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Abstract
Localised blast loads give rise to high gradients of overpressure detrimental to structural elements as beams
and plates. This article presents an analytical study on the dynamic plastic response of beams made of a duc-
tile metallic material due to close-in pulse pressure loading. The close-in pressure load is characterised by a
spatially varying function constant over a central region and exponentially decaying beyond it. The temporal
pulse shape is assumed to take different forms. The exact static plastic collapse load was obtained for the
characteristic load using the framework of plastic limit analysis, whereby the analysis was then extended to
the dynamic case by considering the appropriate yield surface and inclusion of inertia forces. The yield sur-
faces considered were representative of pure bending, the interactions between the bending moment and
transverse shear, and bending moment and membrane force, each corresponding to a special case depending
on the geometry of the beam. A time-dependent, kinematically admissible velocity profile was assumed to
treat the dynamic formulations in interaction of each phenomenon. A study on the strain-rate sensitivity was
also presented, and existence of a critical pressure triggering the apparition of travelling plastic hinges was
hence highlighted. For blast loads of high magnitude, the expressions for normalised deflection were furn-
ished in terms of the impulsive velocity. The analytical models were validated by performing a parametric
study on the two-dimensional representative of the beam model in commercial finite element software
ABAQUS 6.14. The numerical results show a good correlation with the analytical results in each case.
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Introduction

Close-in charges, such as those of improvised explosive devices (IEDs), induce a localised
blast load which can potentially lead to structural failure, detrimental damage to critical
equipment and loss of life. Assessment of the response of protective systems to such blasts is,
therefore, a major task in the fields of aeronautics, civil, offshore and military engineering;
for which many mitigative measures have been proposed in the literature. Some measures
included the design of cost-effective mine-field clearing equipment, such as tumbleweed
minesweeper (Webster, 2013), while others have focused on investigating the impact of blast
load parameters such as load duration, standoff distance, pulse shape and impulse, by the
virtue of experimental or numerical techniques (Jacob et al., 2007; Larcher and Casadei,
2010; Yuen and Nurick, 2001, 2005). The primary structural components investigated in
these studies were beams and plates, most commonly made of steel or alloys of steel, due to
their significant post-yield deformation capacity to sustain extreme loads and absorb signifi-
cant amounts of energy.

There are experimental studies on the influence of material type, geometry and boundary
conditions on the response of the structural systems (Bonorchis and Nurick, 2007; Jacob
et al., 2004; Langdon et al., 2015; Nurick and Balden, 2010; Wierzbicki and Nurick, 1996)
to such blast loads. Other examples include the work of Karagiozova et al. (2013) on the
response of hollow beams where the deformation of the cross-section and subsequent ovali-
sation helps dissipate the kinetic energy of the impact. In the similar spirit, Chung Kim
Yuen et al. (2012) studied the V-shaped plates and deduced the angle that could optimise
the deflection of the blast wave on the element surface. The influence of the structural mem-
ber’s material was also considered.

Although such experiments provide invaluable insight into the influence of parameters
involved in the response parameters, the repetitive experimental blast tests can rapidly
become prohibitively expensive as the number of parameters involved increase. Besides,
many other parameters could influence the behaviour of a beam under localised blast,
namely, the distribution of the pressure, the transverse shear effect, membrane forces and
the strain-rate sensitivity phenomenon observed in the material. The plethora of these vari-
ables necessitates the designer to rely on the analytical methods and on the dimensionless
analyses to predict the performance of the beams without the necessity of conducting experi-
ments in every case. In fact, since the pioneering works of Jones (1990), Symonds and Yu
(1985) and Taylor (1963), other analytical models have been proposed and the scope of the
research has progressively evolved towards a more specific kind of modelling. These works
adopted the constitutive framework of limit analysis to characterise the behaviour of an ele-
ment under blast loading, which assumes a rigid-perfectly plastic behaviour. While at times
restrictive for non-monolithic elements such as sandwich beams (Fleck and Deshpande,
2004) and composites plates (Micallef, 2013), the limit analysis is pertinent to the study of
ductile materials without the loss of accuracy.

The theoretical models are, more often than not, cast in dimensionless form to corrobo-
rate with the various parameters from the literature and to aid the designer with understand-
ing the phenomenon of blast on the beams without the need to conduct the experimental
studies ab initio. Numerical models based on the finite element (FE) method also form a
well-established method for obtaining results to be validated with experiments at a later
stage. Therefore, theoretical and numerical simulations provide a platform for virtual testing
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of scenarios involving blast loading of different parameters to assess the critical scenarios
suitable to be studied further using experimentation.

While most of the available models are concerned with uniform distribution of pressure,
an alternative loading profile should be considered in the case of localised blasts to describe
the air wave generated by a short-range explosive detonation or a land-mine explosion.
Following this rationale, this article seeks to extend the previously mentioned theoretical
studies on beams to the cases including localised blast loads through implementation of a
modified loading function. Thus, the outline of this article is as follows: following this intro-
duction, a description of localised blast is presented, while the static collapse load is deter-
mined in section ‘Theoretical Method of analysis’. Considering interactive yield conditions
incorporating the effects of bending moment and transverse shear and bending moment and
membrane forces, the dynamic behaviour of simply supported and fully clamped beams are
ensued, where the influence of bending moment transcends the transverse shear and mem-
brane forces. A theoretical procedure to determine the behaviour of the beam upon the
effects of the transverse shear sliding and membrane forces is outlined in sections ‘Dynamic
plastic collapse of stocky beams’ and ‘Dynamic plastic response of thin membranes’, respec-
tively, followed by influence of the strain-rate sensitivity in the next section. The theoretical
analyses are validated against the FE models set up and run using ABAQUS in section
‘Finite Element Analyses’. Finally, the concluding remarks of this study are presented in the
last section.

Localised blast load

In most of the works of the literature, the blast load function is a truncated series of multi-
plicative representation as the product of its spatial (load shape) and temporal (pulse shape)
pressure distribution, that is, P(x, t) ¼ p(x)p�(t), where p�(t) is the dimensionless load func-
tion representing the temporal pulse shape. The spatial distribution of the blast is commonly
assumed to have a profile illustrated in Figure 1 (Bonorchis and Nurick, 2009; Karagiozova
et al., 2010; Micallef et al., 2015), representative of a uniform pressure within the central
zone of radius R0, before exponentially decaying as it spreads away from the origin of the
detonation. Thus, the loading function has a symmetric profile about the midspan of the tar-
get beam, reducing the domain of study to only one half of the beam span. The temporal
distribution of the load depends on the type of explosion, that is, detonation of high explo-
sives or deflagration/deflagration–detonation transition of flammable gas. The type and
speed of the wave that propagates through the medium during these explosions would affect
blast pressure, constituting different pulse shapes such as rectangular, triangular, exponen-
tial or sinusoidal (Fallah and Louca, 2007; Youngdahl, 1971). In this work, however, the
temporal distribution of the load is representative of a rectangular pulse as in Figure 2. The
specific case of the impulsive load, where the loading time, t, tends towards 0, will also be
discussed in the following sections.

Yield surface

The mechanism of deformation in a beam subjected to a centrally localised blast load is the
creation of one central or two symmetrical plastic hinges. Provided the elastic energy stored
in the system is small compared to the kinetic energy imparted to the structure, and the
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duration of the load is smaller than the system’s natural period of vibration, the elastic–
plastic distribution of stresses through the thickness of the cross-section and elastic stress
wave propagation may be ignored, the rigid-perfectly plastic behaviour can be assumed and
the plastic hinges may be considered as plastic joints (Hopkins and Prager, 1953; Jones,
1990; Jones and Kim, 1997; Ma et al., 2010). This assumption is the cornerstone of the con-
stitutive framework of limit analysis. The number of plastic hinges and the final transverse
displacement of the beam depend on the distribution of the pulse load. For a uniform distri-
bution of pressure, only the amplitude of the pulse can influence the nature of the response,
while for a localised blast, the deformation of the beam also depends on the load shape.

Hence, it is assumed that the beam is made of a rigid, perfectly-plastic, rate-insensitive
material and the plastic flow is controlled by a convex yield surface interactive of the bend-
ing moment M, shear force Q and membrane forces N, creating a three-dimensional yield
curve of M � N � Q. For brevity in analyses, this full interaction surface is reduced into a

Figure 1. Localised blast distribution.

Figure 2. Temporal rectangular pulse shape with load duration t = t.
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two-dimensional (2D) yield curve by ignoring the in-plane deformations which reduces the
study to considering yield curve interactive of (1) bending, (2) combined bending and trans-
verse shear and (3) combined bending and membrane forces, as illustrated in Figures 3 to 5,
with associated flow rule. The collapse bending moment, M0, the plastic collapse transverse
shear, Q0, and the collapse membrane of the beam, N0, are defined in equations (1a) to (1c).
According to the normality requirement of Drucker’s stability postulate, the state of the
strains and the normal to (each) yield surface at each point along the yield path are co-direc-
tional, say, in Figure 5, the plastic flow initiates at corner A and moves along path AB (in
the case of circumscribing square yield surface, plastic flow is at corner E) until the mem-
brane forces are fully developed (N ¼ N0 and M ¼ 0) at corner B.

In the sequel that follows, the mathematical equations are treated by assuming an appro-
priate statically and kinematically admissible velocity profile in each study.

M0 ¼
s0

�BH2

4
ð1aÞ

Q0 ¼
s0

�BH

2
ð1bÞ

N0 ¼ s0
�BH ð1cÞ

Theoretical method of analysis

Many theoretical analyses have been conducted on the response of ductile beams and plates
to a wide range of static and dynamic pressure loadings which give rise to plastic material
response. The analysis developed in some studies (Jones, 1971, 1990; Jones and Walters,
1983) uses Green’s theorem to simplify the general equation of motion for arbitrary shaped

Figure 3. Square yield surface of the beam (EFGH) in bending vs the hexagonal Tresca yield condition (––)
in bending.
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plates (and beams as a special case), leading to a set of energy equilibrium equations.
Ignoring the in-plane deformations and rotatory inertia effects, the energy equilibrium equa-
tion may be expressed asð

�A

P x, tð Þ � m€wð Þ _wd�A ¼
ð
�A

M þNwð Þ _kd�Aþ
Xn

j¼1

ð
A

M þNwð Þ _umdCmþ
Xv

u¼1

Q _wð ÞudCu ð2Þ

Figure 4. Square yield surface of the beam (EFGH) in bending vs the hexagonal Tresca yield condition (––)
interactive of transverse shear and bending moment.

Figure 5. Exact yield surface interactive of membrane and bending (parabola) vs the circumscribing yield
surface (––).
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The expression on the left-hand side gives the external work rate over the area (�A) of the
element. The first term on the right-hand side expresses the energy dissipation rate in contin-
uous velocity field; the second term on the right-hand side expresses the energy dissipated in j
discrete plastic hinges, each having a length of Cj and rotational velocity of _uj ¼ ∂ _w=∂xj. The
last term on the right-hand side expresses the energy dissipation rate due to transverse shear
force at u plastic hinges of length Cu and velocity discontinuity of ( _w)u. Equation (2) ensures
the energy conservation in the system.

In this study, a similar procedure is employed to extend the previous theoretical solutions
with consideration of the localised blast on ductile inelastic beams. In this work, we shall, as
is customary, show the differentiation with respect to time by placing a dot above the term.

Static analysis

Consider a beam of rectangular cross section B3H that is made of rigid-perfectly plastic
material and pinned at its both ends. The beam is subjected to a lateral pressure load p(x)
which is time independent. Tresca’ s yield criterion for the beam associated with the plastic
collapse of the beam states Mj j £ M0, given the maximum bending moment is defined in
equation (1a). The global equation of equilibrium for a beam subjected to a pressure P(x, t)
reduces to equations (3) and (4), where mb is the linear mass density of the beam

∂2M

∂x2
þP x, tð Þ � mb €w ¼ 0 ð3Þ

Q ¼ ∂M

∂x
ð4Þ

As the beam is loaded statically, the inertia term of equation (3) is ignored and the incipi-
ent plastic collapse (lower bound) is evaluated through direct integration of equilibrium
equation (5). Regarding the change of the loading profile at x = R0, equation (3) may be
treated in two zones, given by

∂2M

∂x2
þ p xð Þ ¼ 0 ð5Þ

d2M

dx2
¼

�p0, 0 £ x £ R0

�p0aebx, R0 £ x £ L

(
ð6Þ

The expression of bending moment along the beam is obtained through two consecutive
spatial integrations of equation (6). The constants of integration (A� D) in equation (7) are
then determined by applying the boundary conditions at M(x ¼ 0) ¼ M0, Q(x ¼ 0) ¼ 0 and
the continuity of the bending moment and shear force at x ¼ R0. The constants of integra-
tions are presented in equations (8a) to (8d)

M xð Þ ¼
� pcx2

2
þAxþB, 0 £ x £ R0

� pca

b2
ebxþCxþD, R0 £ x £ L

8><
>: ð7Þ
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A ¼ 0 ð8aÞ

B ¼ M0 ð8bÞ

C ¼ pc

a

b
ebR0 � R0

� �
ð8cÞ

D ¼ M0þ pc

a

b
ebR0

1

b
� R0

� �
þ pcR2

0

2
ð8dÞ

Invoking the boundary condition at the end of the beam (i.e. M(x ¼ L) ¼ 0) yields the
lower bound static plastic collapse pressure of equation (9), where a is defined in equation
(10) as a function of the loading parameters (a, b, R0)

pc ¼
M0

a
ð9Þ

a ¼ a

b2
ebLþ a

b
ebR0 R0 � L� 1

b

� �
þ R0L� R2

0

2

� �
ð10Þ

In a similar fashion, the upper bound collapse pressure is determined by equating the
external work rate due to imposed load on the beam with its internal energy dissipation rate
as in equation (12). Considering an axisymmetric, kinematically admissible velocity profile
over the beam span given by equation (11), the rotational velocity _u ¼ _W=L furnishes the
expression of equation (2) into equation (12) when the membrane and transverse shear forces
are ignored

_w ¼ _W
1� x

L

� �
ð11Þ

2 _uM0 ¼ 2 _W

ðR0

0

pc 1� x

L

� �
dxþ

ðL
R0

pcaebx 1� x

L

� �
dx

2
64

3
75 ð12Þ

The critical value for the static collapse pressure would thus be given as

pc ¼
M0

b
, with b ¼ a ð13Þ

Clearly, the upper and lower bound collapse pressures are identical and the static plastic
collapse of equation (13) is, therefore, exact. Moreover, it is mathematically evident that in
both cases, as a! 1 and b! 0, expression in equation (9) simplifies to pc ¼ 2M0=L2 which
is the case of uniform pressure. Similarly, with a! 0 and b! �‘, Pc ¼ 2M0=L2 that is iden-
tical to the case of a point load (Pc).

While it is physically reasonable to assume the conical shape in equation (11) for the velo-
city profile, it is mathematically evident that the expressions studied here (including the velo-
city profile) converge to the expressions for both concentrated force with b! �‘ and for
uniform load with b! 0, therefore is not unreasonable to assume the same velocity profile
for 0\b\‘, that is, the localised blast case.
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Dynamic analyses

Dynamic analyses are carried out by including the inertia term of equation (3) in the analy-
ses. We shall denote the dynamic load factor by h (equation (14)) defined as the ratio of the
dynamic pressure load and the critical static collapse pressure of equation (13). The nature
of the dynamic plastic behaviour, that is, the number of plastic hinges, their positions and
velocities, is determined by the value of this factor; in other words, while for the range of
0 £ h £ 1, no deformation would occur, and the kinematic relations of bending moment for
h . 1 give rise to two distinct cases separated by a critical value of dynamic load factor (to
be obtained in equation (22)):

(1) Case 1: h £ hcrit in which the velocity profile takes the shape of Figure 6(a).
(2) Case 2: h ‡ hcrit in which the velocity profile is represented as in Figure 6(b) with a

time-dependent plastic hinge position. The plastic hinges move inward and the pro-
file ultimately develops into the profile of Figure 6(a)

h ¼ p0

pc

ð14Þ

Case 1: h £ hcrit . The velocity profile may be assumed as in equation (11), with only one static
plastic hinge forming at either side of the beam midspan. The beam response is governed by
two distinctive phases, that is, 0 £ t £ t and t £ t £ T , where t and T are the durations of the
load and the time of permanent deformation, respectively.

In the first phase of motion, a similar procedure as in the previous section is utilised, but
with the inertia term included, and two consecutive integrations of equation (3) leads to
equation (15), with the constants A� D identical to those previously defined in equations
(8a) to (8d)

Mx ¼
� p0x2

2
þmb

x2

2
� x3

6L

� �
€W þAxþB, 0 £ x £ R0

� p0a

b2
ebxþm

x2

2
� x3

6L

� �
€W þCxþD, R0 £ x £ L

8>>><
>>>: ð15Þ

Figure 6. (a) Velocity profile of the beam in case 1; (b) velocity profile with travelling plastic hinges.
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The condition of simply supported boundaries (M(x ¼ L) ¼ 0) gives rise to the transverse
acceleration of the beam as in equation (16). At time t ¼ 0, the deformation is uniformly
zero, thus the displacement of the beam, that is, equation (17), can be evaluated by time inte-
gration of the inertia term

€W ¼ 3M0

mbL2
h� 1ð Þ ð16Þ

W1 ¼
3 h� 1ð Þ

2mbL2
M0t2 ð17Þ

In the second phase of motion, the pressure load vanishes. However, the beam contains
some residual kinetic energy, which must be dissipated before the motion ceases. Hence, the
transverse displacement continues to increase till the velocity of the beam vanishes. With the
inertia term reducing to equation (18), followed by two time integrations, the transverse dis-
placement in this phase is achieved. The constants of integration are obtained by ensuring
the kinematic admissibility of transverse displacement and transverse velocity at t ¼ t.
Subsequently, the motion terminates at time T . t when the transverse velocity vanishes.
The permanent midspan deformation corresponding to this time is determined by
equation (19)

€W ¼ �3M0

mbL2
ð18Þ

Wf ¼ 3h h� 1ð Þ M0t2

2mbL2

� �
ð19Þ

It has not yet been established whether the analytical solution violates the yield condition
at any phase of motion. Indeed, for the beam system to be statically admissible, the require-
ments of equations (20) and (21) must be satisfied. Clearly, the expression of bending
moment at midspan in equation (15) satisfies the requirement of equation (20). The require-
ment of equation (21) leads to an expression for hcrit as a function of the loading parameters
presented in equation (22). Take a ! 1, b ! 0 and R0 ! R, for example, the critical value
of dynamic load factor, hcrit ! 3, which is identical to the condition for the uniform load
derived in Jones (1990)

dM

dx
j

x¼0
¼ 0 ð20Þ

d2M

dx2
j

x¼0
£ 0 ð21Þ

h £
3

3� (L2=a)
¼ hcrit ð22Þ

Case 2: h ‡ hcrit . When the magnitude of the dynamic load factor exceeds the limiting value
(hcrit), the admissibility condition in equation (21) is violated, dictating a required modifica-
tion to the velocity profile of the previous section. It is assumed that the velocity profile at
the onset of motion in this case is governed by that of Figure 6(b), with two symmetric
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incipient plastic hinges formed at either side of the beam, each having a distance j0 from the
midspan. Hence, the central region ½�j0; j0� is controlled by the continuous plasticity where
the plastic bending moment acquires it maximum M0 while the transverse shear Q vanishes.
Throughout the motion, however, the size of this region tends to reduce because a time-
dependent plastic hinge j(t), developed in the central zone, travels inwards, that is, towards
the centre of the beam. The central incipient plastic hinges occur to ensure the rate of strain
energy equates the work done at every instant of time. With this rationale in mind, three dis-
tinguished phases are outlined in this case, as follows.

First phase of motion (0 £ t £ t). The loading conditions, mentioned in the previous part, are
maintained in this case. However, the velocity profile has been modified due to the appear-
ance of the two plastic hinges at x ¼ �j0 and x ¼ j0. Although in the initial analysis we
assumed R0 £ j0, further calculations proved that this assumption must be adopted for the
beam system in order to avoid a contradiction. Hence, the velocity profile that has been con-
sidered for this section is the one displayed in equation (23) with j0 £ R0

_w ¼

W1

:
, 0 £ x £ j0

W1

: L� x

L� j0

, j0 £ x £ R0

W1

: L� x

L� j0

, R0 £ x £ L

8>>>>><
>>>>>:

ð23Þ

Now, the integration of equation (3) gives a new distribution of M(x) along the beam as in
equation (24)

M xð Þ ¼

�p0þmb
€W1

� � x2

2
þAxþB, 0 £ x £ j0

� p0x2

2
þ mb

€W1

L� j0

x2

2
� x3

6L

� �
þCxþD, j0 £ x £ R0

� p0a

b2
ebxþ mb

€W1

L� j0

x2

2
� x3

6L

� �
þExþF, R0 £ x £ L

8>>>>>><
>>>>>>:

ð24Þ

The condition of M ¼ M0 in ½0, j0� requires that mb
€W � p0 ¼ 0, thus

W1 ¼
p0t2

2mb

ð25Þ

where W1

:
(t ¼ 0) ¼ W (t ¼ 0) ¼ 0. Enforcing the boundary conditions at x ¼ 0 and the con-

tinuity of both the shear force Q and the bending moment M at x ¼ j0 and R0, respectively,
we obtain the integration constants (A� F) as

A ¼ 0

B ¼ M0

�
ð26Þ

C ¼ p0

a

b
ebR0 � R0

� �
D ¼ M0þ p0

a

b
ebR0

1

b
� R0

� �
þ p0R2

0

2

8>><
>>: ð27aÞ
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E ¼ p0

a

b
ebR0 � R0 �

j2
0

2 L� j0ð Þ

	 


D ¼ M0þ
p0a

b
ebR0

1

b
� R0

� �
þ p0

L� j0

R2
0L

2
� R2

0j0

2
þ j3

0

6

	 

8>>><
>>>: ð27bÞ

Since the bending moment vanishes at the tip of the beam, M(x ¼ L) ¼ 0, the initial posi-
tion of the plastic hinges j0 is established as a function of h and a (and vice versa) in equa-
tion (28). Clearly, when j0 approaches zero (almost no travelling hinges), h tends towards its
value hcrit derived in equation (22)

1

h
¼ 1�

L3

3
þ j3

0

6
� Lj2

0

2

h i
a L� j0ð Þ ð28Þ

Second phase of motion (t £ t £ T2). This phase of motion occurs as the pulse load vanishes
at t ¼ t and the incipient plastic hinges replace with time-dependent plastic hinges j(t) which
now travel along the length towards the centre of the beam. We write the new moment dis-
tribution as

d2M

dx2
¼

mb
€W2, 0 £ x £ j

mb
€W2

L� x

L� j
þmb

€W2
_j

L� x

L� jð Þ2
, j £ x £ L

8<
: ð29Þ

This equation may be integrated on the ½j L� interval to yield the expression for M(x) as
in equation (30), where the integration constants in equation (31) are obtained due to
Q(x ¼ j) ¼ 0 and M(x ¼ L) ¼ 0

M xð Þ ¼ p0t _j

L� jð Þ2
Lx2

2
� x3

6L

� �
þCxþD ð30Þ

C ¼ � p0tj L� j=2ð Þ _j
L� jð Þ2

D ¼ � p0tL3 _j

3 L� jð Þ2
� CL

8>>>><
>>>>:

ð31Þ

Due to the continuity of the bending moment at the centre, M(x ¼ j) ¼ M0 in equation
(30), the expression of equation (32) can be obtained. This expression may be integrated as
in equation (33) to determine the position of the plastic hinges j(t) in equation (34)

M0 ¼ �
p0t

3
L� jð Þ _j ð32Þ

ðj
j0

L� jð Þdj ¼ �
ðt
t

3M0

p0tdt

8><
>: ð33Þ
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j2

2
� LjþLj0 �

j2
0

2
¼ 3M0 t � tð Þ

p0t
ð34Þ

Lj0 �
j2

0

2
¼ 3M0

p0t
T2 � tð Þ ð35Þ

However, the requirement M(x) ¼ M0 in the interval x 2 ½0 j� has yet to be verified.
This condition dictates m €W ¼ 0, deduced from equations (29) and (5), since the loading is
absent and the central zone moves with a constant velocity. Invoking the kinematic admissi-
bility at t ¼ t, _W2(t ¼ t) ¼ _W1(t ¼ t) and W2(t ¼ t) ¼ W1(t ¼ t), we obtain the subsequent
description of the transverse displacement at the end of the second phase as in equation
(36). This phase terminates when these hinges reach the midspan of the beam (i.e. when
j ¼ 0) at t ¼ T2, expressed by equation (35). Thus, the end time of this phase can be deter-
mined as in equation (37), by substituting the expression of j0 in equation (28) into equation
(35). The expressions of plastic hinge and its velocity are presented in Figure 7

W2 ¼
p0t

mb

t � t

2

� �
ð36Þ

T2 ¼
3a

L2
� 1

� �
p0tL2

3M0

ð37Þ

Clearly, if a! 1, b! 0 and R0! L, then T2 ! p0tL2=6M0, which is the case of the uni-
form pressure load studied in the literature (Jones, 1990).

Third phase of motion (T2 £ t £ Tf ). The plastic hinge line in the central zone is now vanished
and the beam takes the profile shape in Figure 6(a). The fundamental difference between this

Figure 7. (a) Variation of the travelling hinge (equation (34)) and (b) its velocity over time (equation (32);
for reference to the interpretation of colour in this figure legend, refer to the online version).
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case and the case of a single central plastic hinge is that, despite similar final displacement
profiles, in this case, there is a plasticised zone which is absent in the latter case. However,
as in the previous case, the reserved kinetic energy must be dissipated before the beam finally
comes to rest. Thus, the motion continues but with the inertia of the beam identical to the
previous case as in equation (18), that is, €W3 ¼ �3M0=mbL2, which is integrated to yield the
transverse velocity and displacement in equations (38) and (39) when the kinematic admissi-
bility at t ¼ T2 is considered

_W3 ¼ �
3M0

mbL2
tþ 3p0ta

mbL2
ð38Þ

W3 ¼ �
3M0

2mbL2
t2þ 3p0ta

mbL2
t � p0t2

mb

� p2
0t2L2

6mbM0

3a

L2
� 1

� �2

ð39Þ

Finally, when W3

:
¼ 0, all the energy is expended in plastic work and the beam comes to

rest. This gives Tf ¼ ht and the permanent transverse displacement as in equation (40)

Wf ¼
p2

0t2L2

mbM0

a

L2
� 1

6

� �
� p0t2

2mb

ð40Þ

The foregoing analysis for the simply supported beam can be extended to the fully
clamped beams. With the boundary conditions at the tip of the beam M(x ¼ L) ¼ �M0 in
mind, the static collapse pressure is identified as

pc ¼
2M0

a
ð41Þ

Considering this modification, the expressions for the simply supported beam can be uti-
lised for the fully clamped case, by only changing M0 into 2M0 and h with �h, with �h being
defined as �h ¼ p0=pc. Using this rationale, the expressions of the maximum final transverse
displacement would be modified to

�h £ hcrit ! Wf ¼ 3�h �h� 1ð ÞM0t2=mbL2 ð42aÞ

�h . hcrit ! Wf ¼
p2

0t2L2

2mbM0

a

L2
� 1

6

� �
� p0t2

2mb

ð42bÞ

As expected, it can be easily verified that the statement Wf fully clampedð Þ\ Wf simply supportedð Þ
holds in each loading case (h\hcrit, or h . hcrit).

Dynamic plastic collapse of stocky beams

Consider now the beam made of ductile material and rectangular cross section with depth H
and half-breadth L. It has been shown that as the thickness-to-length ratio of the beam
increases, the contribution of the transverse shear strain becomes significant, causing the
transverse shear sliding at the supports to influence the dynamic response. The yield surface
thus consists of interaction between the plastic collapse bending moment and the plastic
transverse shear force as per Figure 4, which would be given as in equation (1a) and equa-
tion (1b).

14 International Journal of Protective Structures 00(0)



Using the expressions of bending moment from the static analysis in previous section, the
static transverse shear force Qs at the tip of the beam is evaluated by equation (43). The quo-
tient QS=Q0, as in equation (44), could be related to aspect ratio of the beam as a direct mea-
sure of the beam’s geometry (i.e. ratio H=L). Provided this ratio is infinitesimal (which is
valid in most beam profiles), the static shear sliding effects do not considerably influence the
response of the beam (see equation (45)).

In a similar fashion, the shear sliding effects may be evaluated for dynamic loads, as
expressed in equations (46) to (49). Clearly, the dynamic shear sliding will be significant as
the load approaches impulsive, that is, when h! ‘ and t ! 0. This is expected because
when the pulse duration decreases, the beam loses its flexibility in bending, forcing the energy
to be absorbed through shear

Qs x ¼ Lð Þ ¼ M0

a

1

b
� aebL

b
� R0

� �
ð43Þ

Qs

Q0

¼ H

2a

1

b
� aebL

b
� R0

� �
uniform
�����!� H

L
ð44Þ

Qs=Q0j j � 1 when H=L\1 ð45Þ

Qd ¼
a

b
ebR0 � ebL
� �

� R0þ
Lþ j0

2

	 

p0 ð46Þ

Qd

Q0

¼ a

b
ebR0 � ebL
� �

� R0þ
Lþ j0

2

	 

p0Hh

2a
ð47Þ

Qd

Q0

uniform
�����! � H

2L
h 1� j0

L

� �
¼ � H

2L

ffiffiffiffiffiffi
3h

p
ð48Þ

Qd

Q0


! ‘ if h! ‘ ð49Þ

In the case of impulsive loading, the beam acquires an instantaneous velocity V0, which
must satisfy the momentum conservation of equation (50). The impulsive velocity due to the
uniform loading, given by V1 ¼ p0t=m as in equation (51), may be furnished in terms of the
impulsive velocity for the localised load V0 in equation (51). Subsequently, the theoretical
procedure for the beams subjected to localised blast is identical to the uniform load except
the new impulsive velocity V1, which could be used in lieu of the uniform impulsive velocity.
In other words, the description of the beam’s transverse displacement for the localised loads,
as given in Table 1, might be merely obtained by replacing V0 by V1 into the expressions of
the uniform load case in Jones (1990) ðt

0

Fdt ¼
ðt
0

d mbvð Þ ð50Þ

V0 ¼
p0t

mbLb
aebL � aebR0 þ bR0

� �
,

V1 ¼
p0t

mb

V1 ¼ V0

bL

aebL � aebR0 þ bR0ð Þ

8><
>: ð51Þ
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Introducing a new dimensionless number n ¼ Q0L=2M0, this ratio characterises the pro-
portions of shear and bending resistance of the beam and is only a measure of beams’ geo-
metry for prismatic sections since it reduces to n ¼ L=H . Depending on the range of n, three
cases can be distinguished as follows, where the permanent deflection in each case is outlined
in Table 1. These cases are as follows

� n £ 1, where the shear sliding effect prevails;
� 1 £ n £ 1.5, where there is a competition between the bending and shear effects;
� 1.5 £ n, where the main resistance of the beam is provided through bending effects.

Dynamic plastic response of thin membranes

It is widely accepted that, when the deflection of the beam increases to the order of its thick-
ness, the membrane forces will be induced, and these forces resist the structural deformation
and strengthen the beam’s stiffness significantly. The appearance of the membrane forces
alters the dynamic equilibrium, and the yield condition in bending, (M(x ¼ 0) ¼ M0), dis-
cussed previously, remains valid but only at the onset of motion. Subsequently, by referring
to the yield condition for simply supported beams in finite displacements (Jones, 1971; Yu

Table 1. Transverse displacement for different values of n.

Range of n Transverse displacement Velocity profile

n < 1
Wf =

mbLV
2
1

2Q0

1 < n < 1.5
Wf =

mbL
2V2

1 1 + 6 n � 1ð Þ½ �
16M0 n � 3

4

� �

1.5 < n
Wf =

mbV
2
1 L2

3M0
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and Chen, 1992), it may be assumed that the yield locus is controlled by the interaction of
bending moment and membrane in the form of a convex surface as

M

M0


þ N

N0

� �2

¼ 1 ð52Þ

The equilibrium condition can be written as equation (53), which may be solved by enfor-
cing the initial and boundary conditions. The procedure to derive the static plastic pressure is
outlined in the sequel as equations (54) to (57)

dQ

dx
þ d Ndw=dxð Þ

dx
þ p ¼ 0 ð53Þ

dN

dx
¼ 0

d2w

dx2
¼ 0

8><
>: ) M xð Þ ¼

� px2

2
þAxþB 0 £ r £ R0

� pa

b2
ebxþCxþD R0 £ r £ L

8><
>: ð54Þ

A ¼ �NW

L

B ¼ pa� NW

C ¼ p
a

b
ebR0 � R0

h i
� NW

L

D ¼ 0

8>>>>>>>><
>>>>>>>>:

ð55Þ

M x ¼ 0ð Þ ¼ pa� NW ) p0a

M0

þ NW

M0

	 

þ N

N0

� �2

¼ 1 ð56Þ

p

pc

¼ 1þ 4W 2

H2
ð57Þ

The foregoing static analysis is extended to consider the transverse inertia term in the
dynamic equilibrium equation. It should be mentioned that, when the membrane forces enter
the equation of motion, the exact theoretical solution to predict the response of the beam is
intrinsically difficult to obtain even for simple problems and some simplifications are neces-
sary to derive the state of stress at any yield points. By referring to the theoretical analyses
of Jones (1971, 2014) for the inelastic membrane, the energy equilibrium in equation (2) can
be written in a form which is resulted when ignoring the transverse shear, in-plane and rota-
tory inertia ð

A

p x, tð Þ � m€wf g _wdA ¼
Xn

j¼1

ð
lm

M þNw½ � _ujdlj ð58Þ

where m is the mass per surface area and other parameters as defined previously. The right-
hand side of the equation is the energy dissipated in n distinct plastic hinges, each of length
lm and characteristic angular velocity _u ¼ (∂ _w=dx)j. Equation (58) ensures the external work
rate equals the internal energy dissipation rate.
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It may be assumed that plastic flow is controlled by the square yield curve which circum-
scribes the exact curve given in Figure 5. Thus, M ¼ M0 and N ¼ N0 as given in equations
(1a) and (1c), respectively. Considering an axisymmetric, kinematically admissible deforma-
tion field given by _w ¼ _W (1� x=L), the right-hand side of equation (58) simplifies to
2 _uB(M0þN0W1), giving rise to equations (59) and (60), where W1 is the central transverse
deflection in the first phase of motion (i.e. 0\t £ t). Equation (60) is a second-order, non-
homogeneous linear ordinary differential equation. This equation has a general solution as
in equation (61) when satisfying the initial conditions at the onset of motion (i.e. W1 ¼ 0

and _W ¼ 0 at t ¼ 0). The subsequent expressions are obtained by adopting a similar proce-
dure to the case of infinitesimal deformations. Hence, using the kinematic admissibility at
t ¼ t, the subsequent deformation of the beam for t £ t £ T is formulated as in equation (63),
where T is the time of the completion of permanent deformation (when the beam comes to
rest). a1 ¼ mbL2=3M0 and a2 ¼ 4=H are the coefficients of the transverse acceleration and
transverse displacements, respectively, derived based on equation (60), while a2

3 ¼ a2=a1

given in equation (62)

mbL2

3M0

€W1þ
4

H
W1 ¼

p0a

M0

� 1 ð59Þ

a1
€W1þ a2W1 ¼ h� 1 ð60Þ

W1 ¼
1� hð Þ cos a3tð Þ � 1½ �

a2

ð61Þ

a2
3 ¼

12M0

mbL2H
ð62Þ

W2 ¼
h sin a3tð Þ sin a3Tð Þþ h� 1ð Þ cos a3tð Þ � 1½ � cos a3tð Þþ cos a3t cos a3t � 1

a2

ð63Þ

Wf

H
¼ 1þ 2hð Þ h� 1ð Þ cos a3tð Þ � 1ð Þ½ �

1
2 � 1

4
ð64Þ

Equation (64) gives the dimensionless final displacement of the centre of the beam. In the
case of an impulsive load, h becomes large and t becomes vanishingly small (infinitesimal),
thus h� 1;h and cos (a3t)� 1;a2

3t2=2. The permanent transverse deflection, given as
equation (65), may be cast in its dimensionless form in equation (67), where the dimension-
less kinetic energy l is defined by equation (66). Clearly, in the case of uniform loads,
R0 ! L and the expression in equation (67) simplifies to that of equation (68) when
l ¼ mbV 2

0 L2=M0H

Wf

H
¼

1þh2a2
3t2

� �1
2

4
� 1

4
ð65Þ

l ¼ mbV 2
1 L2

M0H

4a2

L4
ð66Þ

Wf

H
¼

1þ 3mbV 2
1

L2

M0H
4a2

L4

n o1
2 � 1

	 

4

ð67Þ
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Wf

H
¼

1þ 3lf g
1
2 � 1

h i
4

ð68Þ

Strain-rate dependence

In this section, a brief discussion on the influence of strain-rate sensitivity of the material is
presented. Although it has been argued that the influence of the strain-rate sensitivity in
some ductile materials, such as mild steel and aluminium, is significant even for low-impact
velocities (Jones, 2010), few works are published on the strain-rate sensitivity of the materi-
als as the equations are notoriously difficult to solve analytically.

Symonds and Jones (1972) investigated the large displacements of the impulsively loaded
beams. They also studied the influence of the material strain-rate sensitivity (visco-plasticity)
in theoretical analyses by incorporating the dynamic flow stress s00 known as Cowper–
Symonds equation as given below

n ¼ s00
s0

¼ 1þ _e
D1

� �1
q

ð69Þ

This is a phenomenological material constitutive model, thus the parameters must be
determined from the experiments. Commonly, the exponent q ¼ 5 and the base strain rate
D1 ¼ 40:4s�1 for mild steel give good estimates of the dynamic stress. This highly nonlinear
equation gives a crude estimate of the plastic flow, because the strain rate varies both spa-
tially and temporally during the deformation of the structure. However, Perrone and Bhadra
(1979) showed that in the analyses of large deflections of the beams, the maximum mem-
brane strain rate is reached when 1/2 of the kinetic energy has been dissipated, that is, when
the velocity of the beam reduces to V1=

ffiffiffi
2
p

. This would correspond to the time when the
deflection has reached 2/3 of its permanent value. Hence, by extending the expression of the
permanent displacement of the beam in large displacement theory as equation (67), the
dimensionless permanent displacement ratio Wf =H can be transformed into equation (70),
where the strain-rate coefficient n is defined as equation (71). At this stage, this is an iterative
formula, since n is a function of Wf . Therefore, by taking _e ¼ _WW=L2 and with the knowl-
edge that _e reaches maximum strain rate at _W ¼ V1=

ffiffiffi
2
p

, the large displacement assumption
must be considered (H � Wf ), to transform the original expression of the deflection into
equation (72) which casts the expression of n into the form of equation (73)

Wf

H
¼

1þ 48rV 2
1

ns0H2
a2

L2

� �1
2 � 1

	 

4

ð70Þ

n ¼ 1þ 2V1Wf

3
ffiffiffi
2
p

D1L2

	 
1
q

ð71Þ

If H � Wf

Wf ¼
V1L

2

12r

s0

a2

L4

� �1=2

ð72Þ
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n ¼ 1þ aV 2
1

3
ffiffiffi
2
p

DL3

12r

s0

� �1
2

" #1
q

ð73Þ

Scaling effects on dynamic response

The importance of deriving the dimensionless numbers of the system to avoid repetitive
experiments has already been discussed in section ‘Introduction’. In the case of blast load-
ing, the response number Rn, defined by equation (74), is often used in dimensional analysis.
Indeed, as depicted in equation (75), the expression of the transverse displacement is a linear
function of Rn. However, in the case of localised blast, both the shape (a/L2) and the ampli-
tude (p0) of the load enter in the expression of the normalised displacement. The influence of
these parameters is illustrated in Figure 8. Clearly, the normalised displacement will increase
with the increase in either the shape factor or the ratio h. The chart of Figure 8(a) was
obtained for a constant shape factor equal to 0.44, while the data displayed in Figure 8(b)
correspond to a constant ratio h of 6. In each case, the h values were previously compared
to the corresponding hcrit for the case of simply supported beam to determine the corre-
sponding analytical formula for Wf to be used (i.e. equation (19) or (40))

Rn ¼
p2

0t2

rs0H2

L

H

� �2

ð74Þ

Wf

H
¼ Rn

a

L2
1� 1

2h

� �
� 1

6

	 

ð75Þ

FE analyses

In this section, the accuracy of the analytical models is validated by corresponding FE mod-
els set up in ABAQUS 6.14�. The FE model was idealised with one-dimensional (1D) planar

Figure 8. Influence of the (a) ratio h and (b) load shape factor a=L2 on maximum deflection.
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geometry, meshed with two-noded beam elements and had elastic-perfectly plastic material
behaviour. The beam’s material properties and the dimensions are presented in Table 2. The
FE model was discretised with 200 1D linear beam elements B21 and pinned at the edges,
encompassing a total of 600 degrees-of-freedom.

The loading was generated as an analytical field and applied directly on the top of the
beam. The field was considered with the profile as in Figure 1 (with uniform distribution
over the length of R0 from the midspan and exponentially decaying beyond R0). The assumed
pulse duration and magnitude was to ensure the beam has reached the ‘residual oscillation
regime’ displayed in Figure 9. The beam was restricted to only deflect transversely and was
simply supported at the edges.

The preliminary results presented in Figures 9 to 13 considered the bending effects only.
The results of Figure 10 were used to discern the critical load ratio hcrit that triggers the appa-
rition of the travelling plastic hinges. Therefore, the two analytical expressions of Wf =L, cor-
responding to the cases h £ hcrit and h ‡ hcrit, are plotted as functions of R0/L. At constant p0,
when the radius of the central zone expands, h increases while hcrit decreases (since the load-
ing parameter a increases in equations (14) and (22)). Hence, ABAQUS results logically
approach the first case (h\hcrit) for small values of R0 and the second case for higher values.
At R0/L = 0.4, a transition in the deformation pattern occurs, which is observed in Figure
10 and corresponds to the critical load factor (i.e. the configuration where h� hcritj j ¼ 0) in
Table 3.

Table 2. FE model parameters.

Material properties Dimensions (mm) Loading

r(tonne �mm�3) 7.8531029 B 100 p0 40
E(MPa) 2.13105 H 100 b 20.01
s0(MPa) 250 2L 1000 t (s) 0.001

Figure 9. Transverse displacement at midspan (bending only).
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The numerical results of the equivalent plastic strain for the two cases of R0=L ¼ 0:4 and
R0=L ¼ 0:8 are plotted at t ¼ t in Figure 12. The peaks observed on either side of the mid-
span confirm the initial position of the plastic hinge j0. As expected, the higher the R0/L
ratio, the higher the value of j0. Furthermore, when R0/L decreases to values below 0.4, cor-
responding to the case of h £ hcrit, the peaks are no longer visible because there is only one
unique static hinge occurring at the midspan. The appearance of the incipient plastic hinges
and the position of the travelling plastic hinges at various times are illustrated in Figure 11,
appearing as region with maximum equivalent plastic strain. The equivalent plastic strain,

�ep, is the time integral of the equivalent plastic strain rate �ep

:
, where �ep

:
¼

ffiffiffiffiffiffiffiffiffiffiffi
2
3

_ep
ij _e

p
ij

q
�ep

:
¼

ffiffiffiffiffiffiffiffiffiffiffi
2
3

_ep
ij _e

p
ij

q
and _ep

ij is the plastic strain-rate tensor.

Figure 13 compares the predicted numerical and analytical values of the position of inci-
pient plastic hinges for various loading conditions. It is recognised that for all loading radii,
the length of the plastic hinge (the ordinate in Figure 13) is smaller than the abscissa, con-
firming the hypothesis j0 £ R0 made in the previous section. Clearly, both the numerical and
analytical results converge to the same value as the loading radius increases, which would
also correspond to the condition of h� hcrit. Consequently, the end time T2 predicted
numerically converges to that evaluated theoretically, as shown in Figure 14. However, the
difference between the calculated T2 and j0 and those of numerically predicted increases
when the loading is more localised at the centre, that is, when R0=L\0:5.

One reason that could account for this difference is the fact that the analytical model con-
siders the plastic hinges as points, while the peaks of plastic strain measured in ABAQUS

Figure 10. Confirmation of a turning point hcrit in beams’ response to blast loading (bending only).

Table 3. Variation of h and hcrit for different values of R0/L.

R0=L 0.05 0.15 0.275 0.4 0.6 0.8 1.00
h 3.19 4.31 5.49 6.43 7.45 7.92 8.00
hcrit ‘ ‘ 34.60 5.85 3.52 3.07 3.00
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Figure 11. Distribution of the equivalent plastic strain (�ep) at various times (depth of the beam is shown
as a visual aid): (a) t = 0:3 ms, (b) t = 1 ms, (c) t = 1:5 ms, (d) t = 2:1 ms, (e) t = 2:4 ms and (f) t = 3 ms.

Figure 12. PEEQ distribution revealing the position of the plastic hinges along the beam (bending only).
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always possess a certain width. We verify the approximate location of the plastic hinge by
recording the average coordinates where the maxima of the equivalent plastic strains ep

would occur, and plot the results in Figure 15. The results demonstrate strong correlation
when the loading distribution is uniform, nevertheless, similar to the observations in Figure
13, the difference increases to more than 20% as the loading radii decreases to less than half
the side length. In such beams, in addition to either side of the beam, an incipient maximum
of ep would occur at the centre which remains stationery. Furthermore, the side plastic
hinges do not necessarily reach the centre as the plasticity propagates through the beam and
they rest at a close distance from the midspan after time T2 (numerical results on the case of
R0=L ¼ 0:4 and R0=L ¼ 0:5 in Figure 15). This is an interesting observation that is also

Figure 13. Initial position of the plastic hinges for different values of R0/L.

Figure 14. End time of central hinge motion for different values of R0/L.
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pertinent with the case of plates and corroborates with experimental results of Jacob et al.
(2007) and Langdon et al. (2015) as the nature of localised blast loads due to the proximal
charges is perceived to be significantly different from more uniform loading types, wherein
the permanent deformation profile of locally blasted structure is described as a small dome
atop the larger dome. It should nevertheless be appreciated that the actual response of the
beam under blast is an intrinsically complex process which cannot be precisely modelled
with analytical simplifications.

The membrane forces are only involved in the behaviour of axially restrained beams. To
investigate the membrane effects numerically, an FE model was set up with pinned boundary
condition and permitted for geometric nonlinearities. Figure 16 compares the numerical

Figure 15. Variations in the length of plastic hinge j(t) in time for various loading radii.

Figure 16. Influence of the membrane effect on the beam’s transverse displacement.
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results with the analytical expressions obtained with and without the membrane effects. As
expected, the predicted results without the membrane effect overestimate the beam’s final
plastic deflection, while the analysis with membrane effects gives conservative estimates. This
conservative estimation is expected, since the results evaluated with assumed square yield
conditions M ¼ M0 and N ¼ N0 overestimate the beam’s resistance and give rise to the devia-
tion of the curve from numerical results. Similarly, there is a good correlation between the
analytical and numerical results considering the influence of the strain-rate effect in material
constitutive model as in Figure 17.

The transverse displacement and stress at loading time t and loading duration time t ¼ T

are plotted in Figure 18.
In the previous figures, the curves were mainly displayed as functions of R0. As stated pre-

viously, the dynamic load factor h reduces as R0 decreases. Evidently, provided the maxi-
mum pressure p0 is kept constant, the smaller the values of R0, the smaller the global amount
of energy transmitted to the beam. Hence, to avoid the decrease in h with R0, the analysis in
Figure 19 was conducted at constant Ic, with Ic being Youngdahl’s effective impulse defined
by equation (76). Hence, for a constant impulse, the concentrated distribution of load was
more damaging than the uniform pressure

Ic ¼
Ðtf
ti

P tð Þdt ð76Þ

Ic ¼
p0t

L
R0þ

a

b
ebL � ebR0
� �h i

ð77Þ

Conclusion

This article deals with a theoretical model within the framework of rigid plasticity to predict
the response of ductile metallic beam subjected to localised blast load, using the upper bound

Figure 17. Influence of the strain-rate effect on the beam’s transverse displacement, with D1 = 40:4s�1

and q = 5.
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Figure 18. (a, b) Distribution of the displacement at t = t and final time t = 3 ms; (c, d) stress at t = t and
final time t = 3 ms (R0=L = 0:8):

Figure 19. Influence of the load shape on deflection for a constant effective impulse Ie = 0:02 and various
values of p0.
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and lower bound theorems of limit analysis. Assuming a piecewise continuous loading func-
tion formerly studied by some researchers (Karagiozova et al., 2010; Micallef et al., 2012),
the exact static plastic collapse pressure was determined. The analysis was extended to the
dynamic case by considering Johansen’s interactive yield curves where the phenomena of
bending moments, transverse shear and membrane forces control the plastic flow. A study
on the response of strain-rate-sensitive beams to localised blasts and the influence of pulse
shape were also discussed.

In the case of bending moment dominated beams (shallow beams), the incipient velocity
profile was governed by the travelling plastic hinges in three stages of the analysis. A critical
load factor which triggers the apparition of the travelling plastic hinges was identified, lead-
ing to two different expressions for the transverse displacements. In the case of the transverse
shear and membrane effects dominated beams (deep beams and thin beams, respectively),
the transverse deformations were obtained for the impulsive blast loads by considering the
simplified interactive yield curves representing each phenomenon.

A 1D beam numerical model was set up in ABAQUS to validate the analytical results
and highlighted the different assumptions that were made in the calculations. The numerical
results confirmed the initial position of the plastic hinges to be always restrained in the cen-
tral zone of blast load, which is characterised by uniform pressure ½�R0, R0�. Furthermore,
the assumption of a simplified circumscribing yield curve used to linearise the expression of
the deflection for finite displacements was confirmed to be a slight overestimation of beam’s
actual resistance.

As a final remark, it must be mentioned that preliminary studies showed that the effect of
rotatory inertia is far less important than that of shear strain and thus the former has not
been included in the studies conducted on deep beams. Strong correlation between the results
obtained by the proposed analytical model and the FE simulations show the correctness and
accuracy of this assumption.
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Appendix 1

Notation

a loading parameter, (1)
b loading exponent (L�1)
mb mass of the beam (M)
p0 maximum overpressure (ML�1T�2)
pc static collapse pressure (ML�1T�2)
p(x) spatial part of pressure pulse load (ML�1T�2)
p�(t) temporal part of pressure pulse load (1)
q strain-rate exponent (1)
wi transverse displacement at the ith phase (L)
_wi transverse velocity at the ith phase (LT�1)
€wi transverse acceleration at the ith phase (LT�2)
wf final transverse displacement (L)
A� F integration constants (various)
�B beam width (L)
D1 strain-rate coefficient (T�1)
H thickness of the beam (L)
M0 maximum plastic bending moment (ML2T�2)
N0 maximum membrane force (MLT�2)
N plastic membrane force (MLT�2)
Q0 maximum transverse shear force (MLT�2)
R0 radius of central uniformly loaded region (L)
V1 impulsive velocity of uniform load (LT�1)
V0 central transverse displacement [L]
W impulsive velocity of localised load (LT�1)

a lower bound static collapse coefficient (L3)
b upper bound static collapse coefficient (L3)
_e strain rate (1)
j plastic hinge generalised coordinate (1)
h dynamic load factor (1)
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hcrit critical dynamic load factor (1)
_k curvature rate (T�1)
l dimensionless kinetic energy (1)
m areal density (rH), (ML�2)
r material density (ML�2)
t duration of the pulse (T)
s0 static yield stress (MLT�2)
s00 dynamic flow stress (MLT�2)
_ui rotational velocity in direction of i, (T�1)
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