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Abstract This paper investigates the characteristics of dynamic rock fragmentation and its influence on
the postfailure fragment trajectory. A series of numerical simulations by discrete element method (DEM)
were performed for a simple rock block and slope geometry, where a particle agglomerate of prismatic shape
is released along a sliding plane and subsequently collides onto a flat horizontal plane at a sharp kink point.
The rock block is modeled as an assembly of bonded spherical particles with fragmentation arising from bond
breakages. Bond strength and stiffness were calibrated against available experimental data. We analyzed
how dynamic fragmentation occurs at impact, together with the generated fragment size distributions and
consequently their runout for different slope topographies. It emerges that after impact, the vertical
momentum of the granular system decreases sharply to nil, while the horizontal momentum increases
suddenly and then decreases. The sudden boost of horizontal momentum can effectively facilitate the
transport of fragments along the bottom floor. The rock fragmentation intensity is associated with the input
energy and increases quickly with the slope angle. Gentle slopes normally lead to long spreading distance
and large fragments, while steep slopes lead to high momentum boosts and impact forces, with efficient rock
fragmentation and fine deposits. The fragment size decreases, while the fracture stress and fragment number
both increase with the impact loading strain rate, supporting the experimental observations. The fragment
size distributions can be well fitted by the Weibull's distribution function.

Plain Language Summary Fragmentation occurring in rapid rock mass movements due to shearing
of highly stressed grain chains and extremely rapid loading could be described as dynamic fragmentation. In
this study, we present a series of simulations by discrete element method for a simple block and slope
geometry, where a particle agglomerate of prismatic shape is released along a sliding plane and subsequently
collides onto a flat horizontal plane at a sharp kink point. The fragmentation is intense in the lower frontal part
of the rock block, whereas the upper part suffers little from impact, generating relatively large fragments.
The sudden impact causes the major damage of rock mass, whereas subsequent sliding and collision lead to
further rock fragmentation. At impact, the vertical velocity decreases, while the horizontal velocity increases
sharply, facilitating the transport of fragments along the bottom floor. The slope angle influences rock
fragmentation by controlling the momentum distribution in the sliding and colliding processes. Gentle slopes
normally lead to long spreading distance and large fragments, while steep slopes lead to high momentum
boosts and impact forces, with efficient rock fragmentation and finer deposits. The role of strain rate on the
degree of fragmentation is studied, and numerical results support the experimental observations.

1. Introduction

Rockslides, rockfalls, and rock avalanches can be associated with almost instantaneous collapse and spread-
ing [Heim, 1882; Scheidegger, 1973; Erismann and Abele, 2001; Legros, 2002; Crosta et al., 2007; De Blasio and
Crosta, 2015]. They pose significant hazards to human lives, structures and infrastructures, and lifeline facil-
ities worldwide due to their high mobility, threatening populated areas located even far away from the slope
source [Whitehouse and Griffiths, 1983; Stoopes and Sheridan, 1992; Crosta et al., 2005; Hermanns et al., 2013;
Zhou et al., 2013]. These natural disasters have been a subject of intensive research due to their significant
destructive power.

Rock avalanches exhibit a still unexplained mechanism of long travel distances [Erismann and Abele, 2001]. The
mobility can be quantified by the apparent friction coefficient of the so-called “Fahrbdschung” [Scheidegger,
1973], defined as the ratio between the drop height, H, to the spreading length, L [Corominas, 1996].
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Based on these two parameters, the Fahrbschung angle, a, can be defined as tan™'(H/L) [Shreve, 1968],
and a low traveling angle indicates a highly mobile rock avalanche. As stated by Bowman et al. [2012]
and Legros [2002], the Fahrbdschung angle incorporates the effect of rock spreading. Generally, the value
of H/L decreases with the rock avalanche volume, indicating that large rock avalanches exhibit high spread-
ing efficiency. For instance, large rockslides-avalanches on Earth can have volumes of 107-10"" m* and
areal spreading of up to 1000 km? [Bowman et al,, 2012]. Since the solid mass would gradually deposit at
the base of the sliding path, avalanches progressively run out of material. Thus, the mobility of rockslides
beyond a certain location should depend primarily on the solid volume passing through that location,
rather than the total rockslide volume [Legros, 2002]. However, for small-scale rockfalls (with volumes less
than 10° m?) and some laboratory tests, the H/L ratio only obeys a simple Coulomb frictional law [Hutter
et al, 1995].

In the literature, many hypotheses have been proposed to explain the apparent high mobility of large rock
avalanches, including basal rock melting [Erismann and Abele, 2001; De Blasio and Elverhgi, 2008], sand fluidi-
zation [Hungr and Evans, 2004], destabilization of loose masses along the failure plane [Iverson et al., 2011],
acoustic fluidization [Collins and Melosh, 2003], pore fluids such as water [Legros, 2002; De Blasio, 2009] or
vapor [Habib, 1975; Goguel, 1978; De Blasio, 2007], or grain segregation-induced friction decrease [Phillips
et al., 2006; Linares-Guerrero et al., 2007]. Though some of the invoked mechanisms may be important for
some specific events, none of them has been acknowledged as a universal explanation for rock avalanche
mobility. Site investigations show that the deposits of long runout rock avalanches are intensely fragmented;
thus, “dynamic fragmentation” has been proposed as a possible mechanism governing rock avalanche mobi-
lization [Davies and McSaveney, 1999; Locat et al., 2006]. Some authors proposed this process as a mechanism
affecting rock avalanche runout [Calvetti et al., 2000; De Blasio and Crosta, 2014; De Blasio and Crosta, 2015],
while others sought to characterize the grain size distribution of fragments and the involved energy losses,
both through observations in real rock avalanche deposits [Dunning, 2006; Locat et al., 2006; Strom, 2006;
Crosta et al., 2007] and physical models [Imre et al., 2010; Bowman et al., 2012; Haug et al., 2016]. Davies
and McSaveney [1999] investigated the avalanching of dry sands and gravels in laboratory scale experiments.
They observed that fragmented rock avalanches can normally have much greater longitudinal spreading dis-
tance than nonfragmented ones. This process involves an increase in fragment number and rockfall energy
loss, affecting both the fragment trajectory and runout [Agliardi and Crosta, 2003; Ruiz-Carulla et al., 2016]. So
far, the impact-induced fragmentation of a rock mass is still poorly understood.

For numerical modeling of rock avalanches, the discrete element method (DEM) [Cundall and Strack, 1979]
has been widely used [Calvetti et al., 2000; Taboada and Estrada, 2009; Boon et al., 2014, 2015; Zhao et al.,
2016, 2017]. De Blasio and Crosta [2015] employed a simple 2-D DEM model to study the fragmentation beha-
vior of rock mass along a slope break profile. They suggested that for slope angles greater than 70°, the frag-
mentation process can produce uniformly distributed fragments, with significantly enhanced momentum
and runout distance. Because of the extremely fast loading rate occurring during many rock avalanche
events, it is important to mention the role of strain rate at controlling rock strength [Okubo et al., 2006]
and fracture nucleation [Grady, 1981; Grady and Kipp, 1985]. Generally, the compressive strength of rock
increases with the loading strain rate [Li and Xia, 2000; Fuenkajorn and Kenkhunthod, 2010; Wang et al.,
2013]. If the loading is sufficiently rapid, brittle particle agglomerates can be dynamically fragmented [Rait
et al.,, 2012]. Zhao et al. [2014] performed experimental and numerical investigations of the failure behavior
of brittle coal under uniaxial compression for various loading strain rates. They reported that the strength
and failure mechanisms of a coal rock mass depend on the loading strain rate and also the microstructure
of the material.

Recently, at least two experimental studies investigated the fragmentation of a small brittle block, sliding
along a plane, against a slope break [Bowman et al., 2012; Haug et al., 2016]. Although fragmentation of a rock
avalanche is far more severe than shown by experiments (volumetric ratios between the original total rock
volume and fine products may exceed 10'® [De Blasio and Crosta, 2014]) and more complex in its physical
description, the experimental situation considered by Bowman et al. [2012] and Haug et al. [2016] constitutes
a reasonable initial proxy to study fragmentation and propagation [De Blasio and Crosta, 2015]. Thus, in this
work we will consider this setting for our numerical simulations. The primary aim here is to investigate the
characteristics of dynamic rock fragmentation and the mechanism governing the postfailure fragment trajec-
tory motions by numerically simulating experiments of rock blocks subject to single impact. The paper is
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organized as follows: in section 2, the DEM theory of bonded particle model is illustrated. In section 3, the
obtained numerical results of rock avalanche and fragmentation are presented. Section 4 presents the discus-
sions of some issues of rock fragmentation, such as lateral confinement of rock avalanche, spreading mobility,
and impact-induced energy dissipation. Finally, some conclusions on the capability of the DEM to model rock
fragmentations are provided.

2. DEM Bonded Particle Model

The open source DEM code ESyS-Particle [Weatherley et al., 2011] was employed to run all the simulations pre-
sented herein. In the DEM model, the brittle rock mass was simulated as an assembly of particles cemented
together via the so-called parallel bond model [Itasca, 2003; Potyondy and Cundall, 2004]. The interactions
between bonded particles are calculated as

an:Kbn'(,_IO) (1)
Fos = Kps-Aus (2)
My = Kp-Aap My = Ki-Aoy (3)

where Fy,,, Fps are the normal and shear bonding forces; M, and M; are the bending and twisting moments,
respectively; Kyn, Kos, Kp, and K; are the corresponding bonding stiffness in the normal, shear, bending, and
twisting directions, and Aus, Aay, and Ao, are the relative displacements between bonded particles in the
shear, bending, and twisting directions, calculated via the quaternion based 3-D rigid body spatial rotations
[Wang, 2009]. | and I, are the current and initial distances between particle centers. Note that the initial dis-
tance between particles is the distance prior to the motion onset.

In the DEM model, the bonding stiffness can be calculated as Ky, = 7Eplo/4, Kps = 7Eplo/(8(1 + ), Kp = nEblg/64,
and K; = nEblg/(64(1 +v)) with E, being the bond Young’s modulus and v being the Poisson’s ratio [Wang
et al,, 2006; Wang, 2009]. Bond breakages are assumed to be brittle, i.e., as soon as the bond strength capacity
is exceeded, it breaks [Wang et al., 2006; Wang, 2009; Weatherley et al., 2011]. The following failure criterion is
used to determine whether a bond breaks

F F M M
s 1 @)
anMax FbsMax MbMax MtMax

where Fpnmax and Fpsvax are the maximum normal and shear forces respectively; Mpmax and Mgyax are the
maximum bending and twisting moments of interparticle bonds, respectively. They can be evaluated as
Fonmax = 72/ (4tan( ), Fosmax = 7cl2 /4 Mowax = cl3 /(32tan( b)), and Miax = 7cl3 /16, with c and ¢ being
the cohesion and internal friction angle of the bond material, respectively.

After breakage, the dispersed particles interact with each other via a linear-elastic spring contact model
Fn = Kn-un (5)
Fi= F77 4+ Ks-Augs (6)

where F,,, K, and u,, are the normal contact force, stiffness, and overlapping distance between two particles in
contact; Fi and F§‘1 are the shear forces calculated at the current and previous simulation time steps, respec-
tively; K is the shear stiffness; and Aus is the incremental shear displacement. In the model, the values of K,
and K are calculated asK,, = 7ER/2and K; = nER/(4(1 + v)), with Rand E being the mean particle radius and
Young's modulus, respectively. In addition, viscous damping, proportional to the relative velocities of the
particles in contact, is employed to replicate the energy dissipated by particle asperities being sheared off
and the plastic deformations of the contacting particles occurring in the vicinity of the points where they
are in contact with adjacent particles. Note that rigor viscous damping (the restitution coefficient) is a func-
tion of the number of impacts [Murugaratnam et al., 2015], but here a constant coefficient has been assumed
for the sake of simplicity. The maximum shear force is limited by a frictional slider (Fs yax = uFp, With u being
the friction coefficient). Detailed numerical scheme of explicit integration for particle motion in DEM simula-
tions can be found in Potyondy and Cundall [2004].

The DEM bonded particle model used in this study was calibrated via 3-D numerical uniaxial compression
strength (UCS) tests for quasi-static loading conditions and Split-Hopkinson Pressure Bar (SHPB) tests for
dynamic loading conditions on intact rock samples [Yoon, 2007; Shimizu et al., 2010; Wang and Tonon, 2011].

ZHAO ET AL.

3-D DEM ANALYSES OF ROCK FRAGMENTATION 680



@AG U Journal of Geophysical Research: Earth Surface 10.1002/2016JF004060

(a) 12 T T T T (b) 50 T T
—Exp.(P) —Exp.(N) D

..... —e—Exp. (P)42.3s"
10 DEMresults A [ —o—Exp. (N) 53.8 5"
e gﬁn f'* —o—Exp. (N)33.1s"
—.1-G

0.1s’
1s?

7 ‘ ] 0% 06s ; 0 )
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 15 20
Axial strain (%) Axial strain (%)

Figure 1. DEM results of (a) 3-D unconfined uniaxial compression tests and (b) Split-Hopkinson Pressure Bar (SHPB) tests on
coal rock specimens. In the figure, “Exp.(P)” and “Exp.(N)" stand for experimental data on coal rock with bedding parallel
and normal to the loading direction, respectively.

Due to insufficient mechanical characterization of the coal material used in the rock avalanche experiments by
Bowman et al. [2012], we calibrated the DEM parameters against the available static and dynamic tests on
parallel and normal bedding coal samples in Liu et al. [2015] (see the notations Exp. (P) and Exp. (N) in
Figure 1). For the static UCS tests, the loading strain rate (&) is set between 0.01 and 10s™". Further
decrease of strain rate would significantly increase the computational cost (e.g., for the case of £=0.01s"",
7 days on an Intel® Core™ i7 CPU, 4.00 GHz x 8, and 16 GB RAM desktop computer). The configuration of the
numerical SHPB test is taken from Xu et al. [2016]. The input parameter values of the simulations were
selected by trial and error (see Table 1), to ensure the overall shear strength and deformation of the coal

rock specimen can match experimental results.

Figure 1a shows the comparison between the numerical results of this study and experimental data on coal
rock samples by Liu et al. [2015]. The peak shear strength (z,¢ak) of the coal rock increases with the loading
rate, whereas the Young’s modulus (E) is unaffected. For tests with strain rate smaller than 15, the stress-
strain relationships are approximately the same before failure, indicating that the quasi-static state condition
is satisfied. In these tests, 7peak and E are 9.8 MPa and 1.67 GPa, respectively, which can match well the experi-
mental data. At failure, the DEM rock specimens loaded at small strain rates (e.g., 0.01 s 'and 0.1 s~ ") behave
in a brittle fashion, while they show a more ductile behavior at larger strain rates (e.g., 1s~',5s~',and 105~ "),
with a gradual increase of strength. At high loading rate (e.g., to 55" and 10s™"), the stress-strain curves
manifest clear oscillations in the initial loading stage due to stress wave reflections at the loading platens.
This effect becomes especially evident at increasing loading rates [Wang and Tonon, 2011]. For the results
of dynamic SHPB tests in Figure 1b, both the peak strength and the corresponding deformation increase with
the loading rate, while the initial shear elastic modulus remains constant, qualitatively matching experimen-
tal results by Liu et al. [2015] (e.g., for& <1005~ ). According to the DEM simulations run at small loading rates
(100571, the peak strength remains almost unaltered (13 MPa), while for higher loading rates (>100 s,
both the peak strength and the corresponding strain increase significantly (see also Figure S1 in the support-
ing information).

Table 1. Input Parameters of the Calibrated DEM Model Built for the Simulation of UCS and Split-Hopkinson Pressure Bar
(SHPB) Tests

DEM Parameters Value DEM Parameters Value
Particle radius, r (mm) [0.75, 2.25] Young's modulus of bond, E;, (GPa) 1.25
No. of particles, N 18,800 Cohesion of bonds, ¢ (MPa) 14.25
Density, p (kg/m3) 2,650 Viscous damping coefficient, g 0.01
Particle friction angle, p(deg) 30 Gravitational acceleration, g (m/sz) 0.0
Particle Poisson ratio, v 0.25 Packing porosity, n 0.41
Young's modulus of particle, £ (GPa) 5 DEM time step, At (s) 1077
ZHAO ET AL. 3-D DEM ANALYSES OF ROCK FRAGMENTATION 681
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Figure 2. Geometry of physical model adopted for investigating rock fragmentation in rock avalanches by Bowman et al.
[2012] and Haug et al. [2016] (H is the initial block height. 8 is the slope angle. L, is the runout distance of the most distal
fragment made of at least 10 particles). The (a) geometry and the (b) DEM representation of the sliding block are shown.

3. DEM Simulation of a Rock Block Fragmentation

A schematic view of rock mass releasing along a steep inclined sliding plane and colliding onto a flat horizon-
tal plane at a sharp break is shown in Figure 2. The rock block simulated in our DEM tests is made of 78,327
densely packed particles and bonded together by breakable parallel bonds of assigned strength. The width
of the sliding channel is slightly larger than the width of the granular block, so that the rock mass can slide
downslope without touching the side walls. The sliding slope consists of a frictionless rigid wall, with the
height (H) of 425 mm, while the horizontal floor of a layer of fixed particles mimicking a rough plane. The
slope angle was varied from 40° to 90° to simulate different topographic conditions. An enhanced gravita-
tional acceleration of 1962 m/s> (200 g) is applied in each set of simulations to mimic the centrifuge load-
ing. The model configuration is similar to the experimental setup employed in Bowman et al. [2012], made
of coal blocks or powder in a centrifuge apparatus to increase gravity, and Haug et al. [2016], made of a
mixture of sand with gypsum-anhydrite or potato starch in a 1g model. Each block was released from
the top of a steep slope and runout onto a horizontal plane. Though only one breakage “step” can be
modeled in this configuration, it is assumed that the current study can capture the important characteris-
tics of dynamic rock fragmentation and subsequently reveal the link between rock avalanche fragmenta-
tion and mobilization.

3.1. Fragmentation of an Intact Rock Block

In this section, the general features of the fragmentation process taking place in an initially intact coal rock
block released on a straight slope of 70° inclination are illustrated. In the following analyses, nondimensional
parameters are used (e.g., the normalized sliding time is defined as [T] = t/+/2H/g), in order to generalize the
results of our numerical simulations to rock avalanches of different geometry [Utili et al., 2015].

Figure 3 shows the sliding and fragmentation processes undergone by the rock block following its impact
with the horizontal plane. The algorithm used to track each generated fragment is provided in the supporting
information of the paper. For visualization purpose, fragments were colored with a set of distinct colors, while
single dispersed particles are plotted in light grey. A series of tick marks 1 cm apart are plotted on both sides
of the flow path on the graphs for ease of identification of the distance traveled by the fragments. The
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Figure 3. (a-g) Plan view of the motion of rock fragments for an intact rock block at different time. The initial velocity of
rock block is 0 m/s, and the impact velocity at the slope break is 40.5 m/s. Grey dots represent dispersed granular
particles, and the bold black line on the top region represents the slope break. In Figure 3g, the mass accumulation along
the spreading path is plotted as a cumulative mass curve. The runout distance is Lg, time is normalized as t//2H/g,

and slope §=70°.

horizontal bold black lines plotted on the top of these graphs represent the slope break. It can be observed
that rock fragmentation occurs immediately after the block collides with the bottom floor, which is followed
by horizontal spreading of fragments. Lateral dispersion of fragments can also be observed from [T] = 1.08 to
[T1=1.2, from volume dilation occurring after impact. However, the lateral motion of granular material was
constrained by the side walls of the channel under the current model configuration. The lateral dispersion
caused by rock fragmentation will be discussed in section 4 of this paper. In the final deposit (i.e., at
[T1=4.68), the major portion of the highly fragmented rock mass (e.g., dispersed particles) deposits near
the slope toe, while relatively large rock fragments can move a long distance on the floor. The final runout
distance of the most distal fragment is labeled as L; in the figure, further to which the dispersed particles
amount to around 4% of the total rock block mass. On the plots, the presence of dispersed particles in the
final granular deposit makes the calculation of L; a nonstraightforward exercise. In this study, L is
measured as the displacement of the mass center of the most distal fragment consisting of at least 10
particles, so ignoring the occasional saltating particles running ahead of the front. The accumulative mass
curve of the fragments in the final static deposit is plotted in Figure 3g, with the leftmost point
representing the zero mass (i.e,, deposit initiation) and the rightmost point representing the total rock
block mass. Looking at the curve, it exhibits sharp increases at the location where large fragments were
come to rest.

According to De Blasio and Crosta [2015], short-lived force chains within the impacting block control its
fragmentation behavior, because particle agglomerates associated to dominant force chains are subjected
to intense compression and are most likely to break [McDowell and Bolton, 1998]. In Figure 4, the total
forces, defined as the summation of normal particle contact and bonding forces, are plotted with the line
thickness being proportional to the force magnitude (see Figures 4a1-4a5). In addition, the evolution of
bonding force chains is plotted in Figures 4b1-4b5. It can be observed that before impact the force
chains are uniformly distributed within the rock mass, with the force magnitude smaller than 50N. At
impact (see Figure 4a2), large normal forces (>100N) occur at the bottom lower edge of the block as
it collides onto the floor and is sheared off. In the meantime, the large normal forces also propagate
upward into the block, leading to some new cracks. Two broken curves are plotted in Figure 4a2 to indi-
cate the concentration of dominant forces. The corresponding two major cracks can be observed in
Figure 4b3, resulting in block and chipping fragments. As shown in Figures 4a2 and 4b2, it is clear that
after impact, fragments in the bottom wedged region detach from the initial rock block quickly, on
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Figure 4. Example of the evolution of (a1-a5) the total force chains; (b1-b5) the bond force chains; and (c1-c5) the granular velocity field during a simulation of
6 =70°. The thickness of the chains is proportional to the force magnitude, and gray if force is smaller than 50 N, cyan, blue, yellow, pink, orange, and red if in the
range of [50, 60) N, [60, 70) N, [70, 80) N, [80, 90) N, [90, 100) N, and [100, 200] N, respectively. The green and red broken lines in Figure 4a2 shows the concentration of
major forces, while the broken lines in Figures 4b3-4b5 indicate the major cracks developed after impact. In Figures 4c1-4¢5, the gradual change of color from red to
blue shows the velocity variation from 40 to 0 m/s. Black arrows are plotted to indicate the overall movement trend of different sectors of the granular system.

which the rest upper rock mass is sheared off and move horizontally. Then the subsequent crack
openings occur at the bottom and upper middle parts of the rock block (see Figures 4b3-4b5). In
addition, Figures 4c1-4c5 present the evolution of particle velocity field of the granular system. After
impact, the transmission of the wall force into the agglomerate would decelerate the particles above
the point of impact, but other particles, e.g., near the bottom left corner of the agglomerate, would
not be affected. This leads to a heterogeneous distribution of particle velocities that may indicate any
velocity discontinuity, which would subsequently become a fracture plane (see the broken curves).

To analyze the fragment motion, the evolution of the average vertical (v,), horizontal (v), and lateral (v) velo-
city components of rock fragments (normalized by \/2gH) was monitored (see Figure 5a). It can be observed
that before impact ([T] < 1.08), v, and v}, increase linearly, while v, remains nil. After impact, v, decreases shar-
ply from 0.93 to 0.41, while v, first increases quickly from 0.34 to the peak value (0.46) and then decreases
slowly to 0. The time interval for the sudden velocity change is 0.5 ms. In this process, the magnitude of v,
remains negligibly small, indicating that the lateral dispersion of fragmented rock mass is limited by the lat-
eral walls. Conversely, the vertical and horizontal spreading motions are dominant.

Analyses of the energy components of the granular flow are helpful for a comprehensive understanding of
the mechanism of rock fragmentation and postfailure fragment movements [Locat et al., 2006; Haug et al.,
2016]. Following Utili et al. [2015], the potential energy of the rock mass, E,, is defined with respect to a refer-
ence point:
N

Ep = 3 migh )
with N being the total number of particles, m; and H; being the mass and height of particle j, respectively. Also,
E,, represents the total energy of the granular system, Eo, before release. The elastic energy of the rock block
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Ex = %ig (mi\Vi|2 + /i|a)i\2) (10)
with /; = 0.4m;r? being the momen-
tum of inertia, r; being the particle
radius, and ; being the angular
velocity. The energy released every
time a bond breaks is recorded as
the potential energy possessed by
the bond at the last time step
before breakage occurred. The total
fragmentation energy for the rock
block, Ey, is calculated as the cumu-

lative energy released by all bond
Figure 5. Evolution of (a) normalized average granular velocity components  preakages from the beginning of
(v,: vertical velocity component; vp: horizontal velocity component; and v
lateral velocity component) and (b) granular energy and damage ratio
(Eptotal: total potential energy; Ey: kinetic energy; Eqjss: energy dissipation;
E¢. fragmentation energy; Eq: initial total energy; D: rock damage ratio) dissipated by friction and viscous
©=70°). damping at any given time, Eg;ss, is

calculated by subtraction as

Energy / damage ratio

the simulation until the current
time. The total cumulative energy

Ediss(t) = EO - Eb(t) - Ec(t) - Ek(t) - Ef(t) (1 1)

As shown in Figure 5b, before the block impacts the horizontal plane, no energy is dissipated. After
impact, the kinetic energy of the granular system decreases sharply, and more than 90% of the initial
total energy (Eo) is dissipated mainly by friction and viscous damping, with fragmentation energy
amounting only to 3.95% of the total energy. The numerical results indicate that the energy dissipated
by friction and viscous damping during the fragmentation process is large, while the energy consum-
mated to break bonds is small. Low fragmentation energy input in disintegrating the rock mass has been
documented by Locat et al. [2006] and Crosta et al. [2007] on real rock avalanches. In our analyses, the
damage ratio (D) [Thornton et al, 1996] has been used to quantify rock fragmentation intensity, which
is defined as the ratio of the number of broken bonds after impact to the total number of bonds at
the initial static state. According to Figure 5b, it can be observed that the damage ratio increases quickly
to around 40% during impact. The subsequent sliding and collision of fragments leads to an additional
10% of bond breakage.
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Figure 6. Plan view of the final fragment depositions for simulations with various slope angles. The cumulative mass curve
of the granular system along the path is plotted as black curves. Small images at the top show the relative position of the
fragments generated at the impact.

3.2. Rock Fragmentation at Various Slope Angles

The slope angle influences the fragmentation and the spreading behavior of rock avalanches, as the
smoothness of the transition between the inclined and horizontal portions of the slope affects the decelera-
tion and stress distribution within the rock block significantly [Strom, 1999; Locat et al., 2006]. According to
Figure 6, it can be observed that as the slope angle increases from 40° to 90°, the damage ratio of rock
increases progressively from 0.396 to 0.649. In case of gentle slopes (6 < 70°), some relatively large frag-
ments can spread to the front, while for steeper slopes, the rock block is heavily fragmented, producing lots
of small fragments in the frontal region. Large fragments (e.g., for the tests of 8>50°) act as a barrier to dis-
persed particles (grey dots) which consequently are retained close to the slope break. Note that the final
fragment depositions qualitatively match the experimental observations in Bowman et al. [2012] and
Haug et al. [2016]. Detailed information about the damage ratio, fragment velocity, and spreading distance
of rock blocks tested on slopes with various angles is provided in Table S1 (supporting information). The
final fragment size distribution (FSD) exhibits qualitative agreement with the Weibull's function [Weibull,
1951; Brown and Wohletz, 1995; Cheong et al., 2004], as shown in Figure 7. For gentle slopes (e.g., § < 65°),
the mass percentage of fine fragments is very low, and it increases quickly for medium and coarse frag-
ments. However, in case of steep slopes (e.g., 6 > 65°), the fragment size distribution tends to be uniform,
and the accumulative mass percentage increases gradually with a gentle curvature for the fitting curve.
The apparent difference in FSD patterns for these tests can be explained in more detail by considering
the loading strain rate dependence of rock fragmentation process, as will be discussed below (see
Figure 9).

Generally, the fragment runout decreases with the slope angle increasing, except for the case of 6=70°
where a sudden increase of runout is apparent (see Figure 6). In this case, the impact-induced fracture stress
and relatively high preimpact horizontal velocity can facilitate the motion of small fragments with long run-
out. The physics of slope-dependent runout is governed by the momentum input to the collision (vertical
component) and sliding (horizontal component) processes. Measurements of linear momentum have already
proved valuable to characterize the debris flows of granular materials [Utili et al., 2015]. For a rock block
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Figure 7. Fragment size distributions of deposits from DEM simulations at different slope angles. Curves are compared to
best fitting Weibull's grain size distribution. The nominal fragment size is defined asd = {/V¢/V,, with V¢being the volume
of the largest fragment and V( being the volume of rock block prior to impact.

sliding along a slope of angle 6, before impact, the rock block linear momentum (p) can be decomposed into
horizontal (py,) and vertical (p,) components as

{ph = pxcos(0)

p, = pxsin(6) (0'<6<907) (12)

According to equation (12), it is clear that at small slope angles, p, is relatively small, and thus rock fragmenta-
tion is not efficient. On the contrary, p, is large, leading to a long spreading distance. For large slope angles, p,
reaches the maximum value, leading to intensive collisions between the rock block and bottom floor.
However, py, is close to nil, resulting in short runouts. Here it should also be noted that equation (12) only pro-
vides the momentum components before impact. The momentum components after impact are different
from those calculated from equation (12) due to fragmentation.

Figure 8aillustrates the evolution of vertical and horizontal momentum components for rock blocks tested on
various slope inclinations. It can be observed that before impact, the momentum components increase line-
arly over time. The increasing rate of the horizontal momentum is larger than that of the vertical one, if § < 45°,
while the vertical momentum increases faster if 6>45°, After impact, the vertical momentum component of
the granular system decreases sharply to zero within a short time, while the horizontal momentum compo-
nent increases suddenly to a maximum value and then decreases gradually to zero due to basal friction
and fragment interactions. This sudden increase of horizontal momentum is denoted here as momentum
boost (see Table 2). Looking at the table, it emerges that the boost of horizontal momentum increases signif-
icantly with the slope angle, for the testing cases of 0>45°, becoming infinite at @ = 90° since in that case the
horizontal velocity prior to impact is nil. Conversely, for 6 <45°, no such momentum evolution trend is
observed. This trend was postulated by De Blasio and Crosta [2015], showing that a critical slope angle exists
for the momentum boosting effect of rock fragmentation to take place, and above this critical angle, the hor-
izontal momentum increases more than 5%.

The average impacting forces acting on the rock block in the horizontal (Fj) and vertical (F,) directions can be
expressed as

(Pr2 — Pm)

F, = th2  FhJ
h At

(Pvz 7 pv1 )
At

(13)
F, =

where pp, pyy are the horizontal and vertical momentum components of the rock block before collision,
and pp, pv2 are momentum components after the collision. At is the collision time (0.5ms, as defined
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before). In the current analyses, the
positive direction of the horizontal
force is set as the direction perpendi-
cular to the slope break and along
the granular spreading path, while
7 the positive direction of the vertical
force is set as vertically upward.
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- Theoretically, the vertical impacting
force would contribute to the rock
fragmentation as it is perpendicular
to the impact plane, while the hori-
zontal impacting force would influ-

ST ence the fragment spreading along
2 3 4 the bottom floor. Figure 8b illustrates

Time, [T]=t/\J2H/g the average impacting forces acting

—

Momentum, [ P]

on the granular assembly in the hor-
izontal and vertical directions. The
numerical results indicate that the
rock fragmentation can be very
intense on steep slopes and more
frontal impacts (e.g., with increased
a direct impacting area), which is also
indicated by the increased damage
ratio (D) (see Figure 6). As for the
_ horizontal impacting force, it could
consist of basal friction, contact force
between fragments, and the interac-
0r a tion with the inclined slope. It acts
L to eject the detached rock fragments
40 50 60 70 80 90 forward along the bottom floor.

Slope angle, 6 (°) According to Figure 8b, it is clear

that on a gentle slope (6=40°), the
Figure 8. Analysis of granular momentum for tests on various slopes, horizontal impacting force can be
(a) evolution of the vertical (solid lines) and horizontal (dash-dotted lines)
momentum components of the granular system. The momentum is
normalized as [P] = p/(m+/2gh). (b) Average impacting forces.
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Force (kN)

negative, which implies that the
basal friction is dominant to decele-
rate the granular motion.

Since the vertical component of impact velocity is directly related to the strain rate of rock fragmentation, it is
evident that the impacting process is loading rate dependent, such that the rock fragmentation intensity
increases with the impact loading strain rate. In this study, the impact loading strain rate is defined as v, /I,
with / being the sample length in the sliding direction. Depending on slope inclination, the loading rate
ranges from 2755~ to 4285, while the corresponding damage ratio (D) increases from 0.396 to 0.649.
As discussed before, the peak strength and deformation of rock can increase quickly at high loading rates
(see also Figure S1 in the supporting information). The dynamic shear strength of coal rock in this study
ranges from 27 MPa to 41 MPa, while in comparison the shear strength under quasi-static conditions is only
9.82 MPa (see Figure 1). As a general explanation, it can be said that a large amount of energy is needed for
rock fragmentation on very steep slopes where high strain rates arise at impact. This can lead to accumulation
of large amounts of elastic energy. After failure, this elastic energy leads to very intense rock fragmentation
and abrupt ejections of fine fragments.

To characterize the fragment size, the nominal fragment size is defined as d = W: with V; being the
volume of the largest fragment, and V, being the volume of rock block prior to impact. In addition, the
impact-induced fracture stress can be calculated as o = F,/(A/sin(0)), with A being the area of the block front
face. The dependence of the nominal fragment size and fracture stress on the impact loading strain rate is
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Table 2. Boost of Horizontal Momentum at Impact (App, Is the Increase of
Momentum at Impact, and ppg Is the Momentum Prior to Impact)®

Slope Angle (deg) 50 60 70 80 90
App, (kg m/s) 0.63 240 6.11 8437 11.64
APK/Pho 19%  91%  341%  925% o0
Analytical solutions 7.7% 17.9% 45.2% 129.6% oo

#The analytical solution is given in De Blasio and Crosta [2015] for a rock
fragmentation at an impact velocity of 20 m/s.

illustrated in Figure 9. It is clear that the
nominal fragment size decreases,
while the fracture stress increases with
the impact loading strain rate. The
increase of fracture stress is also asso-
ciated with asharpincrease of damage
ratio (D). The obtained numerical
results exhibit the same trends as
those reported in Grady and Kipp

[1985] (see the inset plots in Figure 9). At low loading rates, the induced fracture stress is low (see Figure 9b),
and relatively few fractures occur within the rock block. Thus, the resultant fragment size is relatively large (see
Figure 9a). On the contrary, at high loading rates, the input energy and impact-induced fracture stress are high
(see Figure 9b). Thus, a large amount of fractures can be generated within the rock block. Consequently, frac-
tures can nucleate and grow to completion quickly, leading to relatively small fragments (see Figure 9a).

Figure 10 shows how the fragment number (N) is related to damage ratio (D) and impact loading strain rate.
In the tests, the fragment number is determined by counting the agglomerate pieces consisting of at least 10
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Figure 9. Dependence of (a) nominal fragment size and (b) fracture stress on
theimpactloading strain rate. The rock damage ratio (D) for the corresponding
tests is plotted near the data points. The inset plots show the experimental
data reported in Grady and Kipp (1985), and the sketch represents how the
fracture stress is computed according the equation o = F,/(A/sin 6).

particles. It emerges that the fragment
number increases with the damage
ratio (see Figure 10a), indicating that
a rock block with high damage ratio
produces a large amount of fragments
after the impact. This feature is in
agreement with previous experimen-
tal observations on ductile aluminum
rings by Grady and Kipp [1985], since
the breakage of bonds contribute to
the nucleation and growth of frac-
tures leading to the production of
many fragments with relatively small
sizes. Figure 10b illustrates the depen-
dence of fragment number (N) on
impact loading strain rate (&). It can
be observed that N increases with
the impact loading rate slowly for &
<3755, whereas it increases sharply
at higher loading rates. The numerical
results show a generally similar
increasing trend as the experimental
data by Grady and Kipp [1985], even
though the testing method and mate-
rial are different. However, the differ-
ence on the fragment number and
fitting curve relationships between
these two types of tests lies in the
material property and impact loading
strain rate. It is evident that the brittle
coal rock in this study can be easily
fragmented at low loading rate (i.e,
<103s7"), whereas the ductile alumi-
num in Grady and Kipp [1985] can
resist more effectively the impact
induced breakage at higher loading
rates (i.e, >103s7").
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@ o — T 7 . ] 4. Discussion
130 - . | The simulations presented in this
> N =262D - 27.8 study were aimed at reproducing
£ 120 (R'=0.832) \ 4 the experiments of rock block frag-
-g mentation at the slope break
2 Mor ] [Bowman et al, 2012; Haug et al.,
é 100 - . _ 2016]. Although such experiments
=2 | mimic the geometry of a real rock
C ool i avalanche at a small scale, when
applying such works to field studies
80 1 the problem arises as to what extent
70 L L small-scale experiments and related
0.40 0.45 0.50 0.55 0.60 0.65 simulations are representative of
Damage ratio, D field observations.
(b) 10 T A first issue is the confinement of the
| 2 1ol = Gradyand Kipp (1965) . travel!ng mass. In order t.o mimic the
130L 5 | experimental configuration used in
| € 8f Bowman et al. [2012], in the current
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2 1or § ol q nel. However, due to the constrained
E 100 F 0 L | lateral dispersion of fragments after
5 i 0 2000 = 4000 6000 i impact, this approach inevitably leads
© r Loading rate (s*) . . . .
L g9l i to intensive interactions between
| fragments and the confining walls at
80 - - . the lateral boundary. Consequently,
0 r - fragments running to the boundary
7

250 300 350 400 450 bounce back into the channel, influ-
encing the motion of fragments and
fragmentation itself [Erismann and
Figure 10. Fragment number (N) versus (a) the damage ratio (D) and Abele, 2001]. In fact, in the field the

(b) impact loading strain rate. The inset plot in Figure 10b shows the experi- lateral dispersion of the granular tra-
mental data on ductile aluminum rings reported in Grady and Kipp [1985].

Impact loading strain rate (s")

jectories has been widely observed,
when falling rock blocks collide onto
the ground [Crosta et al.,, 2017; Haug et al., 2016]. This feature of rock slides, falls, and avalanches can be
important for assessing hazard and providing guidelines to design of defense systems. To better investigate
this influence, we have extended our simulations by running a series of simulations with unconfined lateral
boundary condition. Figure 11 shows the testing condition of §=90° for the unconfined collapse. For com-
parison purposes, the locations of the channel boundary of the confined testing condition calculated earlier
are plotted as two parallel bold blue lines. Our simulations show that the lateral dispersion of fragments
occurs immediately after the impact, and that the lateral spreading area increases with time. The final distri-
bution profile of the boundary solids is shown as a red dashed curve in Figure 11e, with a bulged bowl shape.
Figure 11f shows the final deposition of rock fragments obtained from tests with confined boundaries (see
Figure 6). The comparison clearly shows that in contrast with the confined testing condition where clasts
accumulate near the slope toe area, unconfined setting allows the large fragments to spread also laterally
in a subcircular pattern.

Based on Figure 11e, we can define the lateral dispersion ratio of rock fragments as W/L,, with W being
the maximum lateral dispersion distance and L the fragment runout distance. The relationship between
the lateral dispersion ratio of rock fragment and slope angle is plotted in Figure 12a. The values of
W/L, for tests with confined boundaries are also plotted for the sake of comparison, with W taken as a
fixed value equal to the channel width. According to Figure 12a, the W/L; ratio increases with slope incli-
nation, indicating that the lateral dispersion of rock fragments becomes increasingly intensive for rock
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Figure 11. (a—f) Lateral dispersion of fragments for 6 = 90°. The two parallel blue lines represent the locations of the channel boundary for the confined testing con-
dition. In Figure 11e, the dashed curve represents the approximate fragment deposition profile, with W being the lateral dispersion distance, Ls being the maximum
runout distance. Figure 11f is the final fragment deposit as in Figure 6 for laterally confined conditions ([T] =t/4 /2H/g>.

blocks tested on steep slopes. Comparison between the unconfined and confined boundary tests illustrates
that W/L; remains the same for both tests if §<60°, while it becomes increasingly larger in the unconfined
boundary tests if >60°. This phenomenon indicates that the effect of fragment lateral dispersion is
significant only in steep slopes. The numerical results for the unconfined and confined tests can be fitted
with good accuracy by an exponential and a linear relationship, respectively. Looking at Figure 12a, it is
worth to observe that the W/L, ratio is quite low (~0.2) for gentle slopes (<40°). This agrees with the
observations reported by Haug et al. [2016] of an elongated propagation and deposition area taking
place in their experiments on a 45° inclined slope. Instead in Figure S3 (supporting information), the
results of a DEM simulation, based on Haug et al. [2016] geometrical constraints but under augmented
gravity, are plotted. The distribution of the material qualitatively agrees with their experimental
observations.

The DEM results are analyzed with regard to mobility in Figure 12b, where the H/L ratio (i.e., apparent fric-
tion coefficient, H: the drop height; L: the spreading length) is plotted with respect to the slope angle. In
the figure, the results for the simulation of a DEM model made of loose grains, with a configuration similar
to the one adopted by Crosta et al. [2017], are also presented. The data show an increase of H/L with slope
inclination, suggesting that the granular motion encounters high resistance on steep slopes with strong
energy absorption at impact. The data qualitatively follow the real rock avalanche/fall observations and
are well fitted by the relationship proposed by Crosta et al. [2017]. Best fitting of the simulation results
requires a relatively large transverse coefficient of restitution, ¢, as defined by Crosta et al. [2017], i.e., ratio
of the horizontal velocity component acquired upon impact to the vertical velocity before impact, with
respect to analyses performed for loose materials. The definition of ¢ accounts for the momentum boost
effect during impact, as discussed before. This is also expressed by preimpact and postimpact velocities
reported in Table S1 (supporting information), and it could be associated with the stiffness of the falling
block with respect to the loose case study. The confined and unconfined DEM tests can lead to very
similar results, except for cases with very steep slopes. For these tests (e.g. 6 > 80°), the lateral disper-
sion effect with high friction resistance is evident for the unconfined boundary condition, and thus the
fragment runout is relatively short. For the loose DEM simulations, the spherical particle shape and elas-
tic interactions significantly decrease both the basal friction and energy absorption at impact. Thus, the
granular materials show higher mobility (i.e., low H/L ratio) than fragments resulted from rockfall
impact tests.
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Figure 12. Dependence of (a) dispersion ratio (i.e, channel or deposit probably associated with initial rock
width to runout distance, L) and (b) the apparent friction coefficient (H/L) X

on the slope angle. The ratios of both the laterally confined and unconfined mass fracturing at the release and
tests are plotted. In Figure 12b the DEM results for H/L are compared to exit of the source area.

experimental and real rock avalanche data and to the equation proposed by
Crosta et al. [2017]. The best fitting function accounts for the model geo- . ) > .
metry of smooth slope and rough floor. 4 =0.577 is the friction coefficient inherent in a bilinear slope path, it
of the basal floor. can be expected that this geometry

is capable of capturing the first major
impact, which will be associated with the highest rock damage and energy dissipation. Thus, it can be helpful
to analyze the potential relationship between the instantaneous bond breakage ratio (BR) and energy dissi-
pated for various testing conditions. Note that the definition of BR is different from the previously defined
damage ratio (D), because only bond breakages occurring during the first impact are considered, while the
bond breakages by subsequent fragment sliding and collisions are ignored. In the current analyses, the
instantaneous dissipated energy, computed as the difference between the total cumulative dissipated
energy before (t;) and after (t,) the sudden impact, is normalized by the initial potential energy of the rock
block and denoted as E;*.

Notwithstanding the simplification

E; = [Ediss(tZ) - Ediss(t1)]/E0 (14)

In Figure 13, the relationship between BR and E;* for the confined and unconfined testing cases is presented.
It is clear that the energy dissipated at impact increases with BR, for these two types of tests, following expo-
nential relationships. On gentle slopes (e.g., # =40°), BR can be less than 0.25, and the corresponding energy
dissipation is around 0.6. However, on steep slopes (e.g., §=90°), BR becomes larger than 0.6, and E;* is
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09 ‘ ' ' ' ' around 0.85. The numerical results

indicate that the rock fragmentation
intensity is associated with the input
energy and increases quickly with
the slope angle. The comparison
between laterally confined and
Eg=-1.03e°+088 | unconfined tests also shows that
(R*=0.975) the energy dissipated by rock frag-
mentation tested without lateral
confinement is slightly larger than
the one tested with confinement,
= Unconfined boundary | indicating that lateral confinement
® Confined boundary can constrain energy dissipation in

! ‘ ! . ! . ! ‘ | rock fragmentation.
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Finally, it is worth to mention the role
that load intensity and strain rate

Figure 13. Plot of the energy dissipation versus the instantaneous bond  have on the fragmentation process.
breakage ratio (BR) (the testing slope angle is labeled close to the data Numerical simulations put in evi-
points). dence the increase in fragmentation
(i.e, number of fragments, decrease
in fragment size) at increasing strain rate beyond a specific threshold value. The same holds true, according
to the numerical results, for load intensity, with more intense fragmentation observed in case of high loads.
Both these findings agree with observations in the literature [Grady and Kipp, 1985] and could explain why in
nature we can observe very different degrees of fragmentation for processes we classify solely as rockfalls or
rock avalanches. In fact, the same classes of phenomena are characterized by very different geometrical fea-

tures of both the released mass and the slope profile.

5. Conclusions

This paper presents the results of numerical investigations by 3-D discrete element method simulations of
the fragmentation of prismatic rock blocks when reaching a sharp break at the base of a simple slope. The
use of parallel bonds to mimic cementation between rock grains has enabled the measurements of internal
forces, energy, and damage intensity of rock blocks during impact, which are not currently achievable from
experimentation. The obtained results reveal the characteristics of dynamic rock fragmentation and the
mechanism governing the postfailure fragment motion.

The sudden collision of rock blocks onto the bottom floor leads to instantaneous increase of normal forces at
the bottom lower edge of the block, producing several large blocks and many small fragments. Then, the
impacting force wave propagates upward into the rock mass, leading to some new cracks and subsequent
damages of the rock block. For rock slide on a slope of 70° inclination, around 40% of interparticle bonds
break immediately at impact, and then less than 10% of bonds breaks due to the subsequent sliding and
collision of fragments. This process causes more than 90% of energy dissipation by friction and plastic defor-
mation of rock grains, while only a small portion (<5%) of energy by bond breakage.

To mimic various natural slope topographies, simulations for a range of slope angles were performed. Tests
on gentle slopes normally lead to long spreading distance, whereas tests on steep slopes exhibit high impact
strain rates and efficient fragmentation. Apparent granular momentum boosting can be observed for tests
with slope angles larger than 50°, and the horizontal momentum can increase by more than 5% in various
testing conditions. This means that fragmentation is capable of enhancing velocity and mobility of the frag-
ments, thus converting vertical into horizontal momentum. There is obviously no violation of momentum
conservation, because the extra horizontal momentum is taken up by the terrain at the slope break [Crosta
etal., 2017]. For these tests, the fracture stress, fragment number, damage ratio, and the overall apparent fric-
tion coefficient of rock fragment runout all increase, while the nominal fragment size decreases with the
impact loading strain rate. The fragment size distributions resulting from the DEM simulations approximate
well a Weibull’s distribution.
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