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N -Step MPC for Systems with Persistent
Bounded Disturbances under Stochastic

Communication Protocol
Yan Song, Zidong Wang, Shuai Liu and Guoliang Wei

Abstract—This paper is concerned with theN -step model pre-
dictive control (MPC) problem for a class of constrained systems
with persistent bounded disturbances under the stochasticcom-
munication protocol (SCP). The control signals are transmitted
to the plant via a shared network subject to a prescribed SCP
for the purpose of avoiding data collisions. The SCP scheduling,
which is governed by a Markov chain, is applied to orchestrate
the transmission order of the controller nodes. Under the SCP,
only one control node is allowed to update the control signalsent
to the plant at each communication instant. Our aim is to design
a set of desired controllers in the framework ofN -step MPC
such that the mean-square input-to-state stability of the closed-
loop system is guaranteed. An optimization algorithm consisting
of both off-line and online parts is developed to cope with the
design problem of the N -step controller. Finally, a numerical
example is utilized to illustrate the validity of the proposed N -
step MPC strategy.

Index Terms—N -step model predictive control, stochastic
communication protocol, mean-square input-to-state stability,
persistent bounded disturbances.

I. I NTRODUCTION

Over the past few decades, due to its practical insights,
the model predictive control (MPC) problem has attracted
considerable research interest in systems with bounded dis-
turbances, which gives rise to robust MPC (RMPC), see [4],
[10], [17], [35] for discrete-time systems and [21], [26]–[28]
for continuous-time systems. Up to date, RMPC strategy has
been extensively applied into various engineering areas such
as chemical process, power systems, DC motors and mobile
robots [8], [10]–[14], [31], [36]. From the technical viewpoint,
there are generally two approaches dealing with the external
bounded disturbances for discrete-time systems with respect to
the RMPC problem, namely, the “min-max” optimization ap-
proach [24] and the open-loop optimization approach [3], [15].
More specifically, the main idea of the “min-max” approach
is to minimize the objective function in the worst possible
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realization of the disturbances. As mentioned in [2], such
an approach would bring in additional computation burden
while possibly leading to poor performance. By contrast,
the open-loop optimization approach is more efficient in the
sense of achieving the desired robustness performance while
its feasibility cannot be ensured. Note that, in the context
of RMPC algorithm development, it is rather difficult to
have an appropriate methodology capable of examining the
impacts from external bounded disturbances on the control
performance.

For traditional MPC approaches, an arguably drawback is
the heavy computation burden caused by the online optimiza-
tion procedure which, in turn, largely hinders their applications
in practical engineering. To overcome such a limitation without
considerably sacrificing the system performance, tremendous
research efforts have recently been invested in the design of the
off-line control algorithms, see e.g. [10], [25]. Among various
existing off-line algorithms in the MPC paradigm, theN -step
MPC (also called as multi-step MPC) proposed in [21], [22] is
recognized as a powerful approach that has been widely used
in a variety of engineering systems. Technically speaking,the
N -step MPC aims to design a series of control inputs by means
of solving certain optimization problems such that the system
state located in the initial feasible region will be steeredinto
a fixed terminal constraint set withinN time steps. Moreover,
with the increase of the step numberN , the size of the initial
feasible region grows at the cost of increasing the computation
complexities. As such, a well-noted challenge for theN -step
MPC problem is how to design an appropriate control strategy
so as to make the right trade-off between the initial feasible
region and the computation complexities, and this constitutes
the main motivation of our current investigation.

On another research frontier, networked control systems
(NCSs) have aroused considerable research interest owing
to their merits in low cost, simple installation and easy
implementation, see e.g. [5], [6], [29], [30], [32], [33]. In a s-
patially distributed NCS, sensors/controllers are often installed
remotely to obtain the measurements/calculations and transmit
the signals separately to a certain target node (i.e., scheduler).
The components (sensors, controllers, actuators, etc.) ofthe
NCSs execute the data-exchange tasks via a commonly shared
communication network. As pointed out in [20], data collision
might occur in carrier sense multiple accesses with collision
detection (CSMA/CD) if more than one link detects the idle
common channel and sets out the transmission. Consequently,
to prevent the data packets from being congested, an effective
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method is to apply the so-calledcommunication protocolsto
schedule the transmission order of the data to be sent. So
far, most frequently used communication protocols in industry
include, but are not limited to, the Try-Once-Discard (TOD)
protocol [18], [38], the Round-Robin (RR) protocol [23], [35],
[38] and the stochastic communication protocol (SCP) [7],
[19], [34], [37]. The RR protocol is a typical static scheduling,
where data are transmitted in a pre-given order. In contrast, the
TOD and SCP protocols are two dynamic scheduling, where
the links are scheduled according to the time varying errors
(the difference between the latest two measurements) or in a
stochastic manner. Compared with the static scheduling, the
dynamic one has a better flexibility for the resource allocation
and scheduling.

With respect to the SCP scheduling, the probability distri-
bution for a certain node to gain the random priority so as to
be accessible to the shared communication network is usually
characterized by a Markov chain [37] or a Bernoulli process
[20], where the zero-hold-order input mechanism or the zero
input mechanism is used to compensate the nodes/components
that don’t obtain the privilege for the updating. For example, a
new Markov chain has been constructed in [37] to model the
SCP scheduling of communication networks, and theH∞ con-
trol problem has been investigated for the established closed-
loop system. Among the aforementioned three communication
protocols (RR, TOD and SCP), the SCP protocol reflects
the random selection of the node gaining the transmission
privilege, thereby ensuring the equal allocation for the nodes
in a complex networked environment. Although the SCP has
been extensively investigated in various NCSs, theN -step
MPC problem for discrete-time systems under the SCP has
not yet been adequately studied due mainly to its mathematical
difficulties in the analysis/design of the control strategy, not
to mention the case where the persistent bounded disturbances
are also considered.

In response to above discussions, in this paper, we aim
to investigate the SCP-basedN -step MPC problem for a
class of linear discrete-time systems with persistent bounded
disturbances. To be more specific, our goal is to design a set of
desired controllers in the framework ofN -step MPC such that
the closed-loop system is mean-square input-to-state stable
(ISS). To achieve such an objective, three identified challenges
need to be overcome: 1) how to solve the terminal constraint
set off-line for the addressed system subject to the underlying
SCP and the persistent bounded disturbances? 2) how to design
the multi-step controller to steer the state into the obtained
terminal constraint set? and 3) how to examine the impact
from the SCP and the persistent bounded disturbances on the
system stability? It is, therefore, the primary motivationof this
paper to provide satisfactory answers to these three questions.
Some specific mathematical tools (e.g. quadratic boundedness
technique, input-to-state stability theory and convex optimiza-
tion approach) will be employed to facilitate the multi-step
controller analysis/synthesis for constrained systems with the
persistent bounded disturbances under the SCP.

The main contributions are highlighted as follows:1) the
addressed problem is new in the sense that this paper makes
the first attempt to deal with the RMPC problem with persis-

tent bounded disturbances under the SCP; 2) some sufficient
conditions on theN -step MPC strategy are established so
as to ensure the mean-square input-to-state stability of the
addressed systems; and 3) the impacts from the SCP and
persistent bounded disturbances are clearly reflected on the
proposed optimization algorithm.The rest of this paper is
organized as follows. In Section II, the system with persistent
bounded disturbances under the SCP is introduced and some
necessary preliminaries are presented. In Section III, some
sufficient conditions are established to compute the terminal
constraint set and the corresponding control law. In Section IV,
an off-line optimization problem is first developed to obtain a
sequence of robust one-step sets (ROSSs), and then an online
optimization problem is proposed to derive the corresponding
control laws. In Section V, the mean-square input-to-state
stability of the addressed closed-loop system is ensured, and an
optimization algorithm including both online and off-lineparts
is proposed. Subsequently, a simulation example is provided
in Section VI to illustrate the effectiveness of the proposed
algorithm. Finally, we summarize the paper in Section VII.

Notation The notation used here is fairly standard except
where otherwise stated.Rn and Rn×m denote, respectively,
the n dimensional Euclidean space and the set of alln ×m

real matrices.Z+ andR+ are used to denote the sets of all
nonnegative integers and reals, respectively.I and0 represent
the identity and zero matrices of compatible dimensions,
respectively. The shorthanddiag{M1,M2, . . . ,Mn} denotes
a block diagonal matrix with diagonal blocks being matrices
M1,M2, . . . ,Mn. ||x|| describes the Euclidean norm of a
vector x. We denote‖x‖2W , xTWx, whereW > 0 is a
symmetric weighting matrix. Given two setsA andB, A\B
denotes the difference set ofA andB. •(k+n|k) denotes the
prediction value at the future time instantk+n predicted at real
timek, specially,•(k|k) , •(k). In symmetric block matrices,
the symbol “∗” is used as an ellipsis for terms induced by
symmetries. MatrixX > 0 (X ≥ 0) means that each entry
of X is positive (non-negative). Moreover, for two symmetric
matricesX andY , X ≥ Y (especially,X > Y ) means that
X − Y is positive semi-definite (especially, positive definite).
MT represents the transpose ofM . The probability of the
occurrence of event “·” is denoted by Prob{·}. E{x} stands
for the mathematical expectation of the stochastic variable x.
A function γ : R≥0 → R≥0 is aK-function if it is continuous
and strictly increasing withγ(0) = 0. γ is aK∞-function if it
is aK-function and satisfiesγ(t) → ∞ ast → ∞. A function
β : R+ × R+ → R+ is a KL-function if, for eachk ≥ 0,
β(·, k) is aK-function, and for each fixedt ≥ 0, the function
β(t, ·) is decreasing withβ(t, k) → 0 ask → ∞.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. The system model under the SCP scheduling

Consider the following linear discrete-time system with
persistent bounded disturbances:

x(k + 1) = Ax(k) +Bu(k) + Eω(k) (1)

where x(k) ∈ R
n is the system state andu(k) ∈ R

m is
the control input after being transmitted via communication
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networks. MatricesA, B andE are some known matrices with
appropriate dimensions.ω(k) is the exogenous disturbance and
satisfies

ω(k) ∈ W ,
{

ω(k) ∈ R
w|ωT (k)ω(k) ≤ ̟

}

(2)

where̟ > 0 is a known scalar, andW is a compact set
involving the origin.

COMMUNICAITON

NETWORK

UNDER SCP

.

.

.

PHYSICAL

PLANT

( )x k( )u k
MPC

S
C
H
E
D
U
L
E
R

ZOH

( )1
u k
111

( )2
u k
222

( )m
u k
mm

( )kw

Fig. 1. The structure of the MPC-based closed-loop system under the SCP
scheduling.

For illustration convenience, the controller is said to have
n nodes corresponding to then components of the control
input. As described in Fig. 1,̃ui(k) ∈ R (i = 1, 2, . . . ,m)
stands for the signal from theith controller node before
being transmitted via the network. To avoid data collisions,
the SCP is employed during the data transmission from the
controller to the plant via a communication network equipped
with a SCP scheduler. More precisely, at each time instant,
only one controller node has an access to the shared com-
munication network, which is determined by a sequence of
random variables, that is, only one component of control inputs
defined byũ(k) , [ũ1(k) ũ2(k) . . . ũm(k)]T is updated, and
other nodes without the transmission right will hold the last
transmission values by the zero-order holders (ZOHs).

Associated with the SCP, we denote the indicator function
as θk ∈ M , {1, 2, . . . ,m}, which indicates the selected
controller node at the time instantk. According to [37], the
random variableθk can be described by a Markov chain with
the transition probability matrixP = [pij ]m×m

whose(i, j)th
entry is defined by

pij , Prob(θk+1 = j|θk = i) (3)

wherepij ≥ 0 (i, j ∈ M) is the transition probability from
nodei to nodej and

∑m
j=1 pij = 1.

Define the control signal received by the plant asu(k) ,

[u1(k) u2(k) . . . um(k)]T . Under the scheduling of SCP, the
updating rule forui(k) can be expressed as

ui(k) =

{

ũi(k), if i = θk

ui(k − 1), otherwise.
(4)

Combining (3) with (4), u(k) can be rewritten as the
following compact form

u(k) = Φθk ũ(k) + (I − Φθk)u(k − 1) (5)

where Φθk , diag{δ (θk − 1) , δ(θk − 2), . . . , δ(θk −m)}
with δ(θk − i) (i = 1, 2, . . . ,m) being a Kronecker delta

function satisfyingδ(θk − i) = 1 for θk = i, otherwise
δ(θk − i) = 0.

To better reflect the engineering practice, the following hard
constraints are taken into consideration:

{

|[ũ(k)]p| ≤ [ū]p, p ∈ {1, . . . ,m} (6a)

|[Ψ]qx(k)| ≤ [x̄]q, q ∈ {1, . . . , o} (6b)

whereΨ ∈ Rr×n is a known real matrix,̄u > 0 andx̄ > 0 are
known vectors, and[·]i (i ∈ {p, q}) denotes theith element
of a vector or theith row of a matrix.

B. N -step MPC strategy

Along the similar line as [10], the control law in the
framework of theN -step MPC strategy is determined by

ũ(k + n|k) =

{

Kθk+n|k,nx(k + n|k), 0 ≤ n < N

Kθk+n|k,Nx(k + n|k), n ≥ N
(7)

where θk+n|k denotes the predicted controller node to be
selected at the time instantk+n based on the current selected
controller nodeθk, andθk+n|k ∈ M. Kθk+n|k,n (0 ≤ n ≤ N)
are multi-step controller gains to be determined in the sequel.

By denoting ξ(k + n|k) = [xT (k + n|k) uT (k + n −
1|k − 1)]T , one obtains the following dynamic system with
the persistent bounded disturbances:

ξ(k + n+ 1|k) = Aθk+n|k,nξ(k + n|k) + Eω(k + n|k) (8)

whereE =
[

ET 0
]T

and

Aθk+n|k,n =

[

A+BΦθk+n|k
Kθk+n|k,n B(I − Φθk+n|k

)

Φθk+n|k
Kθk+n|k,n I − Φθk+n|k

]

.

For later development, some necessary definitions are pre-
sented as follows.

Definition 1: For the closed-loop system (8), the setX is
said to be a robust positively invariant (RPI) set ifξ(k + n+
1|k) ∈ X for all ξ(k + n|k) ∈ X (k, n ∈ Z+) and allowable
disturbancesw(k + n|k).

Definition 2: [25]. The RPI setQ(Ω) is said to be a robust
one-step set (ROSS) if all states for allowable disturbances can
be steered into an RPI setΩ by an admissible input.

Definition 3: [9]. The system (8) is said to be mean-square
input-to-state stable (ISS) if there exist functionsβ ∈ KL and
γ ∈ K such that

E{‖ξ(k)‖2} ≤ β(‖ξ(0)‖2, k) + γ(‖ω(k)‖2∞)

where‖ω(k)‖2∞ , supk∈Z+
{‖ω(k)‖2} and ξ(0) is an initial

state vector.
For the closed-loop system (8) with the control strategy (7),

the objective of this paper is twofold:
• R1) design the multi-step controller gainsKθk+n|k,n for

all θk+n|k ∈ M, 0 ≤ n ≤ N to obtain a sequence of
ROSSs{P0,P1, . . . ,PN−1} and the terminal constraint
setΩ such that, in the simultaneous presence of persistent
bounded disturbances and SCP, the states included in the
initial feasible regionP0∪P1∪ . . .∪PN−1 can be steered
into the terminal constraint setΩ within N steps; and

• R2) establish a set of sufficient conditions to guarantee
that the closed-loop system (8) achieves the mean-square
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input-to-state stability while entering into the terminal
constraint set.

Remark 1: In terms of the time steps required to ensure the
prediction states entering into the terminal constraint set, the
MPC strategy can be generally classified into two categories,
one is called the “zero-step” MPC strategy which means that
the initial prediction state is included in the terminal constraint
set, and the other is the “N -step” MPC strategy where the
initial prediction state enters into the terminal constraint set
within N steps. It is worth noting that, compared with the
“zero-step” MPC strategy, one distinct feature of the “N -step”
MPC strategy lies in that the size of the initial feasible region is
obviously enlarged. In the “N -step” MPC strategy framework,
after the state enters into the terminal constraint set, only the
feedback control law corresponding to the terminal constraint
set is applied to the plant, and the computation burden is thus
effectively reduced.

III. T ERMINAL CONSTRAINT SET

For ∀r ∈ M, define the following set:

Ωr,N ,
{

ξ|ξTPr,Nξ ≤ ϕ
}

(9)

wherePr,N = diag{P̃1r,N , P̃2r,N} (r ∈ M) with P̃ir,N (i ∈
{1, 2}) denoting positive-definite matrices with appropriate
dimensions to be designed.ϕ > 0 is a positive scalar.

As stated in [16], if the following requirements are simul-
taneously satisfied:

1) the setΩθk+n|k,N is an RPI set subject to constraints
(6a)-(6b);

2) the terminal cost functionV (ξ(k + n|k)) defined by
V (ξ(k+n|k)) , ξT (k+n|k)Pθk+n|k,Nξ(k+n|k) with
ξ(k+n|k) ∈ Ωθk+n|k,N is a local Lyapunov-like function
satisfying

E{V (ξ(k + n+ 1|k))} − V (ξ(k + n|k))

≤− ‖ξ(k + n|k)‖2Q − ‖ũ(k + n|k)‖2R

+ λ‖ω(k + n|k)‖2
(10)

whereQ andR are known positive-definite weighting
matrices, andλ > 0 is a known scalar,

then the setΩθk+n|k,N is a terminal constraint set of the closed-
loop system (8) with constraints (6a)-(6b).

In what follows, we shall address the above requirements
for the terminal constraint set in a step-by-step manner. Then,
an off-line optimization problem is provided to obtain the
terminal constraint set as well as the corresponding feedback
gain.

A. Robust positively invariant set

To begin with, by resorting to the quadratic boundedness
technique [1], [25], the following sufficient condition is di-
rectly put forward to ensure that the setΩr,N (r ∈ M) is an
RPI set. For brevity, we denotes , θk+n|k andt , θk+n+1|k.

Lemma 1:The setΩs,N defined by (9) is an RPI set if the
following condition

1

ϕ
E

{

‖ξ(k + n+ 1|k)‖2Pt,N

}

−
1

ϕ
‖ξ(k + n|k)‖2Ps,N

≤ 0

(11)

under the constraint

1

ω̄
‖ω(k + n|k)‖

2
≤

1

ϕ
‖ξ(k + n|k)‖

2
Ps,N

(12)

holds.
Proof: The proof can be carried out along the similar line

in [1], [25], and the details are therefore omitted.
Next, by means of the stochastic analysis technique, we are

ready to establish some matrix inequalities to guarantee (11)-
(12).

Lemma 2:Let the bound of disturbancēω, the matrixΨ and
the transition probability matrixP = [pst]m×m be given. For
the system (8) with constraints (6a)-(6b), suppose that there
exist positive-definite matrices̃Y1s,N , Ỹ2s,N , Xs,N , Ys,N , a
matrix Zs,N , scalars0 < α ≤ 1 and ϕ > 0 such that for
∀s ∈ M, the following inequalities hold:




















(1 − α)Ys,N ∗ ∗ ∗ ∗ ∗
0 α

ω̄
I ∗ ∗ ∗ ∗

Γs,N E
Y1,N

ps1
∗ ∗ ∗

Γs,N E 0
Y2,N

ps2
∗ ∗

...
...

...
...

. . .
...

Γs,N E 0 0 · · ·
Ym,N

psm





















≥ 0, (13)

[

Xs,N ∗

ZT
s,N Ỹ1s,N

]

≥ 0, [Xs,N ]
pp

≤ [ū]2p, p = 1, . . . ,m, (14)

[

Ys,N ∗

Ỹ T
1s,NΨT Ỹ1s,N

]

≥ 0, [Ys,N ]
qq

≤ [x̄]2q, q = 1, . . . , o

(15)
where [·]jj (j ∈ {p, q}) denotes thejth diagonal element of
the matrix “·” and

Γs,N =

[

AỸ1s,N +BΦsZs,N B(I − Φs)Ỹ2s,N

ΦsZs,N (I − Φs)Ỹ2s,N

]

,

Ys,N = diag{Ỹ1s,N , Ỹ2s,N}, Ys,N = ϕP−1
s,N ,

Ỹjs,N = ϕP̃−1
js,N , j ∈ {1, 2}.

Then, the ellipsoid setΩs,N defined by (9) is an RPI set.
Furthermore, the corresponding controller gain is given by

Ks,N = Zs,N Ỹ −1
1s,N . (16)

Proof: By using the Schur Complement, (13) holds if and
only if

[

Π11
s,N ∗

Π21
s,N Π22

s,N

]

≥ 0 (17)

where

Π11
s,N = (1− α)Ys,N − ΓT

s,N

m
∑

r=1

psrY
−1
r,NΓs,N ,

Π21
s,N = −ET

m
∑

r=1

psrY
−1
r,NΓs,N ,

Π22
s,N =

α

ω̄
I − ET

m
∑

r=1

psrY
−1
r,NE .
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Subsequently, pre- and post-multiplying (17) with
diag{Y −1

s,N , I} and its transpose, the following inequality
is obtained from (8) and (33):

[

Ξ11
s,N ∗

Ξ21
s,N Π22

s,N

]

≥ 0 (18)

where

As,N =

[

A+BΦsKs,N B (I − Φs)
ΦsKs,N I − Φs

]

,

Ξ11
s,N = (1− α)Y −1

s,N −AT
s,N

m
∑

r=1

psrY
−1
r,NAs,N ,

Ξ21
s,N = − ET

m
∑

r=1

psrY
−1
r,NAs,N .

Moreover, pre- and post-multiplying (18) with[ξT (k +
n|k) ωT (k + n|k)] and its transpose, we have

(As,nξ(k + n|k) + Eω(k + n|k))T
m
∑

r=1

psrY
−1
r,N

× (As,nξ(k + n|k) + Eω(k + n|k))

− (1− α)ξT (k + n|k)Y −1
s,Nξ(k + n|k)

−
α

ω̄
ωT (k + n|k)ω(k + n|k) ≤ 0.

(19)

Then, it follows directly from (8) and (19) that

ξT (k + n+ 1|k)

m
∑

r=1

psrY
−1
r,Nξ(k + n+ 1|k)

− ξT (k + n|k)Y −1
s,Nξ(k + n|k) + α(ξT (k + n|k)

× Y −1
s,Nξ(k + n|k)−

α

ω̄
ωT (k + n|k)ω(k + n|k)) ≤ 0.

(20)

Noticing E{Pt,N} =
m
∑

r=1
psrPr,N , it is inferred that

1

ϕ
E{ξT (k + n+ 1|k)Pt,Nξ(k + n+ 1|k)}

−
1

ϕ
ξT (k + n|k)Ps,Nξ(k + n|k) +

α

ϕ
(ξT (k + n|k)

× Ps,N ξ(k + n|k)−
α

ω̄
ωT (k + n|k)ω(k + n|k)) ≤ 0.

(21)

To this end, by applying theS-procedure, we obtain imme-
diately from (21) that the conditions (11)-(12) are satisfied,
which implies thatΩs,N is an RPI set of the system (8) with
constraints (6a)-(6b). In addition, the corresponding feedback
gain is determined by (33). The proof is complete.

B. Terminal cost function

Lemma 3:Let the weighting matricesQ > 0, R > 0,
a scalarλ > 0 and the transition probability matrixP =
[pst]m×m be given. For system (8) under the SCP (5), if
there exist a matrixZs,N , positive-definite matrices̃Y1s,N and
Ỹ2s,N , and a scalarϕ > 0 such that, for∀s ∈ M, the following

matrix inequality

























Ys,N ∗ ∗ ∗ ∗ ∗ ∗
0 λϕ ∗ ∗ ∗ ∗ ∗

Γs,N Eϕ
Y1,N

ps1
∗ ∗ ∗ ∗

...
...

...
. . .

...
...

...
Γs,N Eϕ 0 · · ·

Ym,N

psm
∗ ∗

QYs,N 0 0 · · · 0 ϕQ ∗
RΘs,N 0 0 · · · 0 0 ϕR

























≥ 0 (22)

holds, whereΘs,N = [Zs,N 0], Ys,N andΓs,N are defined
in Lemma 2, then the condition (10) is satisfied.

Proof: First, pre- and post-multiplying (22) with
diag{Y −1

s,N , ϕ−1, I, . . . , I} and its transpose, respectively, we
obtain

























Y −1
s,N ∗ ∗ ∗ ∗ ∗ ∗

0 λ
ϕ

∗ ∗ ∗ ∗ ∗

As,N E
Y1,N

ps1
∗ ∗ ∗ ∗

...
...

...
. . .

...
...

...
As,N E 0 · · ·

Ym,N

psm
∗ ∗

Q 0 0 0 0 ϕQ ∗

RK̃s,N 0 0 0 0 0 ϕR

























≥ 0 (23)

whereK̃s,N = [Ks,N 0].
By using the Schur Complement, (23) holds if and only if

[

Σ11
s,N ∗

Σ21
s,N Σ22

s,N

]

≥ 0 (24)

where

Σ11
s,N = Y −1

s,N − Ξs,N − ϕ−1Q− ϕ−1Ks,N ,

Σ21
s,N = − ET

m
∑

r=1

psrY
−1
r,NAs,N ,

Σ22
s,N =

λ

ϕ
− ET

m
∑

r=1

psrY
−1
r,NE ,

Ξs,N = AT
s,N

m
∑

r=1

psrY
−1
r,NAs,N ,

Ks,N = K̃T
s,NRK̃s,N .

According to (8), pre- and post-multiplying (24) by
[ξT (k + n|k) ωT (k + n|k)] and its transpose, the following

inequality is obtained:

ξT (k + n+ 1|k)

m
∑

r=1

psrY
−1
r,Nξ(k + n+ 1|k)

− ξT (k + n|k)Y −1
s,Nξ(k + n|k) + ξT (k + n|k)ϕ−1Q

× ξ(k + n|k) + ϕ−1ũT (k + n|k)Rũ(k + n|k)

+
λ

ϕ
ωT (k + n|k)ω(k + n|k) ≤ 0.

(25)
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By multiplying both sides of (25) withϕ, it is easily seen
that:

ξT (k + n+ 1|k)

m
∑

r=1

psrPr,Nξ(k + n+ 1|k)

− ξT (k + n|k)Ps,Nξ(k + n|k) + ξT (k + n|k)Q

× ξ(k + n|k) + ũT (k + n|k)Rũ(k + n|k)

+ λωT (k + n|k)ω(k + n|k) ≤ 0.

(26)

Noticing the factE{Pt,N} =
m
∑

r=1
psrPr,N , we have:

E{ξT (k + n+ 1|k)Pt,Nξ(k + n+ 1|k)}

− ξT (k + n|k)Ps,Nξ(k + n|k) + ξT (k + n|k)Q

× ξ(k + n|k) + ũT (k + n|k)Rũ(k + n|k)

+ λωT (k + n|k)ω(k + n|k) ≤ 0.

(27)

By some straightforward manipulations, it is not difficult
to see that (27) implies (10), which ensures that the terminal
cost functionV (ξ(k+n|k)) is a local Lyapunov-like function
satisfying (10). The proof is complete.

So far, sufficient conditions have been derived to guarantee
that the setΩs,N (s ∈ M) is a terminal constraint set for the
system (8) with constraints (6a)-(6b). To minimize the terminal
constraint set, let us establish the following optimization
problem:

OP1 min
ϕ,α,Ys,N ,Xs,N ,Ys,N ,Zs,N

trace(Ys,N )

s.t. (13)− (15) and(22)

where “trace(·)” denotes the trace of the matrix.
It can now be concluded from Lemmas 2 and 3 that the set

Ωs,N (s ∈ M) is a terminal constraint set. For convenience of
dealing with the ROSSs later, we define the following set:

Ω ,
{

ξ|ξTY −1
N ξ ≤ 1

}

(28)

whereY −1
N =

∑m

r=1 µrY
−1
r,N with YN = diag{Ỹ1,N , Ỹ2,N}

and µr ≥ 0 (r = 1, . . . ,m) are the weighting coefficients
satisfying

∑m
r=1 µr = 1.

Next, some sufficient conditions are derived to guarantee
thatΩ is a terminal constraint set.

Lemma 4:Let the bound of disturbancēω and the matrixΨ
be given. For the system (8) with constraints (6a)-(6b), assume
that there exist positive-definite matricesXN , YN and a matrix
ZN such that, for∀s ∈ M, the following inequalities hold:





1
1−α

YN ∗ ∗

0 α
ω̄
I ∗

Γ̄s,N E YN



 ≥ 0, (29)













YN ∗ ∗ ∗ ∗
0 λ ∗ ∗ ∗

Γ̄s,N E YN ∗ ∗
QYN 0 0 Q 0
RΘ̄N 0 0 0 R













≥ 0, (30)

[

XN ∗

ZT
N Ỹ1,N

]

≥ 0, [XN ]pp ≤ [ū]2p, p = 1, . . . ,m, (31)

[

YN ∗

Ỹ T
1,NΨT Ỹ1,N

]

≥ 0, [YN ]qq ≤ [x̄]2q, q = 1, . . . , o (32)

whereα is obtained in Lemma 2,̄ΘN = [ZN 0] and

Γ̄s,N =

[

AỸ1,N +BΦsZN B(I − Φs)Ỹ2,N

ΦsZN (I − Φs)Ỹ2,N

]

.

Then, the ellipsoid setΩ defined by (28) is an RPI set.
Furthermore, the corresponding controller gain is derivedas
follows:

KN = ZN Ỹ −1
1,N (33)

and the control law is given byhN = KNx(·).
Proof: The proof follows directly from Lemmas 2 and 3,

and is thus omitted.
Remark 2: It can be observed from the Lemmas 2-4 that

a unified terminal constraint setΩ is determined by taking
the stochastic property of the SCP into account. In addition,
by solving the optimization problemOP1, such a set can be
further minimized and hence potentially improve the control
performance.

IV. ROBUST ONE STEP SETS

A. An off-line optimization problem

For theN -step prediction, suppose thatξ(k + N − 1|k)
belongs to the ROSS defined byPN−1, thenξ(k+N |k) ∈ Ω
can be guaranteed by applying the control lawhN−1. Simi-
larly, if ξ(k +N − 2|k) ∈ PN−2, then the control lawhN−2

can ensureξ(k +N − 1|k) ∈ PN−1. Following this idea, we
can obtain a sequence of ROSSs{P0,P1, . . . ,PN−1} and the
corresponding control laws{h0, h1, . . . , hN−1}.

In the following, by using a similar technique in [25], an
off-line computation is proposed to solve the ROSSs and the
corresponding control laws.

Lemma 5:Define Pn , {ξ|ξTPnξ ≤ ϕ} with Pn =
diag{P̃1,n, P̃2,n}. Let the bound of disturbancēω, the matrix
Ψ and the transition probability matrixP = [pst]m×m be
given. For system (8) with hard constraints (6a)-(6b), suppose
that there exist positive-definite matricesỸ1,n, Ỹ2,n, Un, Vn,
a matrixZi,n, scalars0 < β < 1 andϕ > 0 such that, for
∀i, s ∈ M andn = 0, 1, . . . , N − 1, the following inequalities





(1− β)Yn ∗ ∗

0 β
ω̄
I ∗

Γi,s,n E Yn+1



 ≥ 0, (34)













Yn ∗ ∗ ∗ ∗
0 λϕ ∗ ∗ ∗

Γi,s,n Eϕ Yn ∗ ∗
QYs,n 0 0 ϕQ ∗
RΘi,n 0 0 0 ϕR













≥ 0, (35)

[

Un ∗

ZT
i,n Ỹ1,n

]

≥ 0, [Un]pp ≤ [ū]2p, p = 1, . . . ,m, (36)

[

Vn ∗

Ỹ T
1,nΨ

T Ỹ1,n

]

≥ 0, [Vn]qq ≤ [x̄]2q, q = 1, . . . , o (37)
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are feasible, where

Γi,s,n =

[

AỸ1,n +BΦsZi,n B(I − Φs)Ỹ2,n

ΦsZi,n (I − Φs)Ỹ2,n

]

,

Θi,n = [Zi,n 0], Yn = diag{Ỹ1,n, Ỹ2,n},

Ỹj,n = ϕP̃−1
j,n , j = 1, 2.

Then, the setPn is an ellipsoidal approximating ROSS of
Pn+1. Furthermore, the corresponding feedback gain is given
by

Kn =

m
∑

r=1

µrKr,n (38)

whereKr,n = Zr,nỸ
−1
1,n . Moreover, the control law is deter-

mined byhn = Knx(·).
Proof: Pre- and post-multiplying (34) with[ξT (k +

i|k) ωT (k+ i|k)] and its transpose, it follows from the Schur
Complement and (34) that

ξT (k + i+ 1|k)Y −1
n+1ξ(k + i+ 1|k)

≤ (1− β)ξT (k + i|k)Y −1
n ξ(k + i|k)

+
β

ω̄
ωT (k + i|k)ω(k + i|k).

(39)

It is clear thatξT (k + i + 1|k) ∈ Pn+1 if ξ(k + i|k) ∈ Pn

under the conditionωT (k+ i|k)ω(k+ i|k) ≤ ω̄. Together with
(34)-(35), it is obvious from Lemmas 2-3 thatPn is an RPI
set. Thus, it can be concluded thatPn is an ROSS ofPn+1.
In this sense, ifξ(k+ i|k) ∈ Pn, ξ(k+ i+1|k) can be steered
into Pn+1 by applying the control lawhn. On the other hand,
the hard constraints (6a)-(6b) can be guaranteed by (36)-(37),
and the proof is thus complete.

Now, letting PN be the terminal constraint setΩ, by
backward solving (34)-(37) fromn = N − 1 to n = 0,
the ROSSs{P0,P1, . . . ,PN−1} and the corresponding control
lawshn (n = 0, 1, 2, . . . , N−1) can be successively obtained
off-line.

In order to maximize the size of ROSSs, the following
N off-line optimization problems are proposed forn =
0, 1, . . . , N − 1:

OP2 min
ϕ,β,Un,Vn,Yn,Zi,n(i∈M)

− log det(Yn)

s.t. (34)− (37)

where “log det(·)” denotes the logarithm of the matrix deter-
minant.

Remark 3:From Lemma 5, a sequence of the mode-
independent ROSSs{P0,P1, . . . ,PN−1} is obtained and then
further maximized by solving the optimization problemOP2.
To this end, the initial feasible region can be denoted as
P0 ∪ P1 ∪ . . . ∪ PN−1, in which the state can enter into the
terminal constraint set withinN steps. It is obvious that with
the increase of the step numberN , the size of the initial
feasible region becomes bigger at the cost of increasing the
computation complexities. Therefore, there is a need to keep
a trade-off between the computation complexities and the
control performance of the system.

Remark 4:Notice that the conditions (13) and (34) are non-
convex due to the term(1−α)Ys,N and(1−β)Yn, respectively,

which can be handled by using solvers like PENBMI toolbox.
For convenience, a feasibleα∗ (or β∗) is utilized to replaceα
(or β), and then (13) and (34) can be converted into convex
conditions that can be solved by LMI or YALMIP toolbox.
On the other hand, for theOP2, Nmax is the pre-specified
maximum number of iterative steps. Then, adopting the similar
approach in [25], the time stepN can be selected as follows:

1) If the ROSSs converge aftern (n ≤ Nmax) steps, i.e.
YN−n = YN−n−1, thenN can be assigned asn.

2) Given a sufficiently small positive scalarǫ > 0. If
‖YN−n − YN−n−1‖ ≤ ǫ holds, thenN can be assigned
asn.

3) Otherwise,N is assigned as the maximum number of
iterative stepsNmax.

B. An on-line optimization problem

Instead of applying the feedback control lawhn (n ∈
{0, 1, . . . , N − 1}), we are going to develop an online op-
timization algorithm to compute the control signalũ(k) such
that the state, which is included in the initial feasible region,
can be forced into the terminal constraint setΩ within N steps
while ensuring the minimum control cost.

To be more specific, we suppose that the system stateξ(k)
is obtained at the time instantk, and an online index search is
subsequently carried out to determine the maximum indexM

such thatξ(k) ∈ PM\PM+1 (M = 0, 1, . . . , N − 1). Then,
we calculate the control lawu(k) in order to guarantee that
the stateξ(k + 1) enters intoPM+1.

Next, our attention is focused on the calculation of the con-
trol law u(k). Inspired by the approach in [25], we construct
the following disturbance-free model for∀s ∈ M:

ξ̆(k + 1|k) = Ăsξ(k) + B̆ũ(k) (40)

whereξ(k) = ξ̆(k) and

Ăs ,

[

A B (I − Φs)
0 I − Φs

]

, B̆ =

[

B

I

]

.

Here, the notations is slightly abused to denote both the
θk+n|k andθk.

Based on the above discussions, a quadratic performance
indexJ(k) is introduced together with the following optimiza-
tion problem:

OP3























min
ũ(k)

J(k) (41a)

s.t. ξ(k + 1|k) ∈ PM+1 (41b)

|[ũ(k)]p| ≤ [ū]p, p = 1, . . . ,m (41c)

|[Φ]qx(k)| ≤ [x̄]q, q = 1, . . . , o (41d)

whereJ(k) , ϑ(k) +
∞
∑

n=1
l(k + n|k), ϑ(k) , ξT (k)Qξ(k) +

ũT (k)Rũ(k) andl(k+n|k) , ‖ξ̆(k+n|k)‖2Q+‖ũ(k + n|k)‖
2
R

with Q andR being known positive-definite weighting matri-
ces.
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Noting (35) and (40), the following inequality is true:

ξ̆T (k + n+ 1|k)PM+1ξ̆(k + n+ 1|k)

− ξ̆T (k + n|k)PM+1ξ̆(k + n|k)

<− ξ̆T (k + n|k)Qξ̆(k + n|k)

− ũT (k + n|k)Rũ(k + n|k).

(42)

Keeping the form ofJ(k) in mind and summing up (42)
on both sides from1 to ∞ with respect ton, one has

J(k) = ϑ(k) +

∞
∑

n=1

l(k + n|k)

< ϑ(k) + ξ̆T (k + 1|k)PM+1ξ̆(k + 1|k)

, J̄(k).

(43)

Therefore, the optimization problemOP3 can be transformed
into the following auxiliary optimization problem:

OP4































min
ũ(k)

ρ

s.t. J̄(k) ≤ ρ (44a)

ξ(k + 1|k) ∈ PM+1 (44b)

|[ũ(k)]p| ≤ [ū]p, p = 1, . . . ,m (44c)

|[Ψ]qx(k)| ≤ [x̄]q, q = 1, . . . , o. (44d)

In what follows, let us deal with the constraints inOP4.
Substituting (40) into (44a), and using the Schur Complement,
(44a) holds if and only if, for∀s ∈ M, the following
inequalities hold:









ρ ∗ ∗ ∗
Rũ(k) R ∗ ∗
Qξ(k) 0 Q ∗

Ăsξ(k) + B̆ũ(k) 0 0 P−1
M+1









≥ 0. (45)

Now, we pay attention to the constraint (44b), i.e.,

ξT (k + 1|k)Y −1
M+1ξ(k + 1|k) ≤ 1, (46)

from which it is inferred that, by applying theS-procedure
technique, (46) can be guaranteed under the condition
ωT (k)ω(k) ≤ ω̄ if and only if

ξT (k + 1|k)Y −1
M+1ξ(k + 1|k)

− 1− λ̃
(

ωT (k)ω(k)− ω̄
)

≤ 0
(47)

whereλ̃ > 0 is a known scalar.
Next, by substitutingξ(k+1|k) = Ăsξ(k)+B̆ũ(k)+Eω(k)

into (47) and utilizing the Schur Complement, one has




1− λ̃ω̄ ∗ ∗

0 λ̃ ∗

Ăsξ(k) + B̆ũ(k) E YM+1



 ≥ 0, (48)

which implies that (44b) holds.
Note that (44c) and (44d) can be guaranteed, respectively,

by the following two conditions:
[

F ∗
ũ(k) I

]

≥ 0, [F]pp ≤ [ū]2p (49)

and
[

G ∗
Y T
M+1Ψ

T YM+1

]

≥ 0, [G]qq ≤ [x̄]2q (50)

wherep = 1, . . . ,m andq = 1, . . . , o.
On the basis of the above analysis,OP4 can be further

converted into the following online auxiliary optimization
problem:

OP5 min
ũ(k)

ρ

s.t. (45), (48)− (50).

V. M EAN-SQUARE INPUT-TO-STATE STABILITY

Before proceeding, we first provide the following lemma.
Lemma 6: [25] The closed-loop system (8) is said to be

mean-square ISS if there exist quadratic functionV (ξ(k)),
K∞-function ̺, ¯̺, ζ andK-function ς such that

1) ̺‖ξ(k)‖2 ≤ V (ξ(k)) ≤ ¯̺‖ξ(k)‖2;
2) E{V (ξ(k + 1))} − V (ξ(k)) ≤ −ζ‖ξ(k)‖2 + ς‖ω(k)‖2.

In this case,V (ξ(k)) is called the mean-square ISS quadratic
function.

Theorem 1:Consider the system (8) with hard constraints
(6a)-(6b) under the SCP (5). If there exist feasible solutions to
optimization problemsOP1-OP2 andOP5 at the time stepk,
then there also exist feasible solutions at any future time step
t > k. Moreover, the closed-loop system (8) is mean-square
ISS. Furthermore, the corresponding control laws are givenby
(33) andũ(k) is obtained by solvingOP5.

Proof: The proof of the recursive feasibility can be easily
obtained by following the lines similar to that in [25], and is
therefore omitted. In what follows, the desired mean-square
input-to-state stability of the system (8) needs to be shown. It
should be pointed out that, under theN -step MPC strategy,
we only need to prove that the plant can achieve the mean-
square input-to-state stability while entering into the terminal
constraint set.

From the definition ofV (ξ(k)), one easily has

κmin(P
∗(k)) ‖ξ(k)‖

2
≤ V ∗

k (ξ(k)) ≤ κmax(P
∗(k)) ‖ξ(k)‖

2

(51)
whereκmin(·) andκmax(·), respectively, denote the minimal
and maximal eigenvalues of the matrix. At timek, denote the
optimal PN (k) as P ∗(k), the optimalV (ξ(k)) as V ∗

k (ξ(k))
and the control input̃u(k) asK∗

Nx(k).
On the other hand, it follows from (22) that

E {V ∗
k (ξ(k + 1))} − V ∗

k (ξ(k))

≤−
(

‖ξ(k)‖
2
Q + ‖K∗

N (k)x(k)‖
2
R

)

+ λωT (k)ω(k)

<− ‖ξ(k)‖
2
Q + λωT (k)ω(k).

(52)

Notice that V ∗
k (ξ(k + 1)) is a feasible solution while

V ∗
k+1(ξ(k + 1)) is an optimal solution for the time instant

k + 1, and thusV ∗
k+1(ξ(k + 1)) ≤ V ∗

k (ξ(k + 1)). According
to the optimality and the condition (52), one has

E
{

V ∗
k+1(ξ(k + 1))

}

− V ∗
k (ξ(k)) < −‖ξ(k)‖2Q + λ ‖ω(k)‖2 .

(53)
From Lemma 6, (51) and (53) guarantee the mean-square

input-to-state stability for the closed-loop system (8) with hard
constraints (6a)-(6b) under the SCP (5), and the proof is thus
complete.
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Theorem 1 indicates that, as long as the states enter into the
terminal constraint setΩ, by applying the feedback gainKN ,
the mean-square input-to-state stability can be ensured for the
closed-loop system (8) with hard constraints (6a)-(6b) under
the SCP (5).

Based on the above discussions, one can conclude the SCP-
basedN -step MPC algorithm (including both online and off-
line parts) as follows.

Algorithm 1: 1) Off-line Part:

• Step 1:Calculate the terminal constraint setΩ by solving
optimization problemOP1, meanwhile, obtain the corre-
sponding feedback gainKN .

• Step 2:Solve the optimization problemOP2 to obtain a
sequence of the ROSSs{P0,P1,P2, . . . ,PN−1}.

2) Online Part:

• Step 1:At time instantk = 0, obtain the system state
ξ(k), and set the nodes.

• Step 2:If ξ(k) ∈ PN , go to Step 4; Else if ξ(k) ∈ P0 ∪
P1 ∪ . . . ∪ PN−1, find the maximum indexM such that
ξ(k) ∈ PM\PM+1, and then go toStep 3.

• Step 3: Calculate the current control signal̃u(k) by
solving optimization problemOP5. Then, calculateu(k)
by substituting into (5) under the SCP. Setk = k+1 and
go to Step 2.

• Step 4:Feed the control inputu(k) = KNx(k) to the
plant.

Remark 5: In this paper, theN -step MPC problem is
studied for a class of discrete-time systems with persistent
bounded disturbances and hard constraints. The scheduling
of SCP is first taken into consideration to prevent the data
from collisions, under which only a certain controller node
obtains the access to the shared communication network at
each transmission instant. Sufficient conditions are provided
to guarantee the mean-square input-to-state stability of the
underlying system. It can be seen from Algorithm 1 that all
the essential factors contributing to the system complexity
have been reflected which cover 1) the transition probabilities
of the SCP; 2) the respective upper bounds of the external
disturbances, the system state and control input; and 3) the
step numberN .

VI. A N UMERICAL EXAMPLE

Consider the following linear discrete-time system:

x(k + 1) =

[

−0.5 −0.2
2.8 −0.3

]

x(k) +

[

2 6
4 1

]

u(k)

+

[

0.03
0.03

]

sin(k)

, Ax(k) +Bu(k) + Eω(k).

The transition probability matrix is denoted by

P =

[

0.45 0.55
0.7 0.3

]

.

The hard constraint bounds and weighting matrices are

given as:

ū =

[

30
30

]

, x̄ =

[

10
100

]

, R =

[

0.1 0
0 0.6

]

,

Q =









0.5 0 0 0
0 0.6 0 0
0 0 300 0
0 0 0 300









, Ψ =

[

0.1 0.2
0.2 1

]

.

The scalars are given byα∗ = 0.1, λ = 0.5, β∗ = 0.1
and λ̃ = 0.1. It is easily seen thatωT (k)ω(k) ≤ ω̄ = 1.
By solving OP1, the terminal constraint set is obtained as
Ω = {ξ|ξTY −1

N ξ ≤ 1} with

YN =









0.0310 −0.0126 0 0
−0.0126 0.2447 0 0

0 0 0.0005 0
0 0 0 0.0001









and the corresponding feedback gain is calculated as

KN =

[

−0.1116 −0.0031
0.0366 0.0378

]

.

By solving the optimization problemOP2, the obtained
sequence of ROSSs converges withε = 1×10−2 after 6 steps.
Thus, the iteration number is chosen asN = 7, and the initial
state is selected asξ(0) = [−7 8 0 0]T . The controller
node 2 is selected at the initial time instant. Fig. 2 depictsthe
switching modes of channels 1 and 2 under the SCP. Fig. 3
shows the state evolution of the system (1) under the SCP.
Clearly, the system state enters into the terminal constraint set
at the seventh step. Figs. 4 and 5 are the state response and
the control input of the addressed system, respectively. The
simulation results illustrate the effectiveness of the proposed
N -step MPC strategy.

0 5 10 15 20

Time step

channel 1

channel 2

Fig. 2. Switching modes for the channels under the SCP.

VII. C ONCLUSIONS

In this paper, we have investigated theN -step MPC prob-
lem for constrained systems subject to persistent bounded
disturbances and the SCP. Under the scheduling of SCP
characterized by a Markov chain, only one controller node
has obtained the access to the shared communication network
at each transmission instant. A set of desired controllers in
the framework ofN -step MPC has been designed to steer
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Approximating sets of ROSSs
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Fig. 3. Evolution of system states by theN -step MPC strategy.
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Fig. 4. State responses of the closed-loop system under the SCP.
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Fig. 5. Control inputs of the closed-loop system under the SCP.

the system state into the terminal constraint set withinN

steps. Sufficient conditions have been derived to guaranteethe
mean-square input-to-state stability of the addressed system.
Both off-line and online computations have been carried out
to obtain the desired control laws. In the end, a numerical
example has been given to demonstrate the usefulness of the
proposedN -step MPC strategy. In the future work, we plan to
investigate robust MPC problems for some special nonlinear

systems under communication protocols.
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