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—Underlying a cancer phenotype is a specific gene regulatory network that represents the complex regulatory relationships 
between genes. However, it remains a challenge to find cancer-related gene regulatory network because of insufficient sample sizes 
and complex regulatory mechanisms in which gene is influenced by not only other genes but also other biological factors. With the 
development of high-throughput technologies and the unprecedented wealth of multi-omics data give us a new opportunity to design 
machine learning method to investigate underlying gene regulatory network. In this paper, we propose an approach, which use 
biweight midcorrelation to measure the correlation between factors and make use of nonconvex penalty based sparse regression for 
gene regulatory network inference (BMNPGRN). BMNCGRN incorporates multi-omics data (including DNA methylation and copy 
number variation) and their interactions in gene regulatory network model. The experimental results on synthetic datasets show that 
BMNPGRN outperforms popular and state-of-the-art methods (including DCGRN, ARACNE and CLR) under false positive control. 
Furthermore, we applied BMNPGRN on breast cancer (BRCA) data from The Cancer Genome Atlas database and provided gene 
regulatory network.

—biweight midcorrelation, differential correlation, nonconvex penalty, gene regulatory network, stability selection
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1 INTRODUCTION
ene regulatory network (GRN) is a biological 
process that represents the complex regulatory 

relationships between genes. Research on the structures 
and dynamics of GRNs provides an important insights 
into the mechanisms of complex diseases (e.g. breast 
cancer or brain tumors). It remains, however, a 
challenge to understand gene regulatory network 
because of complex regulatory mechanisms in which 
gene is influenced by not only other genes but also other 
biological factors such as DNA methylation (DM) and 
copy number variation (CNV) of genes. It is essential to 
research GRN using multi­omics data. Meanwhile, the 
rapid development in high­throughput sequencing 
(HTS) has led to detailed clinical records and 
heterogeneous data for more than 1000 samples of 

breast cancer.
DNA methylation, one of the best­known epigenetic 

marker, plays an important role in modifying gene 
expression level, and it is one of heritable changes in 
gene expression, which are not due to any alteration in 
the DNA sequence . DNA methylation controls gene 
expression by means of changes of DNA stability, 
chromatin structure and DNA­protein interactions. In 
addition, DNA methylation generally inhibits gene 
expression [1, 2]. However, DNA methylation­gene 
regulatory mechanism is still an unsolved problem. 
CNV is a gene of more than 1 kilo­base in size. 
Specifically, CNV is a kind of structural variation and a 
type of duplication or deletion event that affects a 
considerable number of base pairs. Many researches 
have shown that CNV is an important biological factor 
that affects gene expression. Recently, biological 
experiments have shown that GRN research that 
integrate DNA methylation data and CNV data have a 
better performance than methods which use gene 
expression data only [3­6]. 

In the beginning, experiments show that the 
expression levels of function­related genes are 
correlated [7]. Gene correlation measure methods 
were applied to gene regulatory network analysis [8]. 
One of the well­known correlation measures is the 
Pearson correlation measure [9, 10]. Meanwhile, gene 
co­expression network analysis is one of the most 
important gene regulatory network analyses. Weighted 
gene co­expression network analysis (WGCNA) is a 
representative method of the correlation­based methods 
[11]. For different characteristics of data, methods which 
based on different correlation coefficients were 
proposed. For example, mutual information­based gene 
network analysis, maximum information 
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correlation­based gene network analysis, cosine 
similarity­based gene network analysis, spearman rank 
correlation­based gene network analysis  and 
conditional mutual information­based gene network 
analysis. Compared with the gene co­expression 
network analysis, gene differential co­expression 
analysis based on correlation measure can discover tiny 
but important biomolecule changes through identifying 
subtle changes in gene expression levels from 
case­control group [12]. For example, gene regulatory 
network analysis based on GO term  and identifying 
differentially co­expression genes and links from gene 
expression microarray data (DCGL) outperforms than 
WGCNA in terms of sensitivity and specificity and real 
data sets result . However, the relationship between 
genes is still unclear due to gene interactions are 
mediated by other biological factors. Meanwhile, 
correlation measurement­based method use an 
undirected graph, which cannot explain the regulatory 
relationship between genes [7, 13, 14].  

Bayesian­based methods make it possible to infer the 
regulatory relationship of genes based on the directed 
acyclic graph (DAG) [15]. Many studies reported 
directed gene regulation graphs [16]. With the 
development of Bayesian network, dynamic Bayesian 
network was used to model time varying gene 
regulatory network. Moreover, Bayesian­based methods 
can deal with data missing problem and noise [17]. 
Bayesian­based methods can also efficiently incorporate 
prior biological knowledge such as structural 
information in the model [16]. However, those 
Bayesian­based methods are not suitable for large­scale 
biological data sets because its runtime will increase 
exponentially as the number of genes increases [18­20].

Regression­based methods decomposes the complex 
gene regulatory network problem into P (number of 
genes) regression problems. In practice, 
regression­based methods need to solve small sample 
size and high­dimensional problems, thus 
regression­based gene regulatory network inference 
models contain regularization and are sparse models. 
Regularization regression models have often adapted 
LASSO for selecting significant network­related 
biological factors (e.g. genes, DNA methylation sites, 
CNVs) [21]. Regularization regression models can 
ensure efficiency even with large­scale biological data 
sets. Meanwhile, Regularization regression models are 
high­ranking methods in the HPN­DREAM network 
inference challenge. Recently, several regression­based 
researches focus on finding gene regulatory network by 
combining heterogeneous data [22]. Experimental 
results on synthetic data and real data show that 
methods can improve the accuracy of gene regulatory 
network inference by combining a variety of biological 
factor information [23, 24].     

DCGRN (DNA methylation and CNV Gene 
Regulatory Network) is a representative method of the 
regularization regression models [22]. DCGRN 
proposed an integrative gene regulatory network 
inference method by using gene expression, DNA 

methylation and CNV [22]. Such method assumes the 
number of gene­related DNA methylation is one [25]. 
However, biological experiments have shown that 
multiple methylation sites affect one gene [26]. A 
function module formed by the interaction of multiple 
methylation sites affects gene expression. [22] have 
applied LASSO to select biological factors of gene 
regulatory network. LASSO may not be applied directly 
to multi­omics data since LASSO ignores prior 
information present in wealth of multi­omics data. In 
addition, although the LASSO achieved good results [21, 
22], L1­regularization is a convex relaxation formulation 
of L0­regularization. L1­regularization often leads to 
suboptimal solution because it is not a good 
approximation to L0­regularization. Nonconvex penalty 
functions such SCAD (Smoothly Clipped Absolute 
Deviation) [27] and MCP (Minimax Concave Penalty) 
[28] were applied to sparse problems and achieved 
better performance than traditional methods. 

In this paper, we propose an approach, which use 
Biweight Midcorrelation to measure the correlation 
between factors and make use of Nonconvex Penalty 
based sparse regression for Gene Regulatory Network 
inference (BMNPGRN). BMNPGRN integrates 
heterogeneous multi­omics data to infer gene regulatory 
network with gene expression data, DNA methylation 
data and copy number variation data. In order to infer 
gene regulatory network. Firstly, we combine biweight 
midcorrelation coefficient algorithm, which is an 
efficient algorithm for computing correlation coefficient, 
with ‘differential correlation strategy’ to learn 
associations among DNA methylation sites. Then, 
nonconvex penalty based sparse regression is used to 
find gene­related biological factors, and the parameter 
of method is determined by cross­validation. 
Meanwhile, nonconvex penalty based sparse regression 
is used under stability selection which can control false 
positives effectively [29]. Finally, BMNPGRN identifies 
gene regulatory network based on the probabilities of 
biological factors (i.e. gene, DNA methylation sites, and 
CNV). 

Our proposed approach BMNPGRN has advantages 
over existing gene regulatory network inference 
methods. Firstly, BMNPGRN can find more DNA 
methylation sites which are associated with gene 
regulatory network. Such method provide deeper 
insight into gene regulation mechanism. Secondly, 
BMNPGRN can effectively control false positives using 
stability selection strategy. Furthermore, BMNPGRN 
can more accurately find biological factors using 
nonconvex penalty based sparse regression. Finally, to 
the best of our knowledge, BMNPGRN is the first 
method which is applied to breast cancer data obtained 
by high­throughput sequencing technology.

In our experiments, we first compared the receiver 
operating characteristic (ROC) performance of 
BMNPGRN with well­known gene regulatory network 
inference methods (DCGRN, ARACNE and CLR) [22, 30, 
31] in two kinds of synthetic data sets, experiment 
results show that BMNPGRN can significantly improve 



the performance of detecting gene regulatory network 
under false positive control. The mean and variance of 
AUC values obtained from multiple experiment results 
show that the stability of BMNPGRN is better than 
state­of­the­art methods of biological network inference. 
We then applied BMNPGRN on breast cancer data from 
The Cancer Genome Atlas (TCGA) database and 
identified several cancer­related gene regulatory 
network. 
2 METHODS
Before introducing our method, we summarize the 
notations used in this article. Matrices are denoted by 
boldface uppercase, vectors are denoted by boldface 
lowercase, and scalars are denoted by lowercase letters. 
We denote the gene expression matrix by , N
represents number of samples and P represents number 
of genes, represents the j­th column of gene 
expression matrix, represents the i­th row of gene 
expression matrix, and represents the (i, j) entry of 
matrix. Meanwhile, DNA methylation matrix is denoted 
by with N samples and Q DNA methylation 
sites, and copy number variation matrix is denoted by 

with P CNVs.
We show how to discover gene regulatory network, 

next. In brief, we first present a new scheme to find 
gene­related DNA methylation sites and, then, select 
significant gene regulation­related biological factors 
(including genes, DNA methylation sites) using 
nonconvex penalty based sparse regression. In addition, 
we use nonconvex penalty based sparse regression 
under stability selection which can control false 
positives effectively.

A 

Given the datasets containing gene expression data, 
copy number variation data, and DNA methylation data, 
we use the heterogeneous multi­omics data to infer gene 
regulatory network. In general, a dataset include both 
patient and normal samples. The correlation coefficient 
of functionally related DNA methylation sites varies 
greatly from normal sample to patient sample. Based on 
the characteristics of biological data, we propose a new 
scheme to find gene­related DNA methylation sites. 
First we need to calculate the correlation coefficient 
between expression vectors of DNA methylation sites. 
Researchers have proposed many methods to measure 
the correlation coefficient between two variables. 
Pearson correlation coefficient is a representative 
method of correlation coefficient approaches [9, 10]. 
However, Pearson correlation coefficient is sensitive to 
outliers. Biweight midcorrelation is considered to be a 
good alternative to Pearson correlation coefficient since 
it is more robust to outliers. To calculate correlation 
coefficient between DNA methylation sites, we use 
biweight midcorrelation, which shall be described in the 
next section. On the basis of correlation coefficients 
from patient samples and normal samples, we adopt a 
differential correlation strategy. This strategy is similar 
to the case­control sample correlation coefficient 

measurement step followed by threshold­based 
variables selection [32­34].

In order to introduce the biweight midcorrelation 
o numeric vectors  

and , and can be 
two column vectors of DNA methylation matrix (see 
Figure 1), , are defined with as follows:

1

(2)

(3)

where and are the median of vector 
and respectively. represents the median 

absolute deviation of numeric vector. Based on and 
. The weights for and for are 

defined as follows:

4

(5)

where I is an indicator equation, for equation (5), the 
indicator equation is 1 if and 
otherwise equals to 0. The same situation occurs for 
equation (4). For equation (2) and (5), as the difference 
between and gets smaller and smaller, 
gets closer to 1. If the difference between and 

is larger than , equals to 0. The 
same situation occurs for equation (1) and equation (4). 

is a pre­defined parameter. Let us discuss pre­defined 
parameter . In practice, is chosen between 5 and 9; 
the bigger , the smaller the number of values to be 
filtered out. In this article, is set to 9. For , we 
chose the highest valid value to include all potentially 
interesting values. In addition, users can determine 
based on the data characteristics and possible 
proportion of outliers. The weight values of all outliers 
are guaranteed to be 0. Based on and , we can 
define BIMC of vector and as follows:

(6)

7

where represents the BIMC of and ... It 
should be noted that, the range of BIMC is from ­1 to 1. 
If there is a strong positive linear relationship between 



DNA methylation vectors, the value of BIMC will be 
close to 1. If there is a strong negative linear relationship 
between methylation vectors, the value of BIMC will be 
close to ­1. If there is no linear relationship or only a 
weak linear relationship between methylation vectors, 
the value of BIMC will be 0 or close to 0.

In order to explain how to use biweight 
midcorrelation to calculate the correlation coefficient of 
DNA methylation sites. Let us take DNA methylation 
matrix as an example. Example of a DNA methylation 
matrix is shown in Figure 1.

For each sample , we measure level of 
expression at each DNA methylation site, 
represents the expression level of the j-th DNA 
methylation site for the i­th sample where . 
The i­th column vector of DNA methylation matrix is
expression level of i­th DNA methylation site ( ). 
Then we can use the first and second column vectors of 
the matrix to calculate the correlation coefficient 
between and .

In this study, the absolute value of the BIMC of DNA 
methylation sites in the same function module 
approaches to be 1. The stronger the association, the 
larger the BIMC value of the DNA methylation sites. In 

order to find DNA methylation sites that are strongly
associated with a specific DNA methylation site, we use 
BIMC with ‘differential correlation strategy’, which 
shall be described in the next section.

Reasonable use of data characteristics can provide 
effective prior information. According to the existing 
relevant biological research results, the value of a 
methylation site in patient sample differs from that in 
the control sample; at the same time, the association 
between methylation sites in the patient sample differs 
from that in the control sample. In addition, DNA 
methylation sites are often located in core sequences of 
gene promoters and transcription start sites (TSS) [35], 
and they often affect the nearest gene [36]. This prior 
information helps us find important DNA methylation 
sites for specific genes. In this section, we introduce 
‘differential correlation strategy’. This strategy is used 
to find gene­related DNA methylation sites using two 
different label samples (disease label samples and 
normal label samples). This strategy is similar to the 
gene differential co­expression analysis which find 
biological pathways or gene function module through 
measuring gene correlation changes between patient 

samples and control samples [32­34]. 
Firstly, for a specific gene , we determine the 

corresponding DNA methylation site at the 
promoter or transcription start sit of the gene by 
searching relevant public database (e.g. MethDB: 
http://www.methdb.de/). Secondly, we calculate the 
BIMCs between DNA methylation site and all 

control samples, respectively.
represents BIMCs between and all other DNA 

represents BIMCs between 
and all other DNA methylation sites in the 

control samples. For the two elements of the same 
position in two vectors and (e.g.

and ), the two values are calculated from the same 
pair of DNA methylation sites. Thirdly, in order to find 
differential correlation methylation sites, we set two 
thresholds and ; vector 

contains only 0 and 1 ( 0 for 
no correlation and 1 for correlation) indicates whether 
methylation site is related to the . If absolute 
value of is less than or equal to and 
absolute value of is larger than or equal to 

, is set to 1; if is larger 
than or equal to and absolute value of 

is less than or equal to , is 
set to 1; otherwise is set to 0. 

represents the i­th DNA methylation 
site and have a strong correlation in patient 
samples but have a weak correlation in control samples 
or have a weak correlation in patient samples but have a 
strong correlation in control samples, which means i­th
methylation site and function together to affect 
expression of gene . is set to 0.3 and is set 
to 0.7. Meanwhile, for each methylation site that 
interacts with to affect gene , we calculate 
absolute value of difference between the absolute values 
of its two BIMC values (i.e. 

). Finally, we 
select DNA methylation sites based on , then 
sort methylation sites based on , and select 
high­ranking methylation sites.

BMNPGRN Model
Our proposed method BMNPGRN is used to discover a 
directed network that encodes the regulatory 
relationships over a set of genes and selected 
methylation sits, these selected methylation sites were 
obtained by applying biweight midcorrelation 
coefficient and differential correlation strategy to the 
raw data. And we focus on the impact of CNV on the 
gene which in the region of CNV. Let denotes 
gene expression matrix of samples and selected 
genes. denotes DNA methylation matrix of 

samples and DNA methylation sites, 
denotes copy number variation matrix of N samples and 

CNVs. The three data matrices are defined as 
, , and 

where are i­th column vector 
of and respectively. Gene expression vector 

Fig. 1. An example of DNA methylation matrix.



affected by biological factors is defined as follows:
(8)

where and are i­th column vector of adjacency 
matrix and respectively; is 
sub­vector of i­th column vector of adjacency matrix 

, the number of elements in the is ，the 
other elements of the i­th column vector in adjacency 
matrix are 0. is a model bias and is a 
residual. represents the regulation modes from i­th 
gene to j­th gene: positive for activation, negative for 
repression, and 0 for no regulation. In this study, we 
focus on the regulation relationship among genes, thus 
there is no self­regulation and every diagonal element 

. Meanwhile, there is no two nodes cycle (i.e. both 
and are non­zero) in BMNPGRN. In addition, it 

is assumed that a gene can be directly affected by 
methylation site belong to the gene and other DNA 
methylation sites that are highly correlated with the 
methylation site. And a gene can be directly affected by 
CNV that belong to the gene but no other CNVs. and 

represent the regulation weight value of DNA 
methylation site and CNV of i­th gene. For equation (8), 
we want to find , and that can best represent 
weights of genes, DNA methylation sites and CNVs. 
Our goal is to estimate , and that minimize 

, after the bias is removed by mean centering, 
equation (8) can be restated as follows:

(9)

where denotes L2­norm. Generally speaking,
L1­norm penalty is often used to avoid overfitting and 
accurately find genes, DNA methylation sites and CNVs 
that influence i­th gene. L1­norm penalty is applied to 
all columns of , and , then equation (9) based 
on the L1­regularization can be expressed as follows:

(10)

where and are hyper­parameters for sparsity 
regularization. Equation (10) can be rewritten as 
follows:

(11)

where

(12)

(13)
where represents expression vector of 

represent corresponding weights. 
Equation (11) is a Least Absolute Shrinkage and 
Selection Operator (LASSO) problem [21]. Nonconvex 
penalties like smoothly clipped absolute deviation 
(SCAD) and minimax concave penalty (MCP) are 
considered as worthwhile alternatives to the LASSO. We 
show how to use nonconvex penalties and coordinate 
descent algorithm to find gene related biological factors , 

next.
MCP penalty is defined on by:

(14)

for and . SCAD is defined on 

(15)

for and . The above LASSO problem (i.e. 
equation (11)) can be restated as follows:

(16)

where represents the sum of genes, selected 
DNA methylation sites and CNV.

Solving equation (16) depends on the choice of the 
tuning parameters and . This is usually 
accomplished with cross­validation strategy. However, 
if only cross­validation is used, we often obtain many 
false positives (i.e. true zero weights are non­zero in 
estimated weight vector ). In order to effectively 
control false positives and find more truly related genes 
and DNA methylation sites. We augment equation (16) 
with stability selection [29] to determine edges in gene 
regulatory network. Stability selection strategy is a 
bootstrapping­type algorithm which can effectively 
control false positives. Briefly, stability selection strategy 
works as follows: Firstly, we randomly select half (i.e.

) of the total samples for times. Secondly, for 
each selected subsamples, equation (16) is run on the 
samples. Finally, stability selection strategy select factors 
(i.e. genes, DNA methylation sites and copy number 
variation) whose weight values are non­zero for 
times, where is a user­defined parameters.

We discuss how to determine user­defined 
parameters and , next. In practices, a large 
number of experimental results show that is 
sufficient to achieve false positive control [29]. 
Meanwhile, is often chosen between 0.5 and 1; in 
theory, under certain conditions, [29] gives the 
relationship between the number of false positives and 

. When finding edges between genes, DNA 



methylation sites, copy number variation and the i­th 
genes,

(17)

where is the expected number of falsely 
detected factors (i.e. genes, DNA methylation sites and 
copy number variation) for the i­th gene. is the 
number of non­zero weights found by BMNPGRN with 

and . Equation (17) shows that the upper bound 
on the number of false positives is inversely 
proportional to . 

For the i­th gene, stability selection strategy assign 
each factor (i.e. genes, DNA methylation sites and copy 
number variation) a weight score, reflecting their 
degrees of significance. For the association between the 
i­th gene and j­th factor, the association score is 
defined by the proportion of the cases where the j­th 
factor is selected to the total number of randomly 
selected subsamples.
2.3 EVALUATION CRITERIA
We compare our method BMNPGRN with three 
methods DCGRN, ARACNE and CLR. In order to 
strictly evaluate a method on its performance as 
balanced by true positive rates (TPR) and false positive 
rates (FPR), we use receiver operating characteristic 
(ROC) curve, area under receiver operating 
characteristic (AUROC) and area under precision recall 
curve (AUPRC), which are calculated based on 
confusion matrix (Fig. 2). 

(18)

(19)

(20)

(21)

where true positive (TP), false positive (FP), true 
negative (TN), and false negative (FN) are defined in 
Figure 2. We calculate TP, FP, TN, and FN to measure 
the accuracy criteria, TPR and FPR. The performance of 
BMNPGRN are compared to other methods with ROC
curves and AUROC values and AUPRC values.

RESULTS
In this section, we first compared the performance of 
BMNPGRN with three state­of­the­art methods 
(including DCGRN, ARACNE and CLR) in two kinds of 
synthetic datasets. DCGRN is a method using LASSO 
with DNA methylation site and CNV [22], ARACNE is 
an algorithm for reverse engineering of gene regulatory 
network [30]. CLR is a context likelihood 
relatedness­based gene regulatory network inference 
algorithm [31]. We then applied BMNPGRN on breast 
cancer data from TCGA and identified several 
significant gene regulatory networks.

PERFORMANCE COMPARISON ON SYNTHETIC 

In this section, the BMNPGRN algorithm was tested in 
terms of different aspects, and the section is organized 
as follows.

First, in order to demonstrate the superiority of 
BMNPGRN over three state­of­the­art methods 
(including DCGRN, ARACNE and CLR) in naive 
synthetic dataset used by three state­of­the­art methods, 
a naive experiment is designed to compare BMNPGRN 
with three methods.

Second, the performance of the BMNPGRN 
algorithm is compared with three methods (i.e. DCGRN, 
ARACNE and CLR) in a more practical synthetic 
dataset which contains relevant factors (i.e. associated 
genes and associated DNA methylation sites). 

NAIVE SYNTHETIC
In this section, we compare the performance of the 
BMNPGRN with three methods (including DCGRN, 
ARACNE and CLR) in naive synthetic dataset used by 
three state­of­the­art methods. In this kind of dataset, it 
is assumed that the i­th gene is only affected by DNA 
methylation site which belong to the i­th gene, and 
biological factors are independent of each other. First we 
introduce this naive synthetic random networks. We 
followed the synthetic dataset generation method of [22].
P represents the number of genes and is set to 30, 40, 
and 50. matrix is initialized to zero matrix, 
then elements of are randomly selected avoiding any 
cycle. The parameter represents the number of 
inbound edges per gene on average. The larger the 
parameter , the more complex the network. The 
weight value is uniformly distributed over 
or . Meanwhile, the adjacency matrix and
are initialized to zero matrix, then diagonal elements 
( and ) are randomly selected. The parameter 
represents the percentage of nodes that are regulated by 
DNA methylation sites and copy number variation. For 
example, if P and are 30 and 0.2 respectively, then it 
means six ( ) DNA methylation sites and copy 
number variations regulate corresponding genes (i.e. six 
diagonal elements of and are non­zero). The 
selected weight value is uniformly distributed over 

or , and selected is set to 1. from 
uniform distribution . is randomly set as ­2, 
­1, 0, 1, or 2 with the probabilities 0.01, 0.22, 0.55, 0.2 and 
0.02 respectively. The design gene expression matrix Fig. 2. Confusion matrix used to evaluate the GRN inference 

method.



can be generated by calculating 
, where each element of is 

generated from zero­mean Gaussian distribution.
ERFORMANCE EVALUAITIO

SYNTHETIC DATASETS
We compare our method BMNPGRN with three 
methods DCGRN, ARACNE and CLR. Given data , 

and , , and are inferred, and then they are 
compared to the true edges of , and , and 
calculating TPR and FPR. For the naive synthetic dataset, 
we generated two sets of datasets based on different 
parameter combinations. The parameters of first set of 
naive synthetic datasets (FNSD) are: 

, , and . 
The parameters of second set of naive synthetic datasets 
(SNSD) are: , ,
and . For BMNPGRN, we used two different 
penalty functions MCP and SCAD, and set , 

or . The ROC comparison results for 
the two sets of datasets are shown in Figure 3 and 
Figure 4 respectively. The AUROC (Area Under 
Receiver Operating Characteristic) and AUPRC (Area 
Under Precision Recall Curve) results for the two sets of 
datasets are shown in Table S1 and Table S2 respectively. 
Experimental results show that BMNPGRN 
outperforms other methods in naive synthetic dataset. 

In this section, we compare our method BMNPGRN 
with three methods DCGRN, ARACNE and CLR in a 
complex synthetic datasets. , , , and are 
initialized in the same way as in naive synthetic dataset. 
We describe how to generate and , next. First, we 
randomly selected DNA methylation sites which 
located in core sequences of gene promoters and 
transcription start sites (TSS). Second, generating 
groups based on these DNA methylation sites. The 
number of DNA methylation sites in group is randomly 
selected from 2, 3, and 4. Third, we used popular 
value­based co­correlation network method to generate 
co­correlation expression vectors of [12]. The 

Fig. 3. ROCs of BMNPGRN with DCGRN, ARACNE and CLR: 
=100, , (top left), =200, , (top 

right), =300, , (bottom left), =400, ,
(bottom right). For BMNPGRN, we show the results with 

two settings for 0.6, 0.8 and two penalty functions. 

Fig. 4. ROCs of BMNPGRN with DCGRN, ARACNE and CLR: 
=100, , (top left), =200, , (top 

right), =300, , (bottom left), =400, ,
(bottom right). For BMNPGRN, we show the results with 

two settings for 0.6, 0.8 and two penalty functions. Fig. 7. ROCs of BMNPGRN with DCGRN, ARACNE and CLR: 
=100, , (top left), =200, , (top 

right), =300, , (bottom left), =400, ,
(bottom right). For BMNPGRN, we show the results with 

two settings for 0.6, 0.8 and two penalty functions. 

Fig. 5. ROCs of BMNPGRN with DCGRN, ARACNE and CLR: 
=100, , (top left), =200, , (top 

right), =300, , (bottom left), =400, ,
(bottom right). For BMNPGRN, we show the results with 

two settings for 0.6, 0.8 and two penalty functions. 

Fig. 6. ROCs of BMNPGRN with DCGRN, ARACNE and CLR: 
=100, , (top left), =200, , (top 

right), =300, , (bottom left), =400, ,
(bottom right). For BMNPGRN, we show the results with 

two settings for 0.6, 0.8 and two penalty functions. 



correlation coefficient is calculated by the Pearson 
correlation formula. It should be noted that the sample 
contains both patient and normal samples. Based on this 
information, co­correlation networks were constructed. 
Finally, from uniform distribution . The 
diagonal elements of are 0. The selected weight value 

is uniformly distributed over or . 
For the complex synthetic dataset, we generated two 

sets of datasets based on different parameter 
combinations. The parameters of first set of complex 
synthetic datasets (FCSD) are: , 

, and . The parameters of second 
set of complex synthetic datasets (SCSD) are: 

, , and . 
For BMNPGRN, we used two different penalty 
functions MCP and SCAD, and set , 
or . The ROC comparison results for the two 
sets of datasets are shown in Figure 5 and Figure 6 
respectively. The AUROC and AUPRC results for the 
two sets of datasets are shown in Table S3 and Table S4
respectively. Experimental results show that BMNPGRN 
outperforms other methods in naive synthetic dataset.
3.2 PERFORMANCE EVALUATION OF BMNPGRN 

In order to verify the effect of the stability selection 
strategy [29], we generated one set of datasets based on 
different parameter combinations. The parameters of 
third set of complex synthetic datasets (TCSD) are: 

, , , and . 
This dataset is used to compare the performance of 
BMNPGRN and BMNPGRN without stability selection. 
The ROC comparison results of the datasets are shown 
in Figure 7.

Breast cancer is the most common malignancy in United 
States women, accounting for >40,000 deaths each year. 
Discovering cancer­related biological pathway 
information is one of the key challenges of breast cancer 
research. Identifying comprehensive gene regulatory 
network can provide an important resource for studying 
the underlying mechanisms of breast cancer.

We applied BMNPGRN to a dataset, containing 
measurement profiles of gene expression, DNA 
methylation, and copy number variation. Gene 

expression profiles was measured experimentally using 
the Illumina HiSeq 2000 RNA Sequencing platform, 
downloaded from TCGA. DNA methylation profiles 
were obtained from the ratios of background­corrected 
methylated and un­methylated probe intensities 
measured by Illumina Infinium 
HumanMethylation450k BeadArrays, also downloaded 
from TCGA. The gene­level CNVs estimated using the 
GISTIC2 method. There are 760 case and 80 control 
samples measured from breast tissue. There are 24776 
genes and corresponding CNVs in gene expression data 
and copy number variation data. There are 485578 DNA 
methylation sites in data.

Figure 8 is the integrated network with 14 genes 
that have high absolute value of coefficient. There are 
two DNA methylation sites that are connected to gene 
KCNK12. Also, there is a CNV that is connected to the 
gene SLC2A3. Several studies have been reported 
KCNK12 is associated with breast cancer but there is no 
report about associations with DNA methylation sites of 
the gene KCNK12 [37­39]. Several studies have been 
reported IPO8 is associated with breast cancer but there 
is no report about associations with DNA methylation 
sites of the gene IPO8 [40, 41]. It should be noted that 
CNP11949 is first discovered related to breast cancer [42, 
43]. Several studies have been reported BRCA1 and 
TP53 are associated with breast cancer [44].
Experimental results provide genes that need attention 
in future work. TNF and CTNNB1 play an important 
role in gene regulatory network.

In this paper, we propose an approach, which use 
biweight midcorrelation to measure the correlation 
between factors and make use of Nonconvex Penalty 
based sparse regression for Gene Regulatory Network 
inference (BMNPGRN). BMNPGRN incorporates 
multi­omics data (including DNA methylation and copy 
number variation) and their interactions in gene 
regulatory network model. The experimental results on 
synthetic datasets show that BMNPGRN outperforms 
popular and state­of­the­art methods (including 
DCGRN, ARACNE and CLR) under false positive 
control. 
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