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Abstract 
The paper describes an experimental, mechanically simple, tactile sensing solution in the 

form of a sensing chair for discriminating human motion in a reaching task. This cost-

efficient technical approach was employed for the assessment of selective arm movements in 

stroke survivors. The sensing system classifies trunk motion in a seated stroke survivor during 

a goal-directed task where there is direct correlation with the level of severity of arm 

movement. The system interprets motion mechanically from coupled sensory data transients 

using artificial neural networks and shows tolerance to patients’ sitting posture and 

performance variability. The accuracy of classification was typically greater than 94% across 

three categories when applied to a group of stroke survivors of wide-ranging motor abilities. 

The mechanical simplicity, versatility of approach for use in other classes of movement, and 

potential low cost of manufacturing provides opportunity to employ the system at clinics and 

homes for assessment and training.  
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1. Introduction 

Stroke and its associated motor impairments are important health problems. Within the UK, 

152,000 new cases are reported annually, and the number of stroke survivors is currently at 

1.1 million [1]. Movements of both upper and lower extremities can be impaired by various 

degrees of severity after stroke. This can negatively affect survivors’ independence and 

quality of life and finding new therapeutic interventions and assessment techniques remain 

the foci of research investigations in this population.  

Functional movements are encouraged during rehabilitation, and following principles of 

motor learning, movement repetition, and accurate and timely feedback remain the 

cornerstone of every training session to improve function. To restore functionality, successful 

movement must be reinforced regularly at both clinic and home. The enabling solution should 

therefore be cost efficient, easy to set up, and provide feedback that can be readily understood 

and used by the user. In contrast with other research assisting repetitive motion therapy [2 - 

4], the present study provides a solution to these problems by providing a means to 

discriminate motion of the trunk, which is correlated to the severity of arm movement, during 

a reaching task, and is devised in the form of a seat using tactile information to discriminate 

motion.  

In biomechanics and motor control research, a common method of motion detection is via 

vision motion analysis systems [5, 6] and examination of the forces applied to a transducer 

during movement [7, 8].  For example, a force plate, which is frequently used in gait analysis, 

determines components of the load vector applied to the plate during walking/running, and 

position of application of the ground reaction force in the form of centre of pressure [10, 11]. 

In other applications, force and pressure are used in the precise control of machines [10], toys 

and consumer devices, and bioengineered systems such as prosthetics [11], exoskeleton 

devices [11] and surgical tools [12, 13].  

The sensing method explored in this study was in the form of a mechanically simple 

instrumented surface which replaced seat of an office chair and used to retrieve motion 

information in real-time from a sitting participant performing a reaching task. Simultaneous 
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time series data was retrieved from a few sensing positions that was mechanically coupled 

through the deformation of the surface of contact with the person. Features automatically 

identified from the coupled data transients are used to discriminate the nature or amplitude of 

motion in the task performed. The approach is often termed the ‘Distributive approach to 

tactile sensing’.  

Generally, tactile sensing is often applied in point load measurement [9-11], whereas in 

practice there is much more information to be retrieved if spatial distribution and transients of 

forces are taken into consideration. The distributive approach applied to tactile sensing has 

been explored extensively by the research team. It assumes that, for a specific task, loading 

occurs somewhere in the spatial range of a deforming structure and that events are recognized 

through the expression of a coupled set of sensing elements rather than specific values. The 

coupling of sensory transients through the deforming structure enables recognition of 

changing loading with sensitivity and without a specified location. The approach enables a 

mechanically straightforward setup to find the point of application, the nature or distribution 

of the load and loading transient. This is correlated with the event of interest. In contrast to 

sensor arrays [14] which utilise a high number of sensing elements to achieve high spatial 

resolution, the distributive approach would require only few sensing elements (3 or 4), with 

resolution of the system principally attributed to digital conversion of sensory outputs rather 

than physical separation of elements. It is applied readily where the goal is to identify or 

contrast as opposed to measure. Examples are surgical robotic tools, where tactile sensing is 

used to recognize invisible tissues and tissue structures ahead on the tool path by using the 

tissue as the coupling medium [15], endoscopes [16], catheters, earlier investigations on 

controlling robotic grippers for handling deforming mediums such as food and dough [17], 

discriminating cells [18] and in the discrimination of types of gait mentioned earlier [19].  In 

the latter three applications, the sensing medium has been an artefact, and often a flat plate to 

which low number of sensing elements have been deployed to enable robust sensing over the 

full extent of the deforming medium. For applications in discriminating human motion, the 

approach is tolerant to the build of the person and position of the person on the sensing 

medium [19 - 21].  Distributed Tactile Sensing (DTS) can therefore be ideally applied to the 

imprecise expression of multi-dimensional, variable human movement in a specified task. 

Moreover, information derived from the sensory input can be used to feedback on movement 

in real-time.  

Application of DTS for the assessment of movement in a reaching task in stroke survivors 

was the focus of the present study. As stated before, in stroke survivors, magnitude of trunk 

motion is correlated to the severity of arm movement during the reach, and therefore, the aim 

of this study was to automatically grade the impairment of the selective arm moments in 

stroke survivor based on the associated trunk motion. The approach was tolerant to the 

variable seated position, and it was further found that the relevant measurands could be 

determined using a simplified version of the method that averages sensory outputs. The 

pragmatic version presented here contributes to the setup of a cost-effective configuration. 

Anticipated, coupled features in the data were recognized using an algorithm to discriminate 

the type, extent and changes in movement. Using this information, a near real-time display 

can be provided for the user and therapist. 

 

2. Material and methods 

2.1 Sensing system and the reaching task 

For the reaching task, the sensing medium used is the seat of the office chair shown in Figure 

1, consisting a rigid steal frame with cushioned bottom seat and back support. Proximity 

sensors were used to determine the deflection of the supporting surface simultaneously. 

Sixteen sensors were placed across the seat in the experimental construction shown in Figure 

2. This distribution enabled the sensitivity of sensor placement on the seat to the performance 

achieved. Sensing elements were placed left-right symmetrically. In practice only 4 elements 



were used together in the sensing approach used. These are sensors 2, 5, 10, and 13, shown in 

Figure 2. It was found that a higher density of positions at the rear of the seat enabled 

exploration of higher sensitivity to discriminate the measurands from variations in expression 

of the motion in stroke recovery. Vishay-CNY70 IR displacement transducers were used in 

the chair. The range of the sensors used is limited to displacements of between 3mm to 16mm 

(Figure 3). 

 
Figure 1 Converted sensing chair 

 
Figure 2 Position of sensing elements in the experimental sensing chair 

 

          
Figure 3 Voltage-Displacement characteristics of IR displacement sensor. 

The reaching task (reaching to a target while sitting) is used in therapy to test the fundamental 

ability of the central nervous system to integrate multiple degrees of freedom (joints, body 

segments) in motion. In healthy individuals, arm and trunk movements are coordinated when 

Back of chair seat 

Front of chair seat 



reaching to a target placed within 90% - 100% of maximum arm reach. The trunk does not 

contribute to the movement. In reaching, the contribution of the trunk to arm movement is 

necessary beyond the singularity of maximum arm reach. The movement of the trunk starts 

before, or simultaneously, with the reaching motion, and finishes after the desired reach is 

achieved. This pattern of coordination between the arm and trunk is disrupted after stroke 

leading to trunk recruitment in executing the reach to a target placed within the reach of the 

arm. Muscle weakness, spasticity, and abnormalities in the regulation of spinal reflexes are 

amongst suggested mechanisms that likely contribute to the impaired control of movement 

after stroke. 

To discriminate trunk angles and the contribution to the reaching task, healthy subjects were 

tasked with reaching a target placed at three distinct locations beyond the arm length. Motion 

was performed using maximum contribution from the arm and different contributions from 

the trunk (minor, moderate and maximum). In order to unify the performance within the 

reaching task of these healthy volunteers, targets were placed at distinct locations defined 

based on their individual maximum arm length. This length was measured from the acromion 

to third metatarsal anatomical landmarks. Using this metric, the full length of the arm 

corresponds to 120% of this distance. Figure 4 illustrates the three discriminative conditions 

corresponding to reaching to a target placed at distances equal to: 120% of the arm length 

involving no or minimal trunk contribution (Figure 4A); 150% of the arm length involving 

moderate trunk contribution (Figure 4B); the maximum reach of the participant involving 

maximum contribution from the trunk (Figure 4C). 

 
Figure 4 Reaching task conditions involving arm contribution and different target location 

Using the sensing approach, it is possible to interrogate a variety of asymmetric behavior, 

however studies showed that for this application by simply averaging the four coupled 

sensory outputs that the final output was particularly sensitive. It is also helpful to make the 

algorithm robust to the position of the sitting. Typical sensing transients of the three 

conditions from one healthy volunteer are shown in Figure 5 respectively. The transients 

represent the deflection of the surface. For condition A (120% arm length), it can be observed 

that the sensing transient has low amplitude and, as would be expected, there is increased 

amplitude with increased reach, and consequently greater trunk contribution to the motion. In 

all three conditions, sensing transients show a down-drift characteristic (indicated in Figure 

5B) that is associated with initiation of trunk bending. In condition B and C, the peak 

amplitude of the deflection corresponds to the relaxation by the participant having reached the 

target and there is acceleration back to the initial position. In all three transients, it is also 

observed that there is an up-drift stage (indicated in Figure 5B) when the trunk is accelerating 

back to the initial position. 



 
Figure 5 Sensing transients during the reaching tasks under condition A: 120% of the arm 

length, B: 150% of the arm length, and C: the maximum reach 

 

2.2 Training of the artificial neural network 

A simulation model is introduced to generate data for an Artificial Neural Network (ANN) 

training to discriminate different reaching conditions. Such a model would provide a more 

comprehensive understanding of the behaviour of the DTS system. Furthermore, it provides 

an opportunity for developing more advanced neural networks that could be applied to a 

wider range of individuals with different anthropometric characteristics that could affect 

behaviour of DTS transients. Already, it is not unusual to train an ANN with a dataset which 

is artificially enlarged using label-preserving transformations, or training models solely on 

synthetic data, such as the ground-breaking work on text recognition in the wild [22-24]. The 

advantage of using the training model can help to improve the robustness of the dataset. This 

has been demonstrated [25, 26]. In this work, a 2-linked dynamic body model (based on 

Lagrange principle) consisting of a trunk and an arm segment was developed. The initial 

positioning of the model linked segments was approximated according to a normal sitting 

posture with a narrow trunk and straight arm pointing to the relevant knee as shown in Figure 

6. Motion of the arm segment (link2) for the three reaching conditions was defined by 

rotation of that segment around joint 2 from its initial position to its forward horizontal 

positioning. Motion of the trunk segment (link1) was defined according to the reaching 

distances based on the participant’s arm length. Therefore the simulated conditions 

corresponded to reaches involving maximum arm contribution and different levels of 

contribution from the trunk relevant to the ones performed in the real situation. 

 
Figure 6 The 2-linked segment model consisting of a trunk segment (link 1); an arm segment 

(link 2); hip joint (joint 1 – q1); shoulder joint (joint 2 – q2); and hand joint (joint 3). 
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Masses and lengths of the simulated body segments were scaled according to [27]. Inverse 

dynamics was used to calculate simulated 2-dimensional vertical forces applied to the seat 

during the reach and associated simulated DTS transients. The dynamic motion simulated by 

the system was 1.5 seconds long and included the return phase that brought the system back 

to its initial position (i.e. 0.75s for each of the forward and backward phases). For simulating 

DTS device transients, a FDM (Finite Difference Method) plate model was developed. Input 

forces to the FDM plate used in the simulations were defined as sum of two components: 1 – 

a static force of 480N magnitude (corresponding to approximately 70% of the mass of a 70 kg 

person applied to the seat of the chair while sitting); 2 – a vertical dynamic force generated by 

the 2-linked body model and discretised with a sampling rate of 50 Hz. The sequence of the 

discretised dynamic force that was applied to the simulated DTS model was subjected to the 

static uniformly distributed input force above in order to simulate the behaviour of the system 

in a quasi-static condition. The deformation characteristics of the simulated DTS device were 

approximated with that of the real DTS device by choosing a Young’s modulus of 1 GPa, 

which was approximated from the range of acrylic materials [28]. The comparison between 

the collected data and the simulated results are shown in Figure 7. 

 
Figure 7 Comparison between DTS transients of Volunteer A obtained based on real (thin) 

and simulated (thick) data: A – 120% arm length; B – 150% arm length; C – Maximum reach 

As indicated previously, simulated conditions corresponded to reaches involving maximum 

arm contribution and different levels of contribution from the trunk relevant to the ones 

performed in the real situation (Figure 4). Shapes and amplitudes of the simulated transients 

(thick lines) were similar to real ones (thin lines). The minimum and maximum amplitudes 

for both simulated and real transients are summarized in the table below. The error was 

calculated less than 4% as shown in Table 1. 

 Condition A Condition B Condition C 

Min amplitude (real) 4.27 4.17 4.06 

Min amplitude (simulation) 4.39 4.28 4.22 

Difference 2.7% 2.6% 3.8% 

Max amplitude (real) 4.35 4.83 5.5 

Max amplitude (simulation) 4.44 4.89 5.39 

Difference 2% 1.2% 2% 

Table 1 The comparison between real and simulation results 



This indicated that the generated dynamic model could provide appropriate representation of 

contact forces produced by the moving body in performing reaching tasks. Simulation 

transients of the 150% and “maximum reach” conditions, showed a decrease of the transient 

at the final stage of forward body movement (i.e. at 50% of the normalised time), and an 

increase of the transient amplitude at the initial stage of return to the initial position. The two 

stages were associated with the deceleration and acceleration of the trunk at the middle stage 

of the reaching task when the trunk stopped to move (at normalised time of 50%) and started 

to move backwards, respectively. These features were less noticeable in the transients 

obtained from real data due to the natural way of performing the reaching task in which the 

relevant deceleration and acceleration were less pronounced. Similarly, the downward drift 

associated with the reach initiation stage was noticeably less pronounced in the simulated 

transients compared with the real ones. For real data this was more noticeable due to the use 

of chair back support on which the trunk was resting prior to executing the task. Perhaps, 

when the execution of the task began, the trunk exerted vertical forces affecting the 

deformations of the distributive surface. 

 
Figure 8 The extracted points and parameters for ANN training 

It is observed that the peak to peak amplitude correlates with the amplitude of trunk bending 

in the task. Using this feature to describe trunk motion in reaching, five parameters; the 

absolute amplitudes P1, P2, P3, and the differentials d1 = P1(y) – P2(y), d2 = P3(y) – P1(y), 

shown in Figure 8 are used as the input patent to ANN. MATLAB Neural Network Toolbox 

was used for developing and training the ANN, having two-layer feed-forward architecture 

with sigmoid hidden and output neurons. The performance of ANN neural network was tested 

with 8 neurons on the hidden layer, using scaled conjugate gradient back-propagation 

learning algorithm.  

 

3. Calculation 

A clinical study was formed to verify the performance of the sensing chair when subjected to 

greater variation in presentation of the motion of the trunk and arm from the norm. A motion 

capture system (Motion Analysis, USA) was used to record the motion of participants.  

Markers were placed at the neck, shoulders, elbow, wrist, knuckle, and hips, illustrated in 

Figure 9. The data retrieved is presented as bending angles for the trunk contrasted with the 

tactile sensing system predictions from the seat of the chair.  
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Figure 9 Setup for the pilot clinical study 

A further ten healthy individuals and five chronic stroke survivors were included in this study. 

The physical relevant statistics of the volunteer participants in this study are presented in 

Table 2. The participants cover both genders and a wide range of body build in terms of 

weight (48kg to 85kg) and height (155cm to 183cm). For the healthy individuals, the target is 

located at the same position as introduced in Figure 4. The identical ANN introduced in 

previous section was tested for classification of the reaching. The stroke survivor participants 

are at differing levels of impairment for the motion of the upper limb based on Fugl-Meyer 

(FM) upper extremity test score (summarized in Table 2). The target to be reached was placed 

at different locations according the maximum reach of each participant respectively. For the 

stroke participants who can reach beyond their arm length (S2-S5), the target was placed at a 

critical boundary which is equal to their arm lengths. For the participant who could not reach 

an arm length (S1), the target was placed at the maximum reach position, measured as 63% of 

arm length. The contribution of trunk movement is identified using the same ANN introduced 

in section 3.  

Volunteer 

H - Healthy 

S - Stroke 

Gender Age Weight 

(kg) 

Height 

(cm) 

Side 

tested 

Arm 

length 

(cm) 

Max. 

reach 

(cm) 

Fugl-

Meyer 

score 

H1 Male 28 85 183 Right 71 132 N/A 

H2 Male 27 84 170 Right 67 115 N/A 

H3 Female 25 48 160 Right 59 111 N/A 

H4 Female 26 67 165 Right 65.5 121 N/A 

H5 Male 26 66 170 Left 63.5 124 N/A 

H6 Male 78 72 176 Right 68.5 118 N/A 

H7 Female 53 63 164 Right 70 122 N/A 

H8 Male 57 78 187 Right 74 133 N/A 

H9 Male 51 83 178 Right 67 125 N/A 

H10 Male 39 82 180 Right 71 129 N/A 

S1 Female 52 50 160 Right 68 43 20/60 

S2 Male 28 80 178 Left 71 127 58/60 

S3 Female 56 54 168 Left 65 120 59/60 

S4 Female 48 57 155 Left 62 106 59/60 

S5 Male 49 83 175 Right 69 98 38/60 

Table 2 Physical records of the healthy and stroke volunteers 

 



 

4. Results 

One result of a ‘Max reach’ by a healthy participant derived both from the tactile sensory 

transients and the body bending angles are contrasted in Figure 10. The result confirmed that 

the tactile sensory transient is sensitive to trunk bending motion in executing the reaching task 

(as indicated as start and end of trunk bending). It is also shown that both shoulder and elbow 

angles share similar pattern with the trunk bending angle transient, although the motion of 

these joints is completed ahead of trunk bending. 

One result from a stroke participant (S1) corresponding to a ’max reach’ is shown in Figure 

11. Both the seat sensing transient and body motion data were presented. It can be found that 

the seat sensing transient is synchronous to trunk bending as indicated at the start and end of 

trunk bending. Contrasting with the result from healthy participants, the data of shoulder and 

elbow angles illustrate the impaired arm movement associated with a hemiplegic pattern of 

the stroke participant. The DTS sensing transient is fundamentally same as the transient of 

healthy participant, as explained in section 4. 

 
Figure 10 Time normalised DTS transient, motion captured body angles of one healthy 

participant corresponding to a ‘max reach’ in the reaching task 

 

 
Figure 11 Time normalised DTS transient, motion captured body angles, of one stroke 

participant (S1) corresponding to a ‘max reach’ in the reaching task 
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Healthy Participants Averaged of 10 trials Trunk Angle (Degree) 

Condition A Condition B Condition C 

 (120%) (150%) (Max. reach) 

H1 0.4 28.4 61.4 

H2 3 34.1 52.5 

H3 1.5 22.3 48 

H4 7.7 31 48.8 

H5 2 20.6 60.4 

H6 2 36.4 54.3 

H7 8.4 34.2 60 

H8 9.9 30.2 50.9 

H9 2.1 26.8 51.8 

H10 4.1 27.6 54.5 

 Min Avg Max Min Avg Max Min Avg Max 

 0.4 4.1 9.9 20.6 29.2 36.4 48 54.3 61.4 

Table 3 Trunk angle of healthy participants for the three reaching conditions obtained from 

the 3D motion capture system 

The ANN described in section 2, developed from simulation data, was applied in the pilot 

study. To verify the results, a reference table is provided corresponding with trunk bending 

angle and the reaching conditions for healthy participants, summarized in Table 3. Condition 

A corresponds with an average trunk bending angle in the range from 0.4° to 9.9°. Condition 

B corresponds with the average angle of 29.2° (in the range of 20.6° to 36.4°).  Condition C 

corresponds with the average angle of 54.3 (in the range of 48° to 61.4°). 

Stroke 

Participants 

Fugl-Meyer 

score 

Average trunk angle 

( degree) to the 

critical boundary 

Relevant 

discrimination 

condition 

Number of correct 

classifications 

(out of 15) 

S1 20/60 21 Condition B 11 

S2 58/60 4.3 Condition A 15 

S3 59/60 4.3 Condition A 15 

S4 59/60 6 Condition A 15 

S5 38/60 30.9 Condition B 15 

AVERAGE ACCURACY 

94.7%   (71 correct classifications out of 75) 

Table 4 Results of classifications of reaching to the critical boundary with the Artificial 

Neural Network 

The accuracy of the ANN to discriminate the level of motor impairment in stroke participants 

is shown in Table 4. For participants S2, S3, and S4 of mild motor impairment (FM scores are 

above 50), the results show similarity with healthy participants (all classified as Condition A). 

For participants S1 and S5 of moderate impairment (FM scores are between 20 and 40), the 

critical boundary is classified as Condition B. The average accuracy of classifications in this 

trial is 94.7%. It is identified that the accuracy for stroke participant S1 is 73.3% (11 out of 

15), which is far below the accuracy for other participants at 100%. The FM score of stroke 

participant S1 is 20 out of 60, which is the lowest among all stroke participants. The second 

lowest score is 38 (participant S5). This suggests that to improve the performance of the 

ANN, further data will be needed for lower scored patients, and new patent inputs will need 

to be identified to deal with the complex range of movement illustrated in Figure 9. 

 

5. Discussion 

A tactile sensing scheme based on the distributive approach of mechanically coupled sensing 

elements has been implemented in a seat to investigate its application as a means to 



discriminate the classification of upper limb impairment for the stroke survivor.  In a reaching 

task it was found that reliable discrimination could be achieved using a feedforward back 

propagation ANN. Mathematical modelling was used to train the ANN. The purpose was to 

test the robustness of ANN to alterations in anthropometric data and movement variability 

which would be present in assessing larger group of participants. Using 5 fundamental 

parameters describing the coupled sensory transients, training of the neural network was 

found to be efficient, robust and reliable with accuracy of automatic classification at 94.7% 

for survivors in the range of mild to moderate impairment. The performance of the approach 

to sensing is robust, with tolerance to both the variation in motion and seated position in the 

well-defined reaching task. The mechanically simple embodiment of device described in the 

form of a chair, uses four proximity sensors and demonstrates that simple approaches are 

feasible. The chair provides structured set-up and physical support for the survivor.  

The results are encouraging. Despite its recognized limitations, the Fugl-Meyer test is widely 

used for the assessment of upper limb in stroke survivors and outcome of rehabilitation 

interventions (Singer & Garcia-Vega; 2017). Our approach resulted in similar classification of 

upper limb functionality based on the Fugl-Meyer score. However, discrimination accuracy 

for S1 was low which affected overall accuracy of the discrimination process. Fugl-Meyer 

score for S1 was 20 out of 60, which was the lowest amongst stroke participants. The second 

lowest score (S5 - 38) resulted in perfect discrimination. This suggested that to improve the 

performance of the ANN, not only further data would be needed for the low scored 

participants, but also new input patterns should be identified to train the networks which can 

also overcome some of the limitations of the Fugl-Meyer test (e.g. in identification of 

differences in the pattern of movements in those with similar score but different 

functionalities). Future experiments will examine simultaneous real-time discrimination of the 

trunk and arm motions. This is expected to be achievable and will provide the possibility of 

integration with a gaming environment suitable for the rehabilitation of stroke survivors 

(references here) and other individuals with upper limb motor impairments. Working from 

previous investigations, this is expected to be achievable and will provide for integration with 

a gaming environment and application to a wider range of stroke survivors with upper limb 

impairment. 
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