urms due to the redistribution of the turbulent kinetic energy. A more detailed
discussion on this for free-slip and/or no-slip boundary conditions can be found in e.g.
Perot & Moin (1995); Walker et al. (1996); Magnaudet (2003); Bodart et al. (2010);
McCorquodale & Munro (2017).

Typically, the turbulent Reynolds number for grid-stirred turbulence is defined by

RT =
u∞Λ

ν
, (4.2)

where Λ = 2L∞ (e.g. Brumley & Jirka 1987; Hopfinger & Toly 1976). This definition is
also adopted here, where we used u∞ = urms(z∞) for the characteristic velocity scale.
The time-average of the corresponding local turbulent Reynolds number

RT (z) = urms2L11/ν,

shown in figure 3c, was found to be approximately constant (RT (z) ≈ 1856) in most
of the lower DNS domain. In general, the turbulent flow statistics were similar to the
far-field statistics in the experiments of Brumley & Jirka (1987); Herlina & Jirka (2008)
and the statistics obtained at low to moderate RT in HW14, where a more extended
comparison with literature was presented.
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∆tU/L L∞/L u∞/U RT

50 - 153 5.67 0.1364 1856
126 - 153 4.54 0.1322 1440

Table 1. Mean flow parameters and the interval ∆t over which they are determined. Scalar
statistics were only gathered over the smaller of the two intervals.

4.2. Statistics of turbulent scalar transport

As mentioned above, the scalar mass transfer calculations for Sc = 20 and 500 were
activated at t = 100L/U using the initial conditions given in (3.2). Owing to the high
RT , the transfer of saturated fluid from the surface to the bulk was relatively fast. This,
together with the large horizontal extent of the computational domain, resulted in a
speedy convergence of the normalised horizontally-averaged turbulent mass flux statistics.
At t = 126 L/U time-units, the total mass flux near the interface (0 6 ζ 6 10δ) was
found to be independent of z. Scalar transport statistics were subsequently gathered in
this quasi-steady regime from t = 126L/U until 153L/U .

As illustrated by the dotted lines in figure 3a, the integral length scale of the turbulence
L11 varied significantly in time. Hence, it is expected that L∞ (and consequently RT )
- when calculated using a moving average over a relatively small time window- will
also become time dependent. Using this we obtained a significant range of turbulent
Reynolds numbers for the verification of the small-eddy model (cf. §4.4). Note that for
the smaller time windows L∞ is the local maximum of L11 nearest to the location where
L∞ was obtained for the entire interval. The dependence of L∞ and RT on the size of the
time interval can also be seen in table 1, where when averaging over the entire interval
50L/U−153L/U , L∞ = 5.67L and RT = 1856. On the other hand, by averaging over the
smaller interval, values for L∞ and RT of 4.54L and 1440, respectively, were obtained.

The resulting scalar statistics can be seen in figure 4. The vertical axes show the
distance to the surface ζ normalised by the mean concentration boundary layer thickness
δ. The latter is defined by the distance to the surface where

crms =

√
〈c2〉 − 〈c〉2 (4.3)

is maximum. Note that 〈·〉 denotes averaging in the homogeneous (horizontal) directions.
Similarly to the lower RT cases in HW14, the horizontally-averaged boundary layer thick-
ness δ was found to scale with Sc−1/2 as illustrated for t = 140L/U in figure 5 (cf. further
discussion in §4.4).

Figure 4a shows the mean concentration profiles near the surface, normalised by cal-

culating
(
〈c〉 − 〈cb〉

)
/
(
cs − 〈cb〉

)
. Immediately underneath the surface all profiles are

approximately linear, which is a clear indication that molecular diffusion dominates gas
transfer. It can also be seen that in that region the normalised profiles all collapse. For
similar Sc, deeper down in the bulk - due to the more effective vertical mixing - a slightly
increased concentration at higher RT is observed. This is in agreement with the trend
found for lower RT in HW14 and the experiments of Herlina & Jirka (2008).

The normalised concentration fluctuations crms/
(
cs − 〈cb〉

)
, shown in figure 4b, can

be seen to grow rapidly from zero at the surface to a local maximum, where approximately
the horizontal turbulent exchange of saturated and unsaturated fluid is most intensive,
before declining again to zero in the well-mixed region of the bulk. The peaks observed
in the normalised crms (figure 4b) were found to be approximately 0.3 in all cases,
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which is typical for numerical simulations with free-slip surface boundary conditions
(e.g. Magnaudet & Calmet 2006) and is also found in some experiments (e.g. Atmane &
George 2002). Some other experiments, however, show crms peaks as low as 0.1 to 0.2
(e.g. Chu & Jirka 1992; Herlina & Jirka 2008). These relatively low peaks could be a
consequence of a significant surface contamination as shown in the DNS studies of e.g.
Khakpour et al. (2011); Wissink et al. (2017).

Figure 4c shows the mean diffusive 〈−D∂c/∂z〉 and turbulent fluxes 〈c′w′〉 normalised
by the mean diffusive mass flux 〈j〉 at the interface, where

j = −D∂c

∂z

∣∣∣∣
i

. (4.4)

Present results for RT ≈ 1440 with Sc = 20, 500 are shown together with the GS500
results from HW14 with RT = 507 and Sc = 32. In agreement with the theory, the
diffusive fluxes are maximum at the surface and rapidly decrease to zero in the bulk,
while simultaneously the turbulent fluxes increase from zero at the surface such that
the sum of the mean diffusive and turbulent fluxes remains constant at all z-locations.
The latter indicates that the simulation has run sufficiently long to achieve a quasi-
steady state. For all cases, the depth at which the normalised fluxes are in equilibrium
is approximately the same (ζ ≈ 0.65δ ).

Note that even though the Schmidt numbers in the simulation differ significantly,
all normalised scalar statistics shown in figure 4b,c nearly collapse. When applying the
present normalisation to the lower RT cases in HW14, a similar data collapse is observed.
This is illustrated by including the RT = 507 results (which are typical for 84 6 RT 6
507) in the figure. Based on this, we can conclude that the normalised results are almost
invariant with respect to both Sc and RT .

4.3. Role of large and small scales

4.3.1. Surface divergence

Figure 6 depicts a comparison between the surface divergence (β = −∂w/∂z) and
the instantaneous mass transfer velocity for Sc = 20 at an arbitrarily chosen time
t = 140L/U . The β contours (figure 6a) clearly show the presence of convection cells
corresponding to large structures of size ∼ L∞ with positive surface divergence (up-
welling of unsaturated fluid) separated by narrow regions of negative surface divergence
(downwelling of saturated fluid). Compared to the surface divergence plot, the footprints
of fine-scale turbulent structures can be more clearly identified in the corresponding
instantaneous KL contour plot (for a more detailed comparison see figure 11). An impor-
tant reason for this discrepancy is the much higher diffusivity of the fluid (affecting β)
compared to the scalar (affecting KL). An increase in RT leads to an increase in fine scale
turbulent structures at the surface. Because of the aforementioned difference in diffusiv-
ities these structures will remain clearly visible for much longer in the KL contours than
in the β contours. This has a negative effect on the resulting time-averaged spatial corre-
lation ρ(KL, β) at high RT , as can be seen in figure 7, where in the present high RT sim-
ulation the value of ρ(KL, β) = 0.78 was lower than the values ρ(KL, β) = 0.89, 0.81, 0.81
obtained from HW14 for RT = 84, 195, 507, respectively. This reduction of ρ(KL, β) with
RT also impacts the applicability of the surface divergence model at high RT . This is in
agreement with the findings of Turney & Banerjee (2013) who observed a break down
of the surface divergence model in the presence of small time scales. This will be further
investigated below.
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(a) (b)

Figure 6. Snapshots at t = 140L/U of (a) surface divergence β and (b) KL for Sc = 20.
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Figure 7. Time-averaged spatial correlation of the transfer velocity KL with the surface
divergence β for various RT .

4.3.2. Vortical structures

In figure 8, vortical structures in part of the computational domains are identified using
the λ2 criterion of Jeong & Hussain (1995). To allow a direct comparison of the structures
obtained in the present DNS and GS500 (HW14), the λ2 eigenvalues were normalised
using the relevant characteristic turbulent length (L∞) and velocity (u∞) scales. Figures
8a, b show that, because of the larger RT , significantly more vortical structures are
found in the present simulation than in the GS500 simulation, while the thickness of
the structures - which depends on the Kolmogorov length scale - is smaller. The lack of
vortical structures, as observed in large areas of the GS500 simulation, indicates that the
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(a) (b)

(c) (d)

Figure 8. Snapshots of vortical structures identified using λ2 = −200 (upper panes) and
λ2 = −5 (lower panes), normalised by L∞ and u∞: a), c) present DNS at t = 146.6L/U and b),
d) case GS500 from HW14 (RT = 507).

instantaneous turbulence is not uniformly distributed. Consequently, it is to be expected
that the instantaneous mass transfer velocity will also not be uniformly distributed but
will be elevated in regions with increased turbulence.

To further explore what actually happens close to the surface, in figures 8c,d the vor-
tical structures in the region 0 6 ζ/L∞ 6 0.04 are visualised using λ2 = −5. Again, the
number and size of the vortical structures in the present simulation differ significantly
from the ones in GS500. As explained below, because of the free-slip boundary condition
at the top, the axes of the structures close to the surface are either parallel or orthogonal
to the interface. Figure 9 shows the Kolmogorov length scale η for the present simulation
as a function of the distance to the surface. Between ζ/L∞ ≈ 1 (near the bottom) and
ζ/L∞ ≈ 0.05, η was found to increase as the turbulence diffusing from below dissipates.
As seen in figures 8a,c and 3b, when further approaching the surface, the flow rapidly
becomes more and more two-dimensional. In upwelling regions, the increase in horizontal
velocities towards the surface stretches initially ”randomly” orientated vortical structures
and aligns them horizontally. Because of the large size of these upwelling regions (com-
pared to the downwelling regions), this horizontal alignment is very common and causes
vortical structures (on average) to become thinner towards the surface. As the diameter of
the vortical structures scales with η (Jimenez et al. 1993), the thinning mentioned above
explains the decrease in η observed in figure 9 between ζ/L∞ ≈ 0.05 and 0.008. Closer
to the surface, the horizontal velocities become constant due to the free-slip boundary
condition. As a result, the horizontal stretching no longer increases, which is an expla-
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Figure 9. a) Variation of the mean Kolmogorov length scale with depth. b) Detailed view of
(a) immediately beneath the surface.

nation of the slight increase in η observed between ≈ 0.008 and 0. In the relatively small
downwelling dominated regions, the downward velocity increases with distance from the
surface thereby stretching and strengthening the local surface-attached (surface-normal)
vortical structures (SAVS). Note that the SAVS observed in the downwelling regions
are seeded by relatively weak surface-normal vorticity transported upwards in the up-
welling regions, where they attach to the surface and are subsequently moved towards
the downwelling regions.

While the surface-attached vortical structures promote mixing in the horizontal di-
rection, the structures with axes parallel to the interface promote the exchange of fluid
between the upper bulk and the surface. Their relation with mass transfer is studied in
figure 10a, by combining contours of KL with a cross-section of the vortical structures
from figure 8c at ζ/L∞ = 0.01. The horizontally-aligned slender vortical structures can
be found near the edges of areas with high KL, adjacent to locations where saturated
fluid is transported downwards. The SAVS, on the other hand, are generally located in
areas with relatively low KL. To distinguish the SAVS from the horizontally-aligned vor-
tical structures, in figure 10b, the λ2 isolines are combined with contours of the surface
normal vorticity component ωz. In contrast to the horizontally-aligned vortices, SAVS
are marked by elevated levels of ωz in their entire interior.

Figure 11 shows a detailed view of the β and KL contours from figure 6 combined with
isolines of relatively high-intensity surface-normal vorticity |ωz|. As mentioned above,
because of the stretching of SAVS, it is expected to only see such isolines in downwelling
areas. When this downwelling is very strong, SAVS undergo significant stretching and
quickly become exceedingly thin leading to their dissipation within a relatively short
time. SAVS in areas of very weak downwelling (as seen in figure 11a), tend to survive
for a long time in the absence of large-scale turbulent motion. Because of the extended
exposure time at the surface the fluid inside these structures has become highly saturated
due to diffusive mass transfer, as indicated by the local low KL values in figure 11b. While
the correlation of these SAVS with low KL values is very good, the correlation with low
β values is rather poor. This indicates that the local correlation ρ(β,KL) will be rather
small. Note that the above observations are generally confirmed in all recorded snapshots.
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(a) (b)

Figure 10. Isolines of λ2 = −5 at ζ/L∞ = 0.01 and t = 146.6L/U with a) contours of KL for
Sc = 20 and b) contours of |ωz|. Note that λ2, KL and ωz were normalised using L∞ and u∞.

(a) (b)

Figure 11. Zoomed view of figure 6 combined with isolines of surface-normal vorticity
magnitude at |ωz| L∞u∞ = 14, 34, 51 and 68. a) Contours of β and b) contours of KL.
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The dynamics of vortical structures in open-channel flow and their influence on inter-
facial mass transfer has been discussed by e.g. Pan & Banerjee (1995); Nagaosa (1999);
Nagaosa & Handler (2003). Pan & Banerjee (1995) discovered the existence of relatively
large ring-like vortices at the surface of open channel flow that are associated with vertical
mixing. In the interior of the ring unsaturated fluid from the bulk is transported towards
the surface (splat) while immediately outside of the ring saturated fluid is transported
down into the bulk (antisplat). Nagaosa & Handler (2003) found that the ring-like vorti-
cal structures originate from near the bottom of the channel and start their life as hairpin
vortices. In our case, in the absence of bottom-shear and associated vortical structures
like hairpin vortices, the vortical dynamics of the turbulent flow changes significantly.
Individual upwellings are usually relatively small but tend to cluster together into larger
areas separated by narrow regions with strong downwelling. The topology of the clusters
is very complex and rapidly changes in time. As discussed above (see also figure 10),
the vortices parallel to the surface, that are responsible for vertical mixing, tend to lie
along the edges of upwelling regions and sometimes resemble parts of ring-like vortices,
similar to the ones previously observed by e.g. Nagaosa & Handler (2003). As mentioned
earlier, the SAVS only promote horizontal mixing and hence do not directly contribute to
the turbulent vertical mass transfer, which is in agreement with the findings of Nagaosa
(1999).

4.3.3. Spectra of turbulent mass flux

As illustrated above, the mass transfer is directly related to the presence of vortical
structures immediately underneath the surface. With increasing RT the quantity of vor-
tical structures increases, while their diameter typically decreases. To further investigate
the relative importance of large and small scale structures for vertical mass transfer,
time-averaged spectra of the turbulent mass flux c′w′ are plotted as a function of the
normalised wavenumber κL∞ (cf. figure 12). The present results, obtained at RT = 1440,
are compared to the results of GS500 at RT = 507 and GS80 at RT = 84 (see HW14).

Figure 12a shows the cospectra premultiplied by the wavenumber κ. Compared to the
present simulation at RT = 1440, the energy-containing range at RT = 507 moves to
smaller values of κL∞. At RT = 84 only a relatively narrow band of energy-containing
scales was observed, which coincides with the largest energy-containing scales observed
at RT = 507. Hence, it can be concluded that at low RT large scales dominate the
turbulent mass flux, while at high RT the contribution of the small scales becomes more
important, supporting the two-regime mass-transfer concept of Theofanous et al. (1976).
Near the critical RT both small and large scales were found to contribute significantly
to the overall turbulent mass transfer.

To further illustrate the contribution of the different scales to the mass transfer, the
cumulative cospectra of c′w′ are shown in figure 12b,c at ζ = 5δ and δ, respectively. It
can be seen that with increasing RT the smaller scales become more and more important
for the vertical turbulent mass transport. For instance, at ζ = 5δ, the contribution of
relatively large scales with wavenumbers κL∞ 6 10 to the total energy of the turbulent
flux decreases from 70% for RT = 84 to 55% for RT = 507 and finally to 34% for
RT = 1440. Higher up in the boundary layer, at ζ = δ, the presence of the free-slip
surface causes the flow to become increasingly two-dimensional. This is evidenced by
the change in orientation of the vortical structures when approaching the surface as
mentioned above (cf. figure 8a,c). The inverse energy cascade, that is typical for 2D
turbulence, explains the increased importance of the larger scales to the vertical mass
transfer when approaching the surface (cf. figure 12c).
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Figure 12. a) Premultiplied cospectra of turbulent mass flux c′w′ at ζ = 5δ. Cumulative
cospectra of c′w′ at b) ζ = 5δ and c) ζ = δ.
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4.4. Scaling of transfer velocity with Sc and RT

In agreement with experiments of e.g. Chu & Jirka (1992); Atmane & George (2002);
Herlina & Jirka (2008), in the HW14 simulations it was found that the concentration
boundary layer thickness δ depends on the level of isotropic turbulence diffusing from
below. This turbulence promotes the interchange of unsaturated fluid from the bulk
with saturated fluid from the surface. For Sc is constant, the boundary layer thickness
(normalised by L∞) decreases with increasing turbulence level, resulting in a steeper
concentration gradient at the surface and therefore an increased normalised mass transfer
velocity. On the other hand, for RT is constant it was shown that δ scales with Sc−1/2 (cf.
figure 5). The same scaling was found for KL, as can be seen in figure 13. This implies that
for constant RT and free-slip surface boundary conditions, the mass transfer velocity KL

is proportional to δ. Note that the same instantaneous scaling behaviour KL ∝ Sc−1/2

was consistently found for all t > 126L/U . Also, this scaling is in agreement with the
theoretical scaling found for free-slip surface conditions (e.g. Jähne & Haussecker 1998;
Ledwell 1984).

Free-slip boundary conditions are applied to represent a clean (surfactant-free) sur-
face. Contaminated surfaces, on the other hand, can be modelled e.g. by using a no-slip
boundary condition to represent some of the physics pertinent to severe contamination
(Herlina & Wissink 2016) or by explicitly solving the surfactant transport at the sur-
face and modelling their influence on the near-surface velocity field (Shen et al. 2004;
Khakpour et al. 2011; Wissink et al. 2017). As seen in Wissink et al. (2017), the scaling
behaviour of the mass transfer velocity with the Schmidt number smoothly changes from
Sc−1/2 for clean surfaces to Sc−2/3 for severely contaminated surfaces.

As mentioned above, the present high-RT , high-Sc DNS study builds on our previous
DNS of interfacial mass transfer driven by isotropic turbulence diffusing from below, see
Herlina & Wissink (2014, 2016); Wissink et al. (2017). Figure 14 shows the normalised
mass transfer velocity as a function of the turbulent Reynolds number RT ,

KL

u∞Sc−n
= cR−qT , (4.5)

where n = 1/2 and n = 2/3 for the free-slip and no-slip surface boundary conditions,
respectively, while q depends on the size of the dominating turbulent scales, as discussed
below. Note that after using u∞ and Λ for nondimensionalisation, it can be seen that for
n = q = 1/2 (4.5) is equivalent to (1.3), while for n = 1/2 and q = 1/4 it is equivalent to
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Figure 14. Variation of the normalised KL with RT . For the free-slip boundary condition, the
present DNS results are combined with results from HW14 obtained at low to moderate RT
(the thick lines represent the theoretical scaling laws). In addition, results from HW16, using
a no-slip boundary condition, are also shown (here thin lines represent the theoretical scaling
laws).

(1.4), cf. Theofanous et al. (1976). The data shown in the figure originate from our previ-
ous (HW14) and present DNS of interfacial mass transfer driven by isotropic turbulence
with free-slip surface boundary conditions. While HW14 only considered low to moderate
RT values, our present DNS for the first time combines high RT turbulence (RT ≈ 1440)
with low diffusivity mass transfer (Sc up to 500), which is typical for dissolved oxygen in
water. In agreement with Theofanous (1984), two regimes can be identified in this figure.
For turbulent Reynolds numbers smaller than RT ≈ 500, the HW14 numerical results

show a scaling of the normalised mass transfer velocity with R
−1/2
T , which supports the

large-eddy model of Fortescue & Pearson (1967). For larger RT , our present DNS results
- obtained by combining horizontal averaging with ensemble averaging over time periods

of 30L/U - clearly show the presence of a different scaling law where KL

u∞Sc−1/2 ∝ R
−1/4
T ,

which is in agreement with the small-eddy model of Banerjee et al. (1968); Lamont &

Scott (1970). The same KL dependency on R
−1/4
T was reported in the experimental work

of Herlina & Jirka (2008). The data shown in the figure is complemented by results from
our no-slip simulations (cf. HW16). As in the free-slip case, both the small and large
eddy regimes can be clearly identified. It can be seen in Herlina & Wissink (2016) that
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the fitted line through the free-slip numerical results for high RT also agrees well with
the upper bound of the experimental findings of McKenna & McGillis (2004) obtained
using a clean surface. Note that, even though we expect a smooth transition between
the two regimes, it was found that the line through the present free-slip DNS data also
intersects the result obtained in HW14 at RT = 507. Further investigations would be
needed to determine a detailed picture of the transitional regimes around RT ≈ 500 for
both the free-slip and the no-slip case.

5. Conclusions

A large scale direct numerical simulation of interfacial mass transfer at moderate to
high Schmidt numbers (up to Sc = 500) across a free-slip surface, driven by relatively
high intensity isotropic turbulence (RT ≈ 1440−1856), has been performed. The isotropic
turbulence, generated in a concurrently running LES, was introduced at the bottom of the
DNS domain. It was found that the missing subgrid scales in the LES energy spectrum
established very rapidly as the turbulence diffused upwards in the DNS domain. Even
though the depth of the computational domain was relatively small compared to the
integral length scale, the statistics typical for shear-free turbulence near a free-slip surface
were found to be consistent with previous data. For instance, the time-averaged turbulent
Reynolds number was found to be approximately constant in most of the lower part of
the DNS domain.

Previous numerical investigations of interfacial mass transfer driven by turbulence
were mostly limited to low RT and/or low Sc. As far as the authors are aware, this is
the first DNS in which both the Kolmogorov scale of the relatively highly turbulent flow
(significantly higher than the critical RT ≈ 500, above which the small eddy model is
believed to be applicable for the estimation of the mass transfer velocity KL) and the
Batchelor scale, typical for the low-diffusivity mass transfer, are resolved. This was made
possible by employing a dual-mesh approach in which the turbulent flow and the lower
Schmidt number (Sc = 20) scalar transport were resolved on the base mesh comprising
524×106 grid points, while a refined mesh of 65.5×109 grid points was used for the higher
Schmidt number (Sc = 500) scalar transport, which is typical for oxygen in water. The
presence of an inertial subrange with a κ−5/3 behaviour and a broad dissipative range in
the energy spectra, as found at various z−locations, further confirms that the turbulent
flow in the DNS is very well resolved.

Independent of RT and Sc, the profiles of the mean concentration, the concentration
fluctuation, the diffusive flux and the turbulent mass flux obtained in this simulation and
our previous simulations (HW14) were found to nearly collapse when applying suitable
normalisations. In agreement with the theory, the sum of the diffusive and turbulent
fluxes in the upper bulk was observed to be equal to the diffusive flux at the surface.

At constant RT , the scaling of both δ and KL with Sc−1/2 was found to be accurately
reproduced, indicating that KL varies linearly with δ. At constant Sc, however, with
increasing RT , δ/L∞ is expected to become smaller resulting in a steeper gradient of the
vertical concentration profile near the surface giving rise to an increase in KL.

The instantaneous correlation of the surface divergence with the local KL at the sur-
face was found to worsen with increasing RT . As suggested by Turney & Banerjee (2013),
this can be attributed to the presence of small time scales in the highly turbulent flow.
Compared to our previous simulation at a lower RT = 507, here the vortical structures
were found to be smaller and far more numerous. As a result, the contribution of the
smaller scales to the total turbulent mass flux was observed to be significantly larger
than in the lower RT simulations. Also, close to the surface the turbulent intensity in the
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present simulation remains highly significant, while the axes of the vortical structures in
both simulations either became aligned with or orthogonal to the surface. The latter is
a consequence of the flat, free-slip boundary condition at the top forcing the turbulent
flow to become increasingly two-dimensional. The structures that aligned with the surface
were located at the boundaries of upwelling and downwelling regions and contributed to
the vertical mixing of saturated and unsaturated fluid, which at the surface is charac-
terised by relatively high levels of KL. The orthogonal (surface-attached) structures, on
the other hand, were mostly located in highly saturated areas and merely mixed already
saturated fluid in the horizontal direction.

Previously, the existence of the small and large-eddy regimes in the presence of a no-slip
surface boundary conditions was confirmed numerically in Herlina & Wissink (2016). By
ensemble averaging the data in the present simulation, we were able to obtain the mass
transfer velocities for a range of RT values between approximately 1440 and 1856. In
line with the observations above, the importance of small scale turbulent structures was
further confirmed by the scaling of the normalised mass transfer velocity KL

u∞Sc−1/2 with

R
−1/4
T . The latter corresponds to the small-eddy model of Banerjee et al. (1968); Lamont

& Scott (1970), which according to Theofanous (1984) is applicable for RT larger than
≈ 500. Combining results from the present simulation with results from HW14, confirmed
that for interfacial mass transfer driven by isotropic turbulence diffusing from below, the
critical RT is indeed about 500. It is likely, however, that there will be a smooth transition
between the large-eddy and the small-eddy model, which needs further investigation.
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Grötzbach, G. 1983 Spatial resolution requirements for direct numerical simulation of the
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