
Investigating 3D holoscopic visual content upsampling 
using super-resolution for cultural heritage digitization 

Abdelhak Belhi1,2, (*), Abdelaziz Bouras1, Taha Alfaqheri3,  
Akuha Solomon Aondoakaa3, Abdul H. Sadka3 

 
1 CSE, Qatar University, Doha, Qatar 

{abdelhak.belhi,abdelaziz.bouras}@qu.edu.qa 
2 DISP Laboratory, University Lumière Lyon 2, Lyon, France 

3 Brunel University, London, United Kingdom 
{taha.alfaqheri,akuha.aondoakaa,abdul.sadka}@brunel.ac.uk 

Abstract.  
Through this paper, we aim at investigating the impact of using deep learning-
based technologies such as super-resolution on Holoscopic 3D (H3D) images. 
Holoscopic 3D imaging is a technology that aims at providing cost-effective al-
ternatives for 3D content viewing and consumption without requiring a special 
headgear or posture. The technique is using a special lens array fitted to standard 
DSLR or mirrorless cameras to generate or capture 3D content. The output is a 
Holoscopic 3D image that can be displayed in lightfield displays or Multiview 
displays following a post-processing procedure. The main advantage of this tech-
nique is its cost-effectiveness in viewing and interacting with 3D content. How-
ever, one of its drawbacks is the low spatial density of the commercial cameras 
CMOS sensors and the lens induced imperfections. The latter can be fixed in 
software using some distortion correction techniques. However, the former is still 
challenging in terms of techniques that result in naturally looking output. Miti-
gating such issues with hardware will lead to higher costs and the technique loses 
its main advantage.  Our approach consists of designing a framework that lever-
ages software tools in order to upscale the output of H3D cameras whilst solving 
the low spatial density problem of H3D images. We also investigate the impact 
of deep learning-based video motion interpolation on the output quality of the 
cultural H3D imaging framework. 
 
Keywords: Cultural heritage, Deep learning, Super-resolution, 3D holoscopic 
imaging. 

1 Introduction 

With the growing need for new and more attractive mediums for content consump-
tion and interaction, 3D technologies introduced an attractive solution [1].  For a long 
time, there were only two types of 3D content, either designed or scanned. However, 
there were no effective ways to preserve the spatial information when displaying or 
reproducing the captured asset. Mostly, the 3D copy was rendered, and viewpoints were 
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displayed on 2D screens. Several approaches were used such as stereoscopy, Mul-
tiview, Virtual Reality, etc. [2].  

The impact of 3D cinema pushed major players in content creation and multimedia 
hardware manufacturing to promote 3D vision through 3D cameras and 3D screens 
(mainly stereoscopic). The commercialized 3D technology on consumer level TVs is 
based on stereoscopic vision which relies on feeding a left image to the left eye and a 
right image to the right eye through either a spatial or temporal multiplexing using a 
special type of polarized glasses [3]. The next big improvement to 3D vision was Mul-
tiview displays (autostereoscopic) which consists of displaying many pairs of videos 
(for left and right eyes) so that the viewer can perceive a pair of views from each posi-
tion within the specified view angle without wearing any headgear or glasses. Unfortu-
nately, these two solutions have some drawbacks related to the comfort of the viewer 
(eye or head fatigue) or low-quality output [1] as these solutions rely on, or fool the 
human brain in thinking that the image viewed is in 3D either by wearing a special type 
of glasses or by looking to a screen from a certain angle. As a solution for preserving 
the spatial information in 3D when displaying the asset, some chose 3D printing in 
order to replicate the shape of the asset, but this is unfortunately impractical in the real 
world [4].  

The main drawback of Multiview and stereoscopic displays is the fact that they do 
not provide a true 3D representation of the content. They rather rely on the human brain 
to fuse the pairs of images which can lead to headaches and eye fatigue etc. Some re-
search work addressed these issues, but some intrinsic eye fatigue will always exist 
with stereoscopic 3D technologies [1]. 

To solve these limitations, many researchers are looking for alternatives to capture 
and display true 3D content. The main developed techniques rely on either holography 
or holoscopic imaging [3, 5].  Holography, however, is still at development levels as 
there are multiple limitations on how to control the light fields [1]. Holoscopic imaging 
(or also integral imaging) in contrast, provides a simple, cost-effective alternative. The 
principle requires a special macro lens array (MLA) fitted to a camera sensor. Each lens 
in the array captures the scene from a slightly shifted angle. At the display stage, the 
process is reversed, and the viewer will perceive a true 3D representation of the content 
without wearing any kind of headgear or having to look at the screen from a specific 
posture [3].  

 
Fig. 1. 3D Holoscopic capture and display principle 
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Thanks to many research works and with the advanced lens manufacturing technol-
ogies, the H3D technique is nowadays an efficient alternative for 3D content capturing 
and consumption. The technique is currently being adapted for cultural heritage digital 
preservation in multiple initiatives such as the CEPROQHA Project, funded by the Qa-
tar National Research Fund [6, 7]. The project is introducing multiple advances in 3D 
holoscopic imaging mainly in the capture, processing, and display of 3D holoscopic 
content. The technique is currently being adapted to fit the requirements of cultural data 
preservation such as improving the output quality [6]. 

Unfortunately, the H3D technique still presents numerous challenges related to the 
output quality which is primarily related to limitations in the capturing hardware used. 
Although high-density CMOS sensors can address this challenge, the main advantage 
of the H3D technique being its cost-effectiveness will be lost. Mitigating the low-den-
sity issue through software is thus a must. Recent successes in deep learning proven 
that such limitations could be addressed through software-based solutions. In fact, re-
cent super-resolution techniques that are designed to upscale and increase the spatial 
density of visual content can be adapted to mitigate the limitations found in the H3D 
imaging technique.  

 
The contributions discussed and presented in the present paper could be summarized 

as follows:   

• Construction of an H3D dataset of image and video of cultural content collected in 
a professional studio environment (to get the best possible conditions).  

• A review and performance comparison of most notable Single Image Super-Resolu-
tion (SISR) techniques on H3D visual content with highlights of the advantages of 
each technique over the others. 

• Design and implementation of an H3D post-processing framework for content up-
sampling through super-resolution and first experiments on H3D video frame inter-
polation.  

In this paper, we aim at investigating the impact of applying super-resolution tech-
niques for 3D holoscopic images. The context of our study is cultural heritage digitiza-
tion where there is an increasing need for digital preservation and multimedia tools. 
The main driver of this study is related to limitations found in the H3D acquisition 
framework and that we strongly believe could be addressed cost-effectively by software 
and deep learning-based tools. These limitations are mainly due to the low pixel density 
induced by the use of commercial cameras and which need to be solved through soft-
ware to preserve the main advantages of the H3D technique.  

The rest of the present paper is organized as follows. In section two, we present a 
literature review of the different state-of-the-art techniques used within this study.  Sec-
tion three describes the tools and methods we used to design and implement our H3D 
post-processing framework which is based on single image super-resolution and video 
motion interpolation. In section four, we define our experimental setup in addition to a 
presentation and a discussion of our results. In section five, we draw our conclusions 
and give some perspectives on future work to improve our framework.  
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2 Related work 

In this section, we present the background and the research advances related to the 
context of our study. This includes the impact of digital technologies on cultural herit-
age assets, technical details about the 3D holoscopic technology, an introduction to 
deep learning and some details about the single image super-resolution. 

 
2.1 Cultural heritage digitization  

Cultural heritage is the most effective medium for history and knowledge transfer 
between generations and civilizations [7]. These assets are often exhibited in museums, 
archeological sites, and art galleries. Unfortunately, these assets face lots of risks due 
to their degradation or due to other external factors. Nowadays, digital preservation 
attracts a lot of attention especially due to the proven performance of IT infrastructures 
and the new high-quality ways of content consumption [8, 9] . This means that cultural 
collections will be accessible to larger audiences from anywhere in the world. This also 
means that efficient alternatives to physical preservation can be developed which will 
decrease costs and efficiently improve the impact of cultural heritage through innova-
tive exhibition ways such are virtual museums or galleries, VR, AR, virtual interaction 
etc. However, in museums particularly, interaction with cultural assets is nowadays al-
most not existent as these assets are often protected with glass shields, fixed, or away 
from visitors. Having these assets in a digital form will effectively enable such interac-
tion, but the need to preserve the fine details of the assets is very challenging. The 
reason is that 3D scanning technologies are very costly (1000 USD per scan using the 
CultLab3D scanner) [10], and photogrammetry is often inefficient as it requires a lot of 
trial and error which often results in lost details, etc. [11] . 3D holoscopic imaging, in 
contrast, provides a new paradigm of capture and display that can be applied to cultural 
heritage assets [12]. The acquisition gear is relatively cheap in comparison with other 
technologies such as 3D scanning, and the output is theoretically a true 3D representa-
tion of the asset that can be displayed in either lightfield or Multiview displays [12]. 
However, there are still challenges regarding the quality of the output and the interac-
tion with the assets.  

 
2.2 3D Holoscopic Imaging 

The 3D holoscopic technology is not recent. Its principle was proposed in 1908 by 
Lippmann [13]. The technology is often referred to as lightfield imaging. The principle 
is inspired by Fly’s eyes using an evenly spaced macrolens array fitted to a normal 
camera (either DSLR or mirrorless) [3]. Each of these lenses captures the scene from a 
slightly shifted angle in comparison with neighboring lenses in the array. The funda-
mental principle of H3D is described by Fig. 1. The lightfield data is recorded by the 
CMOS sensor and will be stored as a 2D capture. At the display stage, the same process 
used for capture is reversed. A MLA is placed in front of the screen, and the object can 
be reconstructed in space [3, 5].   

Many researchers worked on designing and manufacturing a handheld holoscopic 
camera with similar capabilities as conventional 2D cameras, i.e., camera focal length, 
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exposure and the ability to capture viewpoints [14]. The raw holoscopic data was thus 
defined as a projection of the high-dimensional light signal onto the camera sensor 
plane [15] whilst preserving spatial and angular information. The H3D data structure 
can be described as a set of light rays captured in 3D space with different angles and 
directions. In contrast, 2D conventional cameras record pixel values while discarding 
the information related to the direction of light [15-17].  

The acquired angular information can be leveraged to generate multiple image 
formats, and this represents the main additional feature in comparison with 2D image 
data. The acquired angular information is used to extract multiple images from several 
viewpoints with just a single camera capture. Many research studies worked on differ-
ent holoscopic processing stages; H3D camera capturing stage [3, 14, 18, 19], post-
processing/image quality enhancement, reformatting and adaptation [1, 3], and light 
field visualization. 

One of the limitations of the H3D capturing framework is the low spatial density of 
elemental images. This limitation can be mitigated through hardware-based solutions 
(larger CMOS sensors) but the technique may loose one of its main advantages which 
is its cost-effectivness. To mitigate low spatial resolution effects, many research studies 
focused on enhancing the low spatial resolution using deep learning techniques; Wang 
and his colleagues implemented a bidirectional recurrent convolutional neural 
network, their technique aims to find a spatial relation between horizontally or verti-
cally adjacent sub-aperture images of light-field data [20]. They developed a framework 
to improve light field image resolution by combining SISR deep CNN and elemental 
Epipolar Plane Image (EPI) enhancement deep CNN. Their primary goal is to generate 
light field images with more geometric consistency. The researchers in [21] presented 
a method to synthesize new views from a sparse set of input views.  A robust and 
straightforward super-resolution method for light field images is presented in [22]. 
Wang and his colleagues used in their method a projection-based Light Field Super-
resolution (LFSR) solution without prior information based on a redefinition of the 
mapping function between disparity and shearing shift. This can provide a more con-
sistent representation of the spatial resolution of 4D light fields, which does not require 
any additional camera parameters or settings compared with former projection-based 
LFSR methods. However, this method requires generating a map from 2D lenslet im-
ages to 4D light field representation data using geometric optic rules. 

 
The authors of [15], worked on improving both the spatial and the temporal resolu-

tions of light field data using Convolutional Neural Networks (CNNs). They used a 
Lytro camera to generate the raw data and test the performance of the proposed algo-
rithm. The outcome of this work is similar to the one presented in [23], but the main 
difference is in the implementation approach. The work in [23] focuses on perspective 
images while in [15] the authors focus on upsampling the raw light field data. The au-
thors of [21] used two sequential convolutional neural networks to model disparity and 
color information. The main aim of this work is to increase the spatial resolution at the 
expense of decreasing the angular information.  

In [24], the authors presented a light field image resolution enhancing technique 
based on deep learning and epipolar plane images (EPI). Their combined framework 
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provides good spatial resolution by enhancing each sub-aperture image separately using 
super-resolution SR deep CNN. To ensure consistent light field image geometry, they 
proposed an Epipolar Plane Image enhancement deep CNN in their implementation. 

In this paper, we propose a post-processing framework intended to mitigate the low 
spatial density limitation induced by the commercial cameras CMOS sensors. We in-
vestigate and compare the performance of state-of-the-art 2D super-resolution frame-
work on raw H3D images. 

2.2.1. Holoscopic 3D imaging technology 
The Holoscopic 3D camera records the angular and spatial information of any given 

scene; this is made possible due to the omnidirectional micro macrolens array (MLA) 
placed right before the camera imaging sensor as shown in Fig. 2.  

 

 
Fig. 2. Lens architecture of a Holoscopic 3D imaging technology 

The first handheld prototype Holoscopic 3D camera was introduced by Adelson 
[25]. Fig. 3 shows a Schematic diagram of a Holoscopic 3D camera. A projected light 
ray with different angles and directions can be decoded into a set of Elemental Holo-
scopic images with different viewing angles. The output recorded images in the camera 
sensor can be represented in 4D data (See Fig. 4) [1, 20]. 
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2.2.2. Holoscopic Viewpoint extraction  
One of the advantages of the 3D holoscopic technology is the ability to convert the 

H3D format to many 3D displays raw formats such as Multiview through a process 
called viewpoint extraction. Viewpoint extraction is one of the key stages in Holoscopic 
content adaptation for Multiview displays. The basic principle behind viewpoint ex-
traction lays in the superimposing of pixels from all Elemental images as shown in Fig. 
5. The Holoscopic image is defined as H3DI = [H3DI(m,n)], where m and n are the 
horizontal and vertical positions of the H3DI  pixels respectively.   

 
Fig. 5. Holoscopic Viewpoint extraction 

Based on the Holoscopic 3D image viewpoint extraction principle presented in Fig. 
5, it is clear that the default resolution of the extracted viewpoint images, VP1, 

 
 

 
Fig. 3. Schematic diagram of a Holoscopic 3D 

camera 
Fig. 4. Two planes Holoscopic data representation 
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VP2…VP9 is directly proportional to the number of pixels within the elemental images 
that form the Holoscopic 3D image. As a result, an image interpolation technique to 
upsample the H3D image is required to improve the quality of viewpoint images. The 
next section elaborates on the full Holoscopic content adaptation process for Multiview 
displays. 

2.2.3. Holoscopic content adaptation for Multiview display 
The 3D Holoscopic content adaptation stages for Multiview displays can be grouped 

into four steps (see Fig. 6) ; (i) Holoscopic data acquisition, where assets can be 
recorded with the Holoscopic 3D imaging technology with a linear or angular motion 
ii) Multiview frame extraction, during this stage the viewpoint images needed are ex-
tracted as well as the disparity range as to where viewers observation position is to be 
taken into account when extracting Multiview points. However, this information is used 
to make sure the right MLA parameters are set during capture. (iii) Viewpoint image 
up-sampling and (iv) Multiview pixel remapping.  

 

 
Fig. 6. H3D data processing stages 

 
2.3 Deep learning and Single Image Super-resolution (SISR) 

Deep learning represents a class of machine learning technologies mainly based on 
the concept of deep neural networks [26]. This class of algorithms was proven to work 
well in modeling complex functions and was also proven to deal with big data effi-
ciently. Deep learning techniques are thus used in many domains such as natural lan-
guage processing and computer vision. The advantage of deep learning in comparison 
with other machine learning techniques is mainly related to the generalization capabil-
ities with unstructured raw data. Originally, these algorithms were used as classifiers 
and trained using pairs of (data, labels) [26]. The goal at the end is to efficiently train 
this classifier to generalize to unseen data samples. Since then, many deep learning 
algorithms were developed for other applications such as regression, time series pre-
diction, super-resolution, etc. [27]. Generally, these neural network work well with high 
volumes of data.  

 
Single Image Super-resolution (SISR) represents a class of image processing tech-

niques mainly intended to increase the resolution of a low-resolution image (LR). The 
resulting high-resolution image (HR) needs to preserve the structural information and 
the high-frequency details of the original image. In fact, this task is very challenging as 
the possibilities are very large for the HR image (very wide search space) [28]. Legacy 
approaches for SR had several limitations related to the unclearness regarding the LR-
HR mapping, the inefficiency in dealing with larger amounts of data and the lack of 
generalization. Recently, deep learning-based techniques were proven to be efficient in 

Holoscopic 3D 
Data 

Multiview 
frame extraction 

Viewpoint image 
Up-sampling 

Multiview pixel 
remapping 



9 
 

big data scenarios maintaining the ability to model and learn higher level abstractions 
from raw data [29].   

There are mainly three categories of single image super-resolution approaches found 
in the literature.  The first category of techniques are interpolation based methods such 
as bicubic interpolation which are considered among the fastest but unfortunately lack 
quality [28]. Reconstruction based methods are the second category which are mainly 
intended to solve the super-resolution problem of a certain category of images which 
induces a lack of generalization to other domains and categories [28].  The third cate-
gory are learning based methods which are considered among the most robust and ef-
ficient techniques, and thus they are the most investigated in our study. Learning based 
super-resolution methods use advanced machine learning techniques to analyze visual 
features and learn a nonlinear mapping between the LR and the SR images [30]. More-
over, this class of techniques saw a real shift in interest due to the superior performance 
induced by deep learning-based methods. SRCNN and VDSR [30, 31] are without a 
doubt the most notable super-resolution contributions as they provided a concrete proof 
that deep learning-based methods are effective for super-resolution applications.  The 
focus of our study is thus based on this category. A selection of super-resolution tech-
niques based on deep learning and used within our study are detailed in section 3.3.   

3 Methodology 

In this section, we describe the material and methods used in order to design and 
implement a framework evaluating the single image super-resolution upsampling for 
H3D images and videos. This includes the dataset, the data preprocessing methodology, 
and the tested super-resolution techniques.  A video motion interpolation prototype to 
increase the framerate of H3D videos is also presented.   

 
3.1 Data collection and preprocessing  

The data was one of the most critical parts of our research. Having a good quality 
dataset at hand is primordial in order to accurately evaluate the feasibility of our ap-
proach in a real-world scenario. This required setting up a professional studio environ-
ment in order to collect the data. The data we collected and captured consists of 13 
cultural objects from the collection of the Museum of Islamic Art in Doha, Qatar. These 
assets vary in shape and size and were selected to provide real world samples as some 
of them were easy to capture and some others were more or less difficult due to their 
dark and light absorbing surfaces, tiny sizes, etc. For data collection, we relied on the 
H3D camera prototype developed in Brunel University London CMCR laboratory. The 
capturing scenarios were 360° H3D video, Linear Multiview, and direct captures.   

 
The environmental variables such as lighting and distance were also recorded to pro-

vide additional details and metadata to tune the post-processing stage. In most cases, 
the same environmental setup (lighting, distance, etc.) was used to capture the assets. 
Each picture is saved in two formats: RAW ARW (uncompressed) and JPEG (com-
pressed). For both setups, three scenarios were implemented.  
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- 360° using a turntable with varying turning steps (10 °, 5°). 
- Linear Multiview (8 views, 16 views). 
- Direct captures.  

Fig. 7 and Fig. 8 show H3D and 2D images for a statue and tombstone objects 
respectively.    

 
Fig. 7. Statue object captured by Holoscopic 3D (H3D) camera on the left and traditional 2D 

camera on the right 

  

Fig. 8. Tombstone object captured by Holoscopic 3D (H3D) camera on the left and traditional 
2D camera on the right 

The data collected will be used for testing the performance of the developed 3D 
holoscopic post-processing framework that is mainly intended to increase the output 
quality (perceived output).   
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3.2 Investigated state-of-the-art Super-Resolution techniques 

In the following, we present some details about the super-resolution techniques we 
implemented and tested on 3D holoscopic images. The tested methods were either win-
ners of super-resolution challenges or their performance was at some time the best in 
class. 
• SRCNN (Image Super-Resolution Using Deep Convolutional Networks) 
SRCNN [30]  is one of the first CNN based super-resolution designs that were pub-

lished. It provided a confirmation that deep learning upsampling approaches are far 
better than legacy approaches. The network original design upsamples only the lumi-
nance channel of the image to simplify the training and to optimize computations as it 
was found that the high frequency details in an image are mainly described by the lu-
minance channel. Regarding its architecture, SRCNN has a 3-layer architecture which 
is relatively considered as simple in comparison with modern SR architecture. The net-
work has for a goal to map the low-resolution input into a higher resolution output. The 
first layer is in charge of patch extraction, the second will non-linearly map the patches 
to higher resolution, and the final layer will reconstruct the input according to the map-
ping. This simple architecture, while currently considered inefficient, overpassed tradi-
tional upsampling methods and opened the ways for multiple contributions for deep 
learning based single image super-resolution. Some of the limitations of SRCNN that 
were discussed in many contributions [28] are related to the facts that it has a very basic 
architecture as theoretically, in deep learning, the deeper is the better. Other limitations 
were also reported such as the reliance of the network on a bicubic interpolated LR 
image and the very long training (slow convergence).  The architecture or SRCNN is 
outlined in Fig. 9. 

 
Fig. 9. Architecture of SRCNN 

• VDSR (Accurate Image Super-Resolution Using Very Deep Convolutional 
Networks) 

Theoretically, a neural network performance is tied to its depth. However, there are 
still several challenges related to the effectiveness of training which often is affected 
by problems such as vanishing and exploding gradients. A lot of research work was 
thus dedicated to finding techniques that can solve these issues. In this regard, the 
VDSR [31] network was the first to introduce a very deep architecture inspired by the 
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successful CNN VGG [32]. The network has 20 layer and small convolutional windows 
sizes (3 × 3). The network, similarly to SRCNN, tries to upsample the LR bicubic in-
terpolated luminance channel.  Its authors reported some difficulties in the training, and 
thus they introduced gradient clipping. One of the advantages of VDSR is that it can be 
trained for several scales at once. The output of the network is fixed to patches of 41× 
41. In contrast with SRCNN, VDSR does not directly map the LR Y channel to the HR 
Y channel, but it maps what the authors call the Residual which is the difference be-
tween the Real HR and the Bicubic interpolated LR. Due to this, the authors claim that 
the computations are more lightweight and the network converges faster [28]. The ar-
chitecture or VDSR is described by Fig. 10. 

 
Fig. 10. VDSR architecture 

• ESPCN (Real-Time Single Image and Video Super-Resolution Using an Effi-
cient Sub-Pixel Convolutional Neural Network)  

 
The ESPCN network [33] was originally intended for real-time applications such as 

online video super-resolution. The authors of ESPCN tried to solve limitations found 
in using nearest neighbor interpolation when features get repeated in the adjacent posi-
tions. To mitigate this redundancy, the authors of ESPCN introduced a new layer called 
efficient subpixel convolution. They found that feature extraction directly in the LR 
image is more efficient than in the HR space. ESPCN achieved better performance than 
SRCNN with less computational complexity. The architecture of ESPCN is presented 
in Fig. 11. 

 
Fig. 11. Architecture of ESPCN 
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• RDN (Residual Dense Network for Image Super-Resolution) 
A newer design based on the successful DenseNet [34] was proposed in [35]. It uses 

the concept of residual dense blocks (RDB) and residual learning exploiting hierar-
chical features. By doing so, the developed SR network can capture local features with 
densely connected convolutions. Each RDB is densely connected to the successive 
block achieving the concept of contiguous memory. Global features are then derived 
from local features hierarchically. The network demonstrated superior performance 
against state-of-the-art SR models. The network architecture is outlined in Fig. 12. 

  

 

 
Fig. 12. Residual Dense Network (RDN) architecture 

• EDSR (Enhanced Deep Residual Networks for Single Image Super-Resolution) 
The EDSR super-resolution network was proposed in [36]. It introduced multiple 

new contributions and yielded state of the art performance in 2017. Its authors claimed 
that the Batch Normalization layer has no positive impact in SR as it was originally 
intended to classification CNNs. The authors leverage the fact that the visual features 
in different scales of upsampling are correlated and thus they relied on a transfer learn-
ing to train the network for higher scales. They mostly used the weights of the ×2 scale 
to initialize the ×3 and ×4 scales which resulted in additional performance benefits. The 
network won the NTIRE 2017 super-resolution challenge [36]. The architecture of 
VDSR is outlined in Fig. 13. 

 
Fig. 13. Architecture of the single scale EDSR network 
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• WDSR (Wide Activation for Efficient and Accurate Image Super-Resolution)  
The authors of WDSR further enhanced the EDSR network by designing and imple-

menting two major modifications [37]. The first being Global residual pathways where 
the authors found that linearly stacked convolutions are computationally taxing. The 
authors’ second modification is within the upsampling layer as in previous contribu-
tions, convolutional layers were stacked after the non-linear upscaling layer. The au-
thors argue that extracting the low-resolution features does not reduce the accuracy in 
SR tasks, but it improves the training performance significantly. The network won the 
NTIRE 2018 super-resolution challenge. Its architecture is compared to EDSR in Fig. 
14. 

 
Fig. 14. Architecture of WDSR and EDSR 

3.3 Video Motion Interpolation  

Video motion interpolation is one of the most studied problems in computer vision 
as it plays a primordial role in many multimedia systems [38, 39]. The principle consists 
of increasing the framerate of a video sequence to achieve a smoother playback. There 
are multiple proposed approaches for this challenge such as motion interpolation using 
handcrafted techniques to compute correspondences between the frames. However, 
these techniques are inefficient when dealing with high-resolution inputs and massive 
amounts of data as they are computationally taxing [38].  Moreover, these approaches 
do not perform well in challenging scenarios such as sudden light changes from one 
frame to another and motion blur. Deep learning-based approaches try to learn the map-
ping between one frame to another which in fact may address these problems due to the 
fact that they are learning based techniques. For our tests, we tested two video motion 
interpolation approaches based on deep learning. The first one is based on CNNs where 
a network is trained to predict in-between frames with adaptive convolutions [39], the 
second one is called PhaseNet and is based on pixel phase-based motion to perform the 
motion interpolation in videos.  

 
3.4 H3D post-processing framework design  

To solve the issues of low spatial density and the lack of higher framerate in H3D 
captures, we designed and implemented a post-processing framework for H3D content 
based on super-resolution and motion interpolation. The framework is mainly intended 
to improve the quality of the H3D technique while not inducing extra hardware costs. 
The framework is intended for both H3D still images and videos. However, despite 
yielding very promising results, the video motion interpolation is still at prototyping 
levels as the results must go through further tests. The framework architecture is pre-
sented in Fig. 15. 
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The data we used to validate the framework consists of some museum objects cap-

tured in a professional studio environment in order to replicate the best possible sce-
nario. The H3D camera we used was the Sony α7 II witch outputs images in 40 Mega-
pixels (MP) resolution. For video, the camera is limited to 4K resolution which is the 
fifth of its sensor recording capability. For the 360° video scenario, we designed a cap-
turing framework which consisted of using a graduated turntable where we fitted the 
object. We then recorded the object using 72 pictures (a picture each 5°). The pictures 
were then compiled in a video with the framerate of 5 FPS. The resulted capture is a 
video of 40 MP that has the best possible quality. The frames then receive preprocessing 
which consists mainly of global parameters adjustments such as brightness and contrast, 
lens distortion corrections etc. as described in previous works [3].  

The generated frames contain 4845 elemental images. Each of the frames is then 
split up into 64 patches. The patches are then forwarded to the super-resolution process 
to be upscaled in the desired scale (mostly ×2). The resulting upscaled output will later 
be compiled to a 5 FPS lossless video (lossless codecs such as Huffyuv and FFV1). The 
video will at this point be forwarded to the motion interpolation neural network to in-
crease the framerate and ensure a smoother playback for the user.  

Regarding super-resolution, our goal is mainly to investigate the impact of applying 
such techniques on the output viewed by the end-user as well as the preservation of 
high-frequency details as legacy approaches lack output quality. Thus, we tested the 
previously mentioned super-resolution frameworks (SRCNN, VDSR, ESPCN, RDN, 
EDSR, WDSR) on H3D frames. For each of the super-resolution techniques, we relied 
mainly on the implementation specified by the authors: The kernel types and sizes, the 
preprocessing required, the datasets used to train and validate the networks, the training 
hyperparameters, and the other network parameters. We mainly focused on two scales 
in our tests (×2, ×4). However, it is worth noting that networks such as VDSR could be 
trained for multiple scales at once.  

At the highest pixel density of the camera, the elemental images have a resolution of 
93×93 pixels which is in fact relatively low. Throughout this approach, we aimed at 
producing final output elemental images of 186×186 pixels in the ×2 scale having the 
maximum quality possible and 372×372 (scale ×4) with a medium to high quality.  
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Fig. 15. H3D post-processing framework design  

The goal of using video motion interpolation rather than recoding the assets at a 
higher framerate is mainly to increase the raw spatial resolution as in video captures, 
the camera we use is limited to 4K resolution (3840×2160). It is true that this resolution 
is very high for 2D captures, but for H3D, it results in tiny elemental pictures which 
induce a loss in detail and quality. The idea behind motion interpolation is to leverage 
the details and the similar visual features found in two successive frames in order to 
predict or compute the frames in between. Currently, we prototype a phase shift net-
work based on deep learning which yielded good results, and this can be confirmed 
visually (higher output quality and smoothness).    

4 Results and discussions  

4.1 Experimental setup and implementation   

For the hardware, we used a Sony α7R II mirrorless camera body (35mm CMOS 
sensor and 40 Megapixels pixel density) fitted with an H3D lens array prototype devel-
oped in the CMCR laboratory at Brunel University London. We have also used an Asus 
Laptop with i7-7700HQ, 16 GB of Ram and GTX 1070 GPU for our tests and software 
implementations.  

The SR models and the video motion interpolation approach were implemented with 
Python using the Keras deep learning library with Tensorflow GPU backend (Keras 
version 2.2.4, Tensorflow version 1.11.0) [40, 41]. The video frame extraction (decod-
ing) and compiling (encoding) was performed using the FFmpeg 4.1 framework [42]. 
For the visual output evaluation, we relied on feedback collected from several users 
that evaluated the quality of the results in the CMCR laboratory at Brunel University 
London.  

4.2 Experimental results  

To measure and compare the performance of the models, we used the Peak Signal to 
Noise Ratio (PSNR) which is a mathematical measure that measures the image quality 
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based on pixel differences, and the grayscale structural similarity index (SSIM) which 
is a similarity measure between two images. However, these two measures are not re-
flecting at 100% the quality of a picture which can only be evaluated by human percep-
tion as the quality of a picture is a subjective result.  

Regarding the tests, the super-resolution networks we tested were trained and tested 
for two scales (×2, ×4). The networks were trained according to the structure, architec-
ture, hyperparameters, and datasets specified by their original authors. Our dataset was 
thus downsampled using the two scales where the × 2 networks will try to upsample a 
3840×2160 input to 7680×4320 output, and the ×4 networks will try to upsample a 
1920×1080 input to 7680×4320 output. 

 
 The following table outlines the visual and numerical results of these networks on 

a selection of cultural assets sampled from the dataset we collected. 
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Table 1. Performance comparison of pretrained SR models on a selection of H3D capture of 
cultural assets. The used metrics are the PSNR and SSIM 

 

 Bicubic SRCNN VDSR 
Scale ×2 ×4 ×2 ×4 ×2 ×4 

 

 

 
38.87/0.891 

 

 
34.11/0.792 

 

 
39.12/0.901 

 

 
35.39/0.803 

 
40.09/0.917 

 
35.19/0.830 

 

 
39.58/0.911 

 
35.10/0.817 

 
40.31/0.823 

 
35.67/0.793 

 
41.71/0.897 

 
36.21/0.819 

 

 

 
39.15/0.893 

 
35.27/0.841 

 
40.12/0.857 

 
37.12/0.806 

 
40.02/0.936 

 
37.63/0.871 

 
 

 
38.89/0.875 

 
33.73/0.748 

 
39.11/0.900 

 
35.12/0.734 

 
39.59/0.843 

 
36.66/0.793 

 
 

 
39.01/0.918 

 
34.52/0.852 

 
40.03/0.910 

 
35.43/0.817 

 
40.19/0.918 

 
35.73/0.858 

 
 

 
39.21/0.881 

 
34.09/0.858 

 
40.14/0.895 

 
34.57/0.785 

 
40.36/0.920 

 
36.01/0.829 
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Table 1. Performance comparison of pretrained SR models on a selection of H3D capture of 
cultural assets. The used metrics are the PSNR and SSIM 

 
Overall, we can see that in most cases the values of PSNR and SSIM reflect the 

feedback received by several people from the surveyed audience. A higher PSNR and 
an SSIM close to 1 will reflect that the upsampled image quality is closer to the original 
picture. We can observe that the results of the ×2 upsampling are higher in comparison 
with the ×4 upsampling across all the techniques. We can also observe that the frame-
works EDSR and WDSR yield the best performance with the two scales which is also 
validated by the fact that they currently achieve superior performance across the SR 
frameworks found in the literature.  

 

ESPCN RDN EDSR WDSR 
×2 ×4 ×2 ×4 ×2 ×4 ×2 ×4 

 
41.02/0.926 

 
35.98/0.889 

 
42.19/0.946 

 
37.86/0.910 

 
42.76/0.982 

 
38.74/0.924 

 
42.92/0.973 

 
38.84/0.936 

 
41.12/0.911 

 
37.03/0.879 

 
41.83/0.967 

 
37.75/0.903 

 
42.33/0.981 

 
38.43/0.932 

 
42.50/0.972 

 
38.73/0.930 

 
40.93/0.939 

 
36.87/0.873 

 
41.87/0.943 

 
37.13/0.911 

 
42.04/0.980 

 
38.40/0.936 

 
42.07/0.980 

 
37.97/0.928 

 
40.12/0.936 

 
37.58/0.824 

 
40.80/0.913 

 
37.17/0.887 

 
42.15/0.982 

 
38.33/0.915 

 
42.18/0.982 

 
38.50/0.912 

 
41.36/0.937 

 
37.13/0.883 

 
40.76/0.930 

 
37.19/0.915 

 
42.29/0.982 

 
38.57/0.913 

 
42.34/0.972 

 
38.65/0.919 

 
40.93/0.935 

 
36.53/0.843 

 
40.89/0.917 

 
37.03/0.904 

 
42.64/0.983 

 
38.77/0.918 

 
42.69/0.969 

 
39.30/0.929 
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Regarding video motion interpolation, we tested two video motion interpolation ap-
proaches. The first one is based on adaptive convolutions CNNs, and the second one is 
based on pixel phase interpolation. Both of the frameworks yielded nearly similar re-
sults when presented to the surveyed audience although there were some glitches that 
need to be addressed. Overall, all the viewers confirm the increase in playback smooth-
ness and quality despite the glitches observed.  

4.3 Results discussion  

Through this investigation, we wanted to study the impact of applying recent deep 
learning-based techniques and mainly super-resolution on the H3D imaging technol-
ogy. H3D is a practical alternative to commercial solutions of 3D vision such as stere-
oscopic or Multiview as it captures and displays a true 3D representation of the scene. 
However, one of its limitations is related to the fact that the commercial camera sensors 
used do not have a high pixel density and thus, the elemental images resolution is small. 
Solving such issues by hardware (denser CMOS sensors) is theoretically the best way 
to solve such limitations, but unfortunately, the very high costs induced by these sensors 
will make the technique lose its main advantage (cost-effectiveness). As a potential 
solution, we designed a post-processing framework based on deep learning that aims at 
solving the low-density issues by software. For this purpose, we collected a dataset of 
several cultural objects in a professional studio environment in order to have the best 
possible conditions. Instead of taking video captures of the asset, we saw that the output 
quality of still images is far superior (5 times more). We thus captured the assets in 
H3D 360° by taking a picture every 5° and turning the asset accordingly. The final 
result was then 72 H3D images of 40 MP. The challenge was then to increase the spatial 
resolution of the Elemental Images and to smooth the video playback. For increasing 
the spatial density, we relied on pretrained SR neural networks such as SRCNN, VDSR, 
ESPCN, EDSR, RDN, and WDSR in order to investigate the added benefit of applying 
super-resolution to the output quality. Most of these networks were designed and 
trained according to the specifications set out by their authors (structure, hyperparam-
eters, datasets, etc.). After that, we evaluated the quality of the super-resolution on our 
H3D dataset by comparing the SR performance of the above-mentioned models. The 
metrics we used are the PSNR and the SSIM but the most relevant metric is the human 
perception of the displayed images. According to the results and with the confirmation 
of the surveyed audience, the WDSR network had the best SR for H3D images which 
is also validated by the fact that the network was the winner of the NTIRE 2018 super-
resolution challenge. Regarding the video motion interpolation, all the viewers felt the 
huge difference in the playback smoothness which is in fact very promising, but there 
are still challenges to increase the output quality and to get rid of occasional glitches.  

5 Conclusion 

Through this paper, we presented a post-processing framework to improve the qual-
ity of the 3D Holoscopic imaging technology. We mainly focused on deep learning 
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approaches for Single Image Super-resolution. A dataset of 13 cultural objects collected 
in the Museum of Islamic Art, Doha, Qatar was used to design, implement and test the 
framework using high-quality samples. We relied on state-of-the-art SISR models and 
compared their upsampling performance and quality on the H3D cultural content we 
collected.  The results were both evaluated by standard metrics such as PSNR and SSIM 
in addition to feedback collected from a surveyed audience. The results showed a real 
improvement in terms of output quality according to both the technical results and the 
audience feedback. We have also tested two video motion interpolation approaches and 
reconstructed a 360° video of the collected samples. The results of these interpolation 
approaches show a real improvement in playback smoothness despite some glitches 
seen in some videos. In the future, we aim at enhancing the Super-resolution results 
through the use of a dataset collected with larger CMOS density camera, a new ad-
vanced holoscopic lens adapter and an evolutionary design of the SISR technique used. 
Regarding video motion interpolation, we aim at enhancing the approaches we used to 
provide a naturally looking flawless playback.   
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