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Abstract—Mutual coupling, which is caused by a tight inter-
sensor spacing in uniform linear arrays (ULAs), will, to a certain
extent, affect the estimation result for source localisation. To
address the problem, sparse arrays such as coprime array and
nested array are considered to achieve less mutual coupling and
more uniform degrees-of-freedom (DoFs) than ULAs. However,
there are holes in coprime arrays leading to a decrease of
uniform DoFs and in a nested array, some sensors may still be
located so closely that the influence of mutual coupling between
sensors remains significant. This paper proposes a new Loosely
Distributed Nested Array (LoDiNA), which is designed in a
three-level nested configuration and the three layers are linked
end-to-end with a longer inter-element saparation. It is proved
that LoDiNA can generate a higher number of uniform DoFs
with greater robustness against mutual coupling interference and
simpler configurations, as compared to existing nested arrays.
The feasibility of the proposed LoDiNA structure is demonstrated
for Direction-of-Arrival (DoA) estimation for multiple stationary
sources with noise.

Index Terms—Mutual coupling, sparse arrays, nested array,
uniform DoFs, LoDiNA, DoA estimation.

I. INTRODUCTION

Sparse array has attracted great attention in the last decade.
Compared to the uniform linear arrays (ULAs), sparse arrays
such as the nested array [1] and the coprime array [2] [3]
have shown advantages when applied for direction-of-arrival
(DoA) estimation. In applications, such as underwater acoustic
detection, target tracking and environmental monitoring [4]
[5], the capability of the array for DoA estimation depends on
the number of the uniform degrees-of-freedom (DoFs), which
is the cardinality of the maximum contiguous ULA segments
in the difference coarray set, as well as the robustness against
the mutual coupling, which is caused by the electro-magnetic
interaction between sensors, making the signal that received
by one sensor is influenced by a nearby sensor [6].

Nested array, which is formed by combining two or more
ULAs with different inter-sensor spacing, can generate O(L2)
co-array elements from O(L) array elements. Compared to
ULAs, the nested array is able to generate a higher number of
uniform DoFs when implementing the subspace-based DoA
estimation methods (MUSIC and ESPRIT [7] [8]). However,
sensors in a sparse nested array may still be located so
closely that the effect of mutual coupling between sensors
becomes significant [9] [10]. In order to further reduce mutual
coupling, a super nested array has been introduced in [11]

by redistributing the elements of the dense ULA part of the
nested array. In practice, the expression of such a super nested
array is quite complicated. Although the dense ULA part is
redistributed by increasing the distance between sensors, there
still exists considerable mutual coupling and reduced DoFs of
the super nested array.

Coprime array, which is presented in [2] and further im-
proved in [12], excessively focuses on the sparsity, where
the numbers of sensors in two subarrays, M and N , are
coprime to each other with different subarray inter-element
spacings of N units and M units. This coprime array structure
generates holes in its difference coarray set, inducing a smaller
number of uniform DoFs than the nested arrays. In the work of
[13], the coprime array with displaced subarrays (CADiS) was
introduced to optimize and generalize the traditional coprime
arrays. It is also extended to a linear Nested CADiS structure
where M and N can be any positive integer numbers. This
nested structure with the displacement of N + 1 can provide
the highest number of uniform DoFs. However, it suffers from
the mutual coupling effect.

In this paper, we propose a new sparse linear array, named
Loosely Distributed Nested Array (LoDiNA), by defining a
three-level nested structure. Compared to the Super Nested
Array [11], the LoDiNA structure can generate a higher
uniform DoFs with less mutual coupling. The total aperture
size of LoDiNA is one unit larger than that of the super nested
array. LoDiNA configuration contains three linear subarrays,
whereas the super nested array uses six ULAs. Compared to
the Nested CADiS [13], the proposed LoDiNA can generate
the same amount of uniform DoFs with less mutual coupling.
The total aperture size of LoDiNA is the same as the Nested
CADiS.

II. PRELIMINARIES

A. Sparse Array Processing

We consider a pair of integers M and N . The unit inter-
element spacing d equals λ/2, where λ denotes the wave-
length. The array sensors are positioned at p = [p1, · · · , pL]T ,
where L is the total number of physical sensors.
Definition 1: The maximum number of the difference

lags is determined by the number of unique elements in the
set Lp = {lp|lpd = p1 − p2, p1 ∈ p, p2 ∈ p}. The number of
elements in the difference co-array (given by the set Lp)



Fig. 1: The LoDiNA structure sensor locations. For the upper one, N is odd, and for the lower one, N is even.

directly decides the distinct values of the cross correlation
terms in the covariance matrix of the signal, however, there
exist pairs of p1 and p2 giving the same value of difference
p1 − p2, which causes significant mutual coupling. Thus the
concept of weight function w(lp) is considered.
Definition 2: uniform DoFs. Let the set U denote the

maximum contiguous ULA segments in Lp. The number of
elements in U is called the number of uniform DoFs. In this
paper, in order to implement the MUSIC algorithm, we only
consider the number of uniform DoFs.
Definition 3: weight function. The weight function

w(lp), lp ∈ Lp of an array is defined as the number of sensor
pairs which have the same value of coarray index lp.

Assume that D mono-chromatic far-field sources impinge
on a sensor array, where the sensors are located at pλ/2.
Suppose that the i-th signal has complex amplitude x(k) ∈ CD
at the k-th snapshot, where k = 1, 2, · · · ,K and C represents
the complex number. The DoA is denoted by θi ∈ [−90°, 90°]
covering one half plane. The received sensor signal y(k) ∈ CL
is modeled as [y(1),y(2), · · · ,y(K)] = AX + N , where
the normalized DoA of the i-th signal is defined as θ̃i =
(sin θi)/2 ∈ [−1/2, 1/2]. A = [a(θ̃1),a(θ̃2), · · · ,a(θ̃D)] ∈
CL×D, and the steering vector a(θ̃i) satisfies a(θ̃i) =

ej2πθ̃ip ∈ CL. X = [x(1),x(2), · · · ,x(K)] ∈ CD×K , and
N = [n(1),n(2), · · · ,n(K)] ∈ CL×K , with n(k) ∈ CL
being the independent and identically distributed (i.i.d) random
noise vector. Both x and n are assumed to be vectors of zero-
mean, uncorrelated random variables with covariance matrices
of Rxx = E[xxH ] and Rnn = E[nnH ] respectively.

The covariance matrix of data vector y is obtained as

Ryy =

D∑
i=1

σ2
i a(θ̃i)a

H(θ̃i) + σ2I (1)

where σ2
i is the power of the i-th source, σ2 is the noise power

and I is an identity matrix of dimension CD×K . (1) can be
reshaped into an autocorrelation vector yD as

yD =

D∑
i=1

σ2
i aLp(θ̃i) + σ2e (2)

where aLp
(θ̃i) ∈ CL×K , e is a column vector with 1 in the

middle and 0 elsewhere, and the noise σ2e follows a normal
distribution with zero mean. In the finite-snapshot setting,
where the measurenment vectors y(k), k = 1, 2, · · · ,K are
given, the covariance matrix can be estimated by

R̃yy =
1

K

K∑
k=1

y(k)yH(k) (3)

The finite-snapshot version of the autocorrelation function
can be averaged from the convariance matrix by

〈yD〉lp =
1

w(lp)

∑
(p1,p2),p1−p2∈U

〈R̃yy〉p1,p2 (4)

where 〈R̃yy〉p1,p2 = E[〈y〉p1〈y〉Hp2 ], the angle bracket 〈y〉p
represents the value of the signal at the sensor location pd, only
p1− p2 ∈ U is considered. The weight function w(lp), lp ∈ U
has been defined earlier.

In order to estimate the DoA θ̃i from yD, a variation of
the rank-enhanced spatial smoothing MUSIC algorithm will
be used in this paper [1] [12] [14]. The spatial smoothing
step can be modified so that the finite-snapshot autocorrelation
vector equals 〈yD〉 according to [14]. A Hermitian Toeplitz
matrix R̃ can be constructed as

〈R̃〉p1,p2 = 〈yD〉p1−p2 (5)

where p1, p2 ∈ U+, and the set U+ denotes the non-negative
part of the maximum contiguous ULA segment. The proof
provided in [14] shows that the MUSIC spectrum over R̃
gives the same performance as that over the spatially-smoothed
(ss) matrix R̃ss, if the noise subspace is classified by the
magnitudes of the eigenvalues of R̃.

B. Mutual Coupling

In this paper, we choose the model of mutual coupling
matrix C introduced in [11], which is approximated by a B-
banded symmetric Toeplitz matrix in the ULA configuration.

〈C〉p1,p2 =

{
c|p1−p2|, if |p1 − p2| ≤ B;

0, otherwise.
(6)

where the angle bracket 〈C〉p1,p2 represents the value of c at
the location (p1, p2), p1, p2 ∈ p and the coupling coefficients
c0, c1, · · · , cB satisfy 1 = c0 > |c1| > |c2| > · · · > |cB |. It
is assumed that the magnitudes of coupling coefficients are
inversely proportional to their sensor separations [15]. The
equation of the received sensor signal y(k) can be redesigned
as [y(1),y(2), · · · ,y(K)] = CAX + N , where C ∈ CL×L
is the mutual coupling matrix.

III. LOOSELY DISTRIBUTED NESTED ARRAYS

In this section, we present a loosely distributed nested array
and its main properties considering the uniform DoFs and
mutual coupling effect. The comparisons between LoDiNA
and other exsiting arrays are also given.



TABLE I: Comparison of uniform DoFs and weight function values for different array structures.

Total sensors Coarray aperture Maximum number Maximum number N w(1) w(2) w(3)
of unique lags of uniform DoFs

2nd-order super M +N − 1 MN − 1 2MN − 1 2MN − 1 even 2 N − 3 4
nested array [11] odd 1 N − 1 1

4,6 2 N − 3 3
Nested CADis [13] M +N − 1 MN 2MN + 1 2MN + 1 even M − 1 M − 2 M − 3

odd M − 1 M − 2 M − 3
LoDiNA M +N − 1 MN 2MN + 1 2MN + 1 even 2 N − 3 3

odd 1 N − 2 2
3 1 N − 2 M − 1
4 2 N − 3 1

A. Array Geometry
The proposed LoDiNA is a three-level nested array, whose

sensor locations are expressed as

P = S1 ∪ S2 ∪ S3 (7)

where

S1 = {−1, 2`1|0 6 `1 6 N1}

N1 =

{
N−3

2
, odd N

N−4
2
, even N

S2 = {N`2|1 6 `2 6M − 1}

S3 =

{
N(M − 1) + 2`3, 1 6 `3 6 N21

[N(M − 1) + 2, N(M − 1) + 3 + 2`3], 0 6 `3 6 N22

N21 =
N − 1

2
, odd N

N22 =
N − 4

2
, even N

where M and N are two integers, S1, S2 and S3 are three
levels of LoDiNA, `1, `2 and `3 are three multiplication factors
for different levels, with different upper limit values N1, N21

and N22 when considering the odd and even of N . Figure 1
shows the sensor locations for different odd and even of N .
From Figure 1 we can see that S1 is a nested linear array, S2
is an ULA with spacing of N , and S3 is another ULA with
spacing of 2 when N is odd, or a nested linear array when N
is even.

When considering the other two array structures, in order
to generate the highest uniform DoFs, we choose M = N for
the 2nd-order super-nested array [11] and an interval of M+1
between S1 and S2 for the Nested CADiS structure [13].

B. Properties of the LoDiNA
To fully verify the uniform DoFs of the LoDiNA structure

and the values of the weight functions, we summarize the
properties of Lp. The idea for proving each property is briefly
introduced.
Property 1: LoDiNA has no holes in the difference coarray

domain, which means its difference coarray covers a maximum
consecutive virtual array positions to calculate the uniform
DoFs.
Proof : The idea to prove is to assume a general linear
expression for lp as

lp = Nn0 + `0 (8)

where 0 ≤ n0 ≤M −1 and 0 ≤ `0 ≤ N −1. It is desirable to
find differences between elements in S1, S2 and S3 to fullfill
the set of lp expression (8).
Property 2: The weight function w(lp) of the proposed

LoDiNA structure with M ≥ 3, N ≥ 3 at lp = 1, 2, 3 is
(the smaller the weight function values, the less the mutual
coupling effect):

w(1) =

{
1, when N is odd,
2, when N is even,

w(2) =

{
N − 2, when N is odd,
N − 3, when N is even,

w(3) =


1, when N is 4,
2, when N is odd,
3, when N is even.
M − 1, when N is 3.

(9)

Proof : The idea to prove is to list the calculation process of
each weight function value directly.

C. Comparisons with Existing Work

Table I shows the comparison of uniform DoFs and weight
function values for different array structures. When the total
number of physical sensors is fixed as L = M + N − 1,
the value of uniform DoFs for the 2nd-order super nested
array is 2 smaller than those of the other structures. For the
Nested CADiS and LoDiNA, the numbers of uniform DoFs
are the same, which is 2MN + 1. All three sparse arrays are
restricted arrays, that is, the difference coarray does not have
holes, which we can see from Table I. Also in the Table I,
the coarray aperture of the 2nd-order super nested array is
MN − 1, which is one unit smaller than the Nested CADiS
and LoDiNA. Comparing the weight function values, we can
see that when N is even and N > 4, the values of w(1)
and w(2) are same for the 2nd-order super nested array and
LoDiNA, the w(3) value of LoDiNA is smaller than the 2nd-
order super nested array. When N is odd and N > 3, the
values of w(1) are the same for the 2nd-order super nested
array and LoDiNA, the w(2) value of LoDiNA is smaller
than the 2nd-order super nested array, and the w(3) value
of LoDiNA is higher than the 2nd-order super nested array.
When N is 4, the w(3) value of LoDiNA is smaller than the
2nd-order super nested array. When N is 3, the w(3) value
of LoDiNA is M − 1. Whether the value is higher than the
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Fig. 2: The values of weight function w(lp) obtained by the 2nd-order super-nested arrays [11], the Nested CADiS [13], and
the proposed LoDiNA structure.

TABLE II: Comparison for different array structures when
using 16 sensors in the presences of RMSE of associated MU-
SIC spectra P (θ̃) and mutual coupling, in terms of coupling
leakage (Q) defined as ‖ C− diag(C) ‖F / ‖ C ‖F , where
[diag(C)]i,j = [C]i,jδi,j .

Nested CADiS 2nd-order LoDiNA
Super-nested

Error 0.00146 0.00089 0.00084
Q 0.33477 0.21707 0.21263

2nd-order super nested array depends on the choice of M .
The weight function values of the Nested CADiS are much
higher than those of the other arrays. For the configuration
complexity, the super nested array has 6 levels [11], however,
LoDiNA only contains 3 levels including a nested linear array,
an ULA and another ULA with different inter-element spacing
when N is odd. When N is even, the first level of LoDiNA
is a nested linear array, the second level is an ULA and the
third level is a nested linear array which is similar to the first
level. The Nested CADiS contains 2 ULAs [13], which is 1
smaller than LoDiNA.

IV. NUMERICAL RESULTS

Assume D = 30 stationary sources whose normalized DoA
are distributed at θ̃i = −0.2 + 0.4(i− 1)/29, i = 1, 2, . . . , 30.
The Signal to Noise Ratio (SNR) is 5 dB and the number
of snapshots K is 1000. In order to make comparisons when
using the same number of 16 physical sensors, we set M = 9,
N = 8, and M + N − 1 = 16 for the Nested CADiS [13]
as well as the proposed LoDiNA structure. M = 8, N = 8,
and M +N = 16 for the 2nd-order super-nested arrays [11]
to obtain a maximum number of uniform DoFs. Considering
the mutual coupling defined in (6), we choose c1 = 0.3ejπ/3

and B = 100. The remaining coupling coefficients are given
by clp = c1e

−j(lp−1)π/8/lp for 2 ≤ lp ≤ B. The DoAs

are estimated from the measurement vectors and the MUSIC
algorithm introduced in Section II is used. The associated
MUSIC spectra P (θ̃) and root-mean-squared error (RMSE),
are computed, where the RMSE (Error) is defined as

Error =

√√√√ 1

D

D∑
i=1

(
ˆ̃
θi − θ̃i)2 (10)

where ˆ̃
θi denotes the estimated normalized DoA of the i-th

source signal, according to the root MUSIC algorithm, and
θ̃i is the designed normalized DoA. Note that if the mutual
coupling matrix C is a diagonal matrix, sensor responses do
not interfere with each other. Hence the coupling leakage can
be defined as [11]

Q =
‖ C− diag(C) ‖F

‖ C ‖F
(11)

where [diag(C)]i,j = [C]i,jδi,j with δi,j being an unit matrix
and ‖· ‖F denotes the Frobenius norm of a matrix. The smaller
the coupling leakage, the less the mutual coupling influence.

In Figure 2, we show the values of the weight functions and
the maximum contiguous segments in Lp. For the 2nd-order
super-nested arrays in [11], the number of uniform DoFs is
143 (the sensor in coarray locates continuously from -71 to
71) with the weight function values w(1) = 2, w(2) = 5, and
w(3) = 4. For the Nested CADiS [13], the number of uniform
DoFs is 145 (coarray locations are continuously from -72 to
72) with the weight function values w(1) = 8, w(2) = 7, and
w(3) = 6. For the proposed LoDiNA structure, the number
of uniform DoFs is 145 (coarray locations are continuously
from -72 to 72) with the weight function values w(1) = 2,
w(2) = 5, and w(3) = 3. We found that when the number
of sensors are the same, the proposed LoDiNA structure can
generate higher uniform DoFs with relatively smaller weight
functions at w(1), w(2), and w(3).



Table II shows the RMSE of the associated MUSIC spectra
P (θ̃) and the mutual coupling measured by coupling leakage
for the Nested CADiS and 2nd-order super-nested array, and
the proposed LoDiNA. We found that the proposed LoDiNA
structure gives the best DoA estimate with RMSE of 0.00084
and the least mutual coupling with coupling leakage of
0.21263. In other words, the proposed LoDiNA structure offers
a higher number of uniform DoFs, and is more robust to
mutual coupling effect as compared with the two baseline
methods.

V. CONCLUSION

A new sparse linear array, named Loosely Distributed
Nested Array (LoDiNA), has been presented. The nested
structure contains three levels, which are linked end-to-end
with a more loosely sensor saparation. Compared to the
existing nested arrays, this new three-level nested array struc-
ture generates more uniform DoFs with greater robustness
against mutual coupling effect and has a simpler configuration.
The DoA estimation results show good performance of the
proposed structure for multiple sources with noise.
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