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ABSTRACT The Internet of things (IoT) comprises a large number of sensor nodes with limited processing, 

storage, and battery abilities. The IoT has to operate in a constrained environment with specific challenges, 

such as hardware malfunctions, battery depletion, and harsh wireless environmental conditions. Deploying a 

reliable IoT is especially important for critical IoT applications such as smart cities. To ensure the quality of 

service requirements of these applications, the IoT needs to provide specific reliability guarantees. There are 

several strategies to ensure energy efficient and reliable transport of data in the IoT. However, there is an 

inherent conflict between power consumption and reliability: an increase in reliability usually leads to an 

increase in power consumption as in traditional retransmission-based reliability. To solve this problem, we 

present four scenarios of optimization using a mixed integer linear programming (MILP) model. First, we 

used a standby routes selection scheme (SBRS) to replace node failures and achieve reliability with minimum 

traffic power consumption. Second, we used a desired reliability level scheme (DRLS), which minimizes the 

traffic power consumption of IoT devices while considering the desired reliability level as a key factor. We 

also propose a reliability-based sub-channel scheme (RBS) to avoid overhead on busy reliable routes while 

mitigating interference. Moreover, we present a reliability-based data compression scheme (RBDS) to 

overcome capacity limits of the links. The results show that our proposed schemes reduce the negative effect 

between reliability and total traffic power consumption with average power saving of 57% in SBRS and 60% 

in RBDS compared to DRLS. 

INDEX TERMS  Cloud based IoT, data compression, energy efficiency, interference cancellation, Internet 

of things (IoT), reliability, traffic power consumption. 

I. INTRODUCTION 

The emergent Internet of Things (IoT) is thought to be the next 

generation of the Internet, in which billions of things are 

interconnected [1]. Example of these things are sensors, 

actuators, mobile phones and cars that are communicating 

with each other to perform service objective. Cloud computing 

is a new computing paradigm that enables users to elastically 

utilize a shared pool of cloud resources (e.g., processors, 

storage, applications, services) in an on-demand fashion. 

Recently, driven by the potential of complementing the 

ubiquitous data-gathering abilities of IoT devices with the 

powerful data storage and data processing capabilities of the 

cloud, the integration of the cloud and the IoT is attracting 

rising attention from both academia and industry [2]. 

Particularly, the data (alarm, security, climate, and 

entertainment) gathered by sensors are transmitted first to the 

gateway, which then transmits the received sensory data to the 

cloud. Eventually, the cloud stores, analyzes, processes, and 

transmits the sensed data to the users on demand. During the 

entire data transmission process, if the data transmission from 

the sensor nodes to the cloud is not succeeded, data are 

retransmitted until they are successfully delivered. 

For this cloud based IoT prototype, the IoT acts as the data 

source for the cloud while users are the data requesters for the 

cloud. The users can have access to the needed sensory data 

from the cloud, whenever and wherever there is network 

connection. In these potential applications of cloud based IoT 

integration, such as smart buildings of smart cities [3, 4], a 

number of them require the IoT to reliably offer sensory data 

to the cloud, based on the requests of the users [5]. In general, 

sensors’ limited battery power will be depleted by performing 

data sensing, processing, and transmission after a specific 

period of time, as they are usually supplied with non-

rechargeable batteries and their replacement may also be 

unpractical [6]. A number of approaches have been evolved to 

optimize the power consumption (expanding the network 

lifetime) and improve the reliability (rising the probability of 

a packet being delivered) of IoT. However, approaches to 

reduce the power consumption contrarily impact the reliability 

of the network. An example of this approach is applied when 
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part of the network works, whilst other parts sleep. This 

approach is excellent for power consumption, but not for 

reliability [7] because part of the network may be inaccessible 

due to an IoT node sleeping. Another example of this approach 

makes multiple paths between a specific IoT node and the 

gateway. In contrast to the previous example, this method is 

excellent for reliability, but not for power consumption 

because it will use more than one route, which means more 

IoT nodes to transmit the same packet. Therefore, it is 

important to assess the IoT reliability considering the traffic 

power consumption. In this work, we have considered that IoT 

network can fail in two points: links due to traffic congestion 

or interference and sensor nodes due to diminishing their 

energy. This paper proposes four models for achieving two 

goals, the energy efficiency of cloud based IoT considering the 

reliability level. For instance, to reduce total traffic power 

consumption, we used the following approaches: first, each 

model has the objective of minimization the total transmitted 

power by selecting the IoT device with lowest energy per bit 

and lowest idle power. Second, the usage of the data 

compression technique which reduces the amount of data to 

be transmitted. Thirdly, interference cancellation will reduce 

the retransmission of the data that has been lost due to 

interference. To achieve reliability objective, we proposed two 

approaches, first, is to select the reliable links that have a 99% 

reliability level. Second, is to select a standby link as an 

alternative to the link fail. Finally, each proposed scheme has 

two optimization objectives: energy efficiency and reliability.  

The main contributions of this paper are summarized as 

follows: 

• Virtualize cloud based IoT network using MILP model. 

• Minimize the total traffic power of the cloud based IoT 

network through MILP optimization model. 

• Minimize interference. 

• Achieving reliability in the cloud based IoT network. 

• Distributing traffic through the gateways to avoid traffic 

congestion to the cloud in IoT network. 

• Handle more traffic demands by using data compression 

technique. 

• Investigate jointly the issues regarding energy efficiency and 

reliability from the viewpoint of cloud based IoT integration. 

This paper proposed four models related to the evaluation of 

cloud based IoT network: it considers the mote energy level as 

the main factor of failures of WSN nodes; it uses the routing 

algorithm to define the paths between different WSN regions 

and the sink node; and it automatically generates reliability 

models considering the aforementioned elements. 

This paper further proposes four schemes consisting of a 

standby routes selection scheme (SBRS), a desired reliability 

level scheme (DRLS), a reliability-based sub-channel scheme 

(RBS), and a reliability-based data compression scheme 

(RBDS), aimed at improving the reliability of IoT networks 

and reducing total transmitted power. Specifically, a SBRS is 

used to selectively choose standby routes to overcome node 

failure problems and reduce transmission power. In addition, 

a DRLS is used when a specific reliability level is needed to 

guarantee the link reliability while minimizing transmission 

power. Furthermore, a RBS uses sub-channels to mitigate 

interference and reduce overhead on links that are utilized by 

several IoT devices due to its high reliability. Finally, an 

RBDS uses a sequential lossless entropy compression (S-

LEC) data compression algorithm to overcome the capacity 

limits of the links and reduce transmission power. 

In the rest of this paper, Section II introduces the related 

work, in Section III we describe the background to this 

research, and Section IV presents the cloud based IoT 

integration system model. Section V introduces the network 

optimization model of cloud based IoT. Section VI presents 

our model objectives by introducing SBRS, DRLS, RBS and 

RBDS and Section VII evaluates the model results. In Section 

VIII we state our conclusions of the research. 

 
II. RELATED WORK  

Many published papers consider the problem of reliability 

considering energy efficiency. In paper [8], they consider the 

problem of deploying a wireless sensor network (WSN) that 

meets a specified minimum level of reliability during its 

mission time at a minimum network deployment cost. An ant 

colony optimization algorithm coupled with a local search 

heuristic was proposed as a solution to minimize the internal 

interference, bandwidth usage and energy consumption 

throughout the network’s mission time. In paper [9], the effect 

of the number of network coding packets on the energy 

consumption with the joint network-channel coding (JNCC) 

model was analysed and an adaptive dynamic energy 

consumption (ADEC) optimization scheme was proposed. In 

paper [10], a framework called the improved software defined 

WSN (improved SD-WSN) is introduced. They address the 

network management, coverage and node failure issues. A 

novel WSN-mobile cloud computing integration scheme is 

proposed in [11], which involves two parts: 1) a time and 

priority-based selective data transmission, and 2) a priority-

based sleep scheduling algorithm for WSN to save energy 

consumption so it can collect and transmit data in a more 

reliable way. Paper [12], presents a transmission estimation 

codesign framework to achieve energy-efficient and reliable 

transmission for high-accuracy state estimation of industrial 

IoT systems. They present a similar fog-cloud hierarchical 

network architecture that reduces the computing burden of 

each sensor and the energy consumption of the overall system 

by integrating group-based communication and data 

aggregation technologies. In [13], to perform energy-efficient 

secure uplink transmission for the wireless powered IoT, the 

authors consider three relay selection schemes with the best 

power beacons (PBs) selected by the source, where one 

energy-constrained source and multiple energy-constrained 

relays harvest energy from multiple PBs in the presence of a 

passive eavesdropper. For each scheme, the exact closed-form 

expressions of power outage probability, secrecy outage 
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probability, and secure energy efficiency are derived over the 

Rayleigh fading channel. 

There is also much research into reliability in cloud based 

IoT: Paper [14], prototypes a smart energy IoT-cloud service. 

To facilitate reliable service operation, they adopted Docker 

Swarm-based container orchestration and verified its 

possibility of sustaining the service operation. Paper [11] 

combines IoT and the cloud to save energy consumption as 

mentioned earlier. 

Research concerning reliability with existing interference 

include: In this work [15], they present a quality of service 

(QoS) framework for arbitrary hybrid wired/wireless 

networks, which guarantee that the delay bound and the target 

reliability of each application are provided. Additionally, they 

propose a reliability-based scheduler for WSN which is able 

to achieve target reliability in the presence of dynamic 

interference. In paper [8], they consider the problem of WSN 

reliability while minimizing internal interference throughout 

the network’s mission time.  

Paper [7], presents a WSN reliability model that is 

generated automatically from the WSN topology, information 

about adopted routing algorithms, and the mote battery level. 

They considered WSN failure links and sensor nodes. Paper 

[16] proposes three different methods implemented 

sequentially to detect and isolate three common sensor faults 

in a WSN-based wind turbine condition monitoring system: 

short fault, constant fault, and noise fault. Paper  [17] proposes 

a wavelet- neural-network-based link quality estimation 

algorithm that closes the gap between the QoS requirements 

of smart grids and the features of radio links by estimating the 

probability-guaranteed limits on the packet reception ratio. In  

[18], the researchers model the failure behaviour of a mesh 

storage area network (SAN) system using a dynamic fault tree 

in the case of perfect links, or a network graph in the case of 

imperfect links. A binary decision diagram based method was 

then applied to assess the resultant fault tree model to generate 

reliability of the mesh SAN. In [19], they propose a reliable 

and lightweight trust mechanism for IoT edge devices based 

on multi-source feedback information fusion. They present a 

lightweight trust evaluating mechanism for cooperations of 

IoT edge devices, which is suitable for largescale IoT edge 

computing because it facilitates low-overhead trust computing 

algorithms. They adopted a feedback information fusion 

algorithm based on objective information entropy theory, 

which can overcome the limitations of traditional trust 

schemes. Paper [20], proposes a static time-slotted channel 

hopping (TSCH) scheduling scheme that permits all nodes in 

the TSCH network to transmit or receive frames in any slot. 

TSCH is a promising technology for the construction of 

reliable large-scale smart metering networks. To reduce 

network control message collisions, they defined the broadcast 

slots and unicast slots individually. In paper [21], a high 

flexible and reliable IoT platform was used that integrates fog 

computing and cloud computing (IFCIoT). Using IFCIoT, 

disaster monitoring systems and other application systems can 

be constructed. To deal with the impact of a failed component 

before performing certain special tasks, they propose a 

protocol that can achieve agreement among all fault free nodes 

with minimal rounds of message exchange and tolerate the 

maximum number of dormant and malicious faulty 

components in the IFCIoT platform. 

Many research investigate the problem of energy efficiency 

of IoT. In paper [22], a low power, energy efficient 

communication protocol is proposed. The described protocol 

optimizes the way in which information is gathered from the 

environment, and packed and transmitted over long distances 

with minimum energy. It is particularly designed for energy 

constrained sensor modules which rely on energy harvesting. 

The collected information is transmitted in two different 

packet types named Teach-in and Data telegrams, 

respectively. Paper [23], proposes an efficient interactive 

model that is designed for sensor-cloud integration to enable 

the sensor-cloud to simultaneously provide sensing services 

on-demand to multiple applications with various latency 

requirements. The complicated functions were offloaded to 

the cloud, and only the light-weight processes were executed 

at resource constrained sensor nodes. They designed an 

aggregation mechanism for the sensor-cloud to aggregate the 

application requirements so that the workloads that are 

requested for sensors were minimized, thereby saving energy. 

The MILP-based literature related to our study include: 

Paper [24], proposes a framework for an energy efficient cloud 

computing platform for Internet of things (IoT) along with a 

passive optical access network. The design is evaluated using 

MILP model, the energy efficiency is achieved by optimizing 

the placement and number of the mini clouds and Virtual 

Machines and utilizing energy efficient routes. This paper [1], 

had investigated the energy efficiency of service embedding 

framework in IoT networks of a smart city scenario by using 

the MILP. They developed a framework for optimizing the 

selection of IoT nodes and routes in the IoT network to meet 

the demands of the business process virtual nodes and links 

with the goal of minimizing the IoT system total power 

consumption. In [25], they investigate the use of fog 

computing for health monitoring applications. They 

developed a MILP model to optimise the placement of 

processing servers to process and analyse the 

Electrocardiogram signal from patients at the network edge. 

The locations of the processing servers are optimized so that 

the energy consumption of both the processing and 

networking equipment are minimized. In this paper [26], a 

real-time optimal energy management scheme is presented in 

a smart home by considering various demand response 

strategies such as the adoption of dynamic electricity price, 

and the installation of photovoltaic module and energy storage 

system. Both load scheduling problem of home appliances and 

energy dispatch problem of utility grid are formulated using 

MILP and solved under a single optimization framework, 

aiming to minimize the electricity cost required to satisfy the 

scheduled load demands. This research [27], implemented an 
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automated real-time Heating Ventilation and Air Conditioning 

(HVAC) control system on top of an IoT framework, based on 

a thermal comfort optimization problem, demand response 

and majority user feedback. They use artificial neural 

networks to predict the thermal parameters of room based on 

historic time-series data. Where they optimize the HVAC 

control problem using MILP for an optimal energy efficiency- 

user comfort trade off. In this paper [28], They present a 

decentralized platform for implementing energy exchange 

mechanisms in a microgrid setting. Their proposed solution 

permits prosumers to trade energy without threatening their 

privacy or the safety of the system. Their hybrid MILP solver 

approach entitles the platform to clear offers securely and 

efficiently. an energy-centered and QoS-aware services 

selection approach (EQSA) for IoT environments is presented 

in [29]. Formulated and solved as a multi-objective 

optimization problem, this approach allows minimizing 

energy consumption to ensure a high availability of composite 

services while satisfying the user's QoS requirements. The 

proposed selection approach composed of preselecting the 

services offering the QoS level needed for user's satisfaction 

using a lexicographic optimization strategy and QoS 

constraints relaxation technique. By introducing the concept 

of relative dominance relation in the sense of Pareto, the 

preselected candidate services are then compared to select the 

best service. The relative dominance of a candidate service 

depends on its energy profile and QoS attributes, and user's 

preferences. The EQSA algorithm is scalable in time 

performance for large-scale IoT environments composed of 

thousands of distributed entities and is able to find very close-

to-optimal solutions (about 98%).  

However, these models did not assess the total traffic power 

consumption and reliability for the entire cloud based IoT 

network. Additionally, they do not consider network capacity 

and link overload as factors that affect the sensor node 

reliability and energy efficiency. In summary, none of the 

existing solutions provide a reliability model for cloud based 

IoT networks, or are able to provide a target reliability in the 

presence of dynamic interference without causing a higher 

level of power consumption. 

 
III. BACKGROUND  

 
A. Reliability of IoT network 

In cloud based IoT integration, one aspect of IoT reliability 

relates to whether the IoT is constantly able to collect and 

transmit the sensed data to the cloud successfully. We discuss 

some critical issues regarding the reliability of IoT. 

1) IoT device energy depletion  

Energy depletion in IoT device is caused by the circuit power 

consumption and the power consumption of the transmitted 

signal, where the radio module is the main component that 

causes battery depletion of sensor nodes [30]. Principally, the 

sensors adjacent to the gateway serve as intermediate nodes 

that forward the packets to the gateway on behalf of the source 

nodes. Therefore, they may diminish their energy faster than 

other sensors and produce gaps in the IoT where data can’t be 

gathered for the cloud or result in IoT network disconnection. 

2) Sensed data transmission failure 

The data transmissions from one IoT device to another and to 

the cloud may face failures or losses, owing to several factors; 

for example, traffic congestion or interference [31], [32]. In 

such cases, if the IoT devices do not perform data 

retransmission, then the cloud cannot obtain the sensory data 

coming from the IoT network.  

3) Storage space limitation for sensed data  

Data storage is a serious issue for IoT, considering a large 

volume of gathered data needs to be archived for future 

information retrieval [33]. When there is not enough storage 

space to store the sensed data, then the cloud cannot attain any 

sensory data, even if the IoT devices have enough residual 

energy to collect and transmit data and the transmission to the 

cloud is successful. In this paper, we assume that sensors have 

sufficient storage space. 

 

B. Overview of S-LEC data compression 

Power consumption is a critical problem affecting the lifetime 

of IoT networks. A number of techniques have been proposed 

to solve this issue, one of the proposed techniques is the data 

compression scheme. It is used to reduce transmitted data over 

wireless channels. The format of the compressed data requires 

few bits, which leads to a minimization in the required inter-

node communication, which is the main power consumer in 

the IoT. This will considerably lessen the energy demand, thus 

extending the lifetime of an IoT device.  

One of the existing data compression approaches in IoT is 

sequential lossless entropy compression (S-LEC) [34]. S-LEC 

is capable of achieving highly robust compression 

performance for different sensor data streams simultaneously, 

and it enables energy-efficient employment and execution on 

resource-constrained WSN nodes in a relatively simple 

manner. 

IV. Cloud based IoT integration system model 

A cloud based IoT integration system is modelled in this paper 

based on the following assumptions: 

We have a real-world scenario of smart buildings in a smart 

city with multiple user applications [35], [4], with the user 

application performing in the cloud and requesting data 

collection. The data are gathered by sensors in IoT devices, 

with the IoT devices having particular characteristics 

(functionality and location) and being connected to the cloud 

via the gateways. Physically, in the sensing and control layer, 

there are enormous numbers of IoT devices. Each IoT device 

is sending its collected data to the cloud continuously. The 

cloud has the computation abilities to analyze these data to 

satisfy the data requests from each corresponding user. 
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FIGURE 1.  Architecture of cloud based IoT network 

 

Cloud computing offers a platform as a service, through 

which the users can run, manage, and develop their 

applications. An example of data request is an application 

demand for real-time information; for instance, temperature or 

humidity, in a specified area in the city. The application layer 

will pass this request to the cloud. Then the cloud needs to 

process this and send the results to the application layer. To do 

so, the cloud will require these data from the IoT devices 

located in the involved area and then gather information via 

the gateways connected to it. The proposed architecture in our 

model is demonstrated in Fig.1 and it consists of three layers 

[36]: 

1- Sensing and control layer: This comprises the low-powered 

sensors, actuators, and gateways. It collects the data and sends 

them for further analysis.  

2- Information processing layer: The sensed data are in 

unprocessed form and in enormous volumes. To extract 

interpretable information from these data, they have to be 

stored, processed, and analyzed. These tasks are accomplished 

in this layer, which uses the cloud computing platform to 

afford storage and analytical data tools. It encompasses a data 

analytics centre, storage media, and different physical 

machines.  

3- Application layer: This is in charge of the visualisation of 

the processed data and presents them in an inventive and 

simply readable form to the users. It introduces services to the 

end users by providing an interface for applications such as 

smart buildings.  

The data is transmitted to the cloud through a gateway, 

which is due to the physical world (IoT network) being 

connected to the cloud and they having different protocols for 

communication. 

V. Network optimization model of cloud based IoT 

Our mathematical model is developed by means of mixed 

integer linear programming (MILP), which is mathematical 

programming that can perform optimization of a function of 

many variables subject to constraints. As clarified above, we 

have supposed a cloud based IoT system. The IoT devices are 

spread in one physical grid, in smart buildings, which 

comprises 45 IoT devices connected by a physical network 

distributed across three buildings, as shown in Fig. 2. 
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FIGURE 2. Physical network of a smart city 

 

 

 
 
FIGURE 3. Topology of one of the smart buildings in the proposed IoT 
network of a smart city 

 

We have supposed that these smart buildings (B) each 

have four floors (F), each with number of IoT devices. The 

nodes in the first and second floor of each building serves as 

a gateway to collect data to send to the cloud, as explained 

in Fig. 3. Each IoT device is linked to their neighbors through 

a physical plan. Each IoT device has the capability to 
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process, store, and function. It is assumed that each IoT 

device includes two of the following functions: alarm, 

security, climate, and/or entertainment. The star topology of 

the IoT network is shown in Fig. 3, in which neighbored 

sensor nodes can communicate with each other and relay 

messages between them through the network [37].  

VI. Objectives of the proposed model 

The objective is to integrate reliability with minimum total 

traffic power consumption in the cloud based IoT network 

with less negative effect to each other. This is done through 

SBRS, DRLS, RBS and RBDS. We accomplish this by 

creating a parameter 𝐿𝐾𝐺
𝑑 which indicates the traffic between 

the IoT device (d) and the cloud (G). The routing concept in 

this paper is based on the flow conservation constraint for the 

traffic flows in the physical network by Tuker [38]. It is also 

explained in our previous work [39]. We formed a binary 

variable  𝑅𝑖  𝑗  
𝑑     𝐺 , which represents the route between the IoT 

device (d) and the cloud through the repeaters nodes (i, j) 

where j is neighbor of i. 

 

∀ d , i ∈ D, d ≠ G                            

 

{∑ 𝑅𝑖  𝑗  
𝑑  𝐺

𝑗∈𝑁𝐵[𝑖] - ∑ 𝑅𝑗  𝑖  
𝑑  𝐺

𝑗∈𝑁𝐵[𝑖] }= LK𝐺
𝑑                                 (1) 

 

{∑ 𝑅𝑖  𝑗  
𝑑  𝐺

𝑗∈𝑁𝐵[𝑖] - ∑ 𝑅𝑗  𝑖  
𝑑  𝐺

𝑗∈𝑁𝐵[𝑖]  }  = 0                                  (2) 

 

{∑ 𝑅𝑖  𝑗 
𝑑  𝐺

𝑗∈𝑁𝐵[𝑖] - ∑ 𝑅𝑗  𝑖  
𝑑 𝐺

𝑗∈𝑁𝐵[𝑖] }= − LK𝐺
𝑑                              (3) 

 

It states that if the traffic flowing into a node is the same 

traffic flowing out of a node, then the node is not a source or 

a destination. If the traffic out of the node minus the traffic 

entering the node equals the demand originating in the node, 

then it is a source. If the traffic that enters it minus the traffic 

that leaves it equals the demand destined to it (or the negative 

of the demand originating in the node as in (3)), then it is a 

destination. We briefly highlight lists of sets, parameters and 

variables defined in the MILP model in Tables I – III. 

 

A. Standby Routes Selection Scheme (SBRS): The scope of 

this scheme is to optimally determine standby routers to be 

activated, in order to replace the node failures. The below 

constraint indicates that there are two routes, and one of them 

is standby: 

 

∀ d ,i , ∈ D, j∈ 𝑁𝐵[𝑖] ,i≠j, d≠G 

 

𝑅1 𝑖  𝑗    
  𝑑  𝐺+ 𝑅2 𝑖  𝑗    

  𝑑  𝐺 ≤ 1                                                                         (4) 

 

where, 𝑅1 𝑖  𝑗    
  𝑑  𝐺 , 𝑅2 𝑖  𝑗    

  𝑑  𝐺 : binary variables indicate route 

between IoT device and cloud through the repeater nodes 

( i, j ), where j is the neighbour of i.  

 

The total traffic power consumption for this scenario is 

evaluated from the following constraint: 

 

Objective: minimize 
∑ 𝐸𝑖𝑖∈𝐷 ∗ 𝑁𝑇𝑖

 + ∑ 𝑇1𝑖∈𝐷𝑖 ∗ 𝐷𝐿𝑖 + ∑ 𝑇2𝑖∈𝐷𝑖 ∗ 𝐷𝐿𝑖 = 𝑇𝑃𝑆          (5) 

 

where, 

𝑇1𝑖: Binary variable indicates the ON IoT devices for the first 

route. 

𝑇2𝑖: Binary variable indicates the ON IoT devices for the 

second route. 

 

B. Optimize the selection of reliable links (DRLS): To ensure 

the route reliability, we proposed the following restriction 

that specifies the desired reliability level of each link for the 

whole path, which is 99% for this case: 

 
TABLE I 

List of the sets used in the MILP model 

Set Description 

D Set of devices. 

sch Set of sub-channels. 

A Set of data compression 

algorithms. 

𝑁𝐵[𝑖] Set of the neighbors of the IoT 

device i. 

 

TABLE II 

List of the parameters used in the MILP model 

Parameter Description 

𝐿𝐾𝐺
𝑑 Traffic demands in kbps between sensor and cloud. 

𝐷𝐿𝑖 The idle power of each node in mW. 

 

𝑅𝐿𝑗
𝑖  The reliability of each link in the IoT network 

𝐸𝑖 Energy per bit for each node in mW/kbps. 

 

𝑇𝐵 𝐺
𝑖  The data traffic between the node and cloud before 

compression. 

𝐶𝑃𝑎 The power consumed for compressing the data using the 
compression algorithm a. 

𝐶𝑅𝑎 Compression ratio of the specific data compression 

algorithm a. 

 
TABLE III 

List of the variables used in the MILP model 

Variable Description 

𝑅𝑖  𝑗  
𝑑     𝐺 Full path route in physical plan between node and cloud 

through the repeaters nodes (i, j) where j is neighbor of i, IoT 

devices. 

𝑇𝑖  Indicator for the ON IoT devices. 

𝑅𝐶 𝑖  𝑗  𝑐  
𝑑     𝐺  The route between the IoT device d and the cloud G through 

the repeater nodes (i, j), where j is the neighbour of i, through 
c sub-channel. 

𝑇𝑐  
𝑖  Indicator for the ON IoT device and the corresponding 

selected sub-channel c. 

𝐶𝐼𝑎
𝑖  Indicator for the IoT device and its corresponding 

compression algorithm. 

𝑇𝑃𝑆 The total traffic power consumption of the network for 

SBRS model in mW. 

𝑇𝑃 The total traffic power consumption of the network for 
DRLS model in mW. 

𝑆𝑇𝐺
𝑖  The data traffic between the sensor node (i) and the cloud 

(G) after compression. 

𝑇𝑃𝐶 The total traffic power consumption in the network for 
RBDS model in mW. 

𝑁𝑇𝑖
  Variable indicate node traffic in kbps. 
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∀ d ,i ∈  D, j∈ 𝑁𝐵[𝑖]  ,i≠j, d≠G 

 

𝑅𝑖  𝑗   
  𝑑  𝐺 ∗ 𝑅𝐿𝑗

𝑖 ≥  𝑅𝑖  𝑗    
  𝑑  𝐺 *99%                                                         (6) 

 

The following restriction evaluates the total traffic power in 

the network for this scenario. 

 

Objective: minimize 

 
∑ 𝐸𝑖𝑖∈𝐷 ∗ 𝑁𝑇𝑖

 + ∑ 𝑇𝑖∈𝐷𝑖 ∗ 𝐷𝐿𝑖 = 𝑇𝑃                                      (7) 

 

C. Reliability-based sub-channel scheme (RBS): In order to 

avoid overhead on busy reliable routes, we supposed that 

there are multiple channels for transmission, as illustrated in 

Table IV, which also reduce interference. To cancel the 

interference, we have adopted two constraints: First, there is 

only one traffic path between the device and the cloud. 

 

∀ d∈ D, ∀ i ∈ D, d ≠ G  

 
∑ ∑ 𝑅𝐶 𝑖  𝑗  𝑐  

𝑑  𝐺
𝑐∈𝑠𝑐ℎ𝑗∈𝑁𝐵[𝑖] , 𝑖≠𝑗 

≤ 1                                            (8) 

 

Second, each IoT device must use only one sub-channel in 

each transmission or else zero, to avoid transmission 

repetition. 

 

∀ i ∈ D 

 
∑  𝑇𝑐   

𝑖
𝑐∈𝑠𝑐ℎ ≤ 1                                                                      (9) 

 

Note that, these constraints are applicable for all other 

schemes to assure cancelling the interference. 

 

D. Reliability-based data compression scheme (RBDS): To 

overcome the capacity limit of the links’ Wi-Fi standard (10 

Mbps for IEEE.802.11b), we used S-LEC data compression 

to reduce the size of transmitted data, which led to further 

reducing the transmission power. S-LEC has a 72.07% 

compression ratio with 2.897 mW/byte of compression 

power [34] and the desired link reliability is supposed to be 

99%. The following constraint states the data traffic between 

the sensor node (i) and the cloud (G) after compression: 

 

∀  i ∈ 𝐷 

 
∑ 𝑇𝐵 𝐺

𝑖
𝑎∈𝐴 ∗ 𝐶𝑅𝑎 ∗ 𝐶𝐼𝑎

𝑖 = 𝑆𝑇𝐺
𝑖                                                (10) 

 

 

The following restriction evaluates the total traffic power 

consumption in the network for the RBDS scheme: 

 

Objective: minimize 

 
∑ ∑ 𝐶𝐼𝑎

𝑖
𝑎∈𝐴𝑖∈𝐷 ∗ 𝐶𝑃𝑎 + ∑ 𝐸𝑖𝑖∈𝐷 ∗ 𝑆𝑇𝐺

𝑖 + ∑ 𝑇𝑖∈𝐷𝑖 ∗ 𝐷𝐿𝑖 = 𝑇𝑃𝐶 (11) 

                                                                                                                     

 

VII. EVALUATION RESULTS 

To evaluate the performance of the above approaches, we 

compared the total traffic power consumption of the cloud 

based IoT network for our proposed schemes. The radio 

communication of the sensor nodes is Wi-Fi, based on 2.4 

GHz frequency, and has an IEEE 802.11 standard. The 

values of the energy per bit (𝐸𝑖) and the idle power (𝐼𝐷𝐿𝐸𝑖) 
are real ones taken from different energy efficient IoT 

devices data sheets, namely: SPWF04SA, SPWF04SC 

datasheet [40], ESP32 datasheet [41], ESP8266EX datasheet 

[42], ZG2100M/ZG2101M Wi-Fi® Module data Sheet [43], 

CC3100 SimpleLink™ Wi-Fi® Network Processor, 

Internet-of-Things Solution for MCU Applications [44], 

CC3200MOD SimpleLink™ Wi-Fi® and the Internet-of-

Things Module Solution, a Single-Chip Wireless MCU [45].  

We assume that there is a smart city containing three smart 

buildings and each have 15 nodes distributed over four 

floors. Each building has three gateways. Each gateway 

gathers and transmits data to the cloud, enabling it to reply 

to data requests from each corresponding application user. 

The detailed evaluation parameters are summarized in Table 

IV. 
TABLE IV 

Evaluation Parameters  
Parameter Parameter value 

Number of buildings 3 

Number of sensor nodes per 

building 
15 

Number of gateways per building 3 

Number of floors per building  4 

Number of sub-channels 2 

𝑅𝐿𝑗
𝑖  90, 99 

Capacity limit 10 Mbps 

Radio communication standard 802.11 

 

 

  
 
FIGURE 4. Total traffic power consumption in mW of a different number of 
devices when the link bit rate is 500 kbps for each node:  a) energy efficient 
network optimization with DRLS =99% and b) energy efficient network 
optimization with SBRS. 

 

The results in Fig. 4 display the total traffic power 

consumption of the cloud based IoT network in mW for 

DRLS and SBRS systems, versus different percentages of 

the number of IoT devices that generate 500 kbps of bit rate 
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for each device. From Fig. 4, we can observe that there is an 

average power saving of 57% in the SBRS model compared 

to DRLS, which is due to selecting the minimum number of 

hops in SBRS, while DRLS has to select the 99% reliable 

routes for transmission, which could include a higher number 

of hops. Note that both models select efficient energy per bit 

and idle power IoT devices to minimize power. 

 

 
 
FIGURE 5. Total traffic power consumption in mW of a different number 
of devices when the link bit rate is 1000 kbps for each node:  a) energy 
efficient network optimization with DRLS =99% and b) energy efficient 
network optimization with SBRS. 

 

The results in Fig. 5 show the total traffic power 

consumption of the cloud based IoT network in mW for 

DRLS and SBRS systems, versus the different number of 

IoT devices that generate 1000 kbps of bit rate for each 

device. The results show that the network is fully working in 

DRLS as long as the traffic load is below 60%. However, 

when it rises above this, the network goes down due to packet 

drop out as a result of capacity limit. However, in SBRS, the 

network still works even when fully loaded because there are 

no overhead over links. 

The total traffic power consumption of the cloud bas IoT 

network in mW for DRLS and RBDS systems, versus 

different number of IoT devices that generate 500 kbps of bit 

rate for each device is shown in Fig. 6. Where, for both 

models the desired link reliability supposed to be 99%. The 

results display that there is an average power saving of 60% 

in the RBDS model compared to DRLS, which is due to 

RBDS reduces the traffic of each node by compressing the 

data, in addition to selecting efficient energy per bit and idle 

power IoT devices for both schemes.  

Fig. 7 displays the total traffic power consumption of the 

IoT network in mW for DRLS and RBDS systems, versus 

the same number of IoT devices which generate 1000 kbps 

of bit rate for each device. From Fig. 7, we can observe that 

for the RBDS model, the network still works when fully 

loaded with a link bit rate of 1000 kbps, even when the link 

reliability is 99%, due to minimizing the traffic using an 

S-LEC data compression scheme. 

 

 
 
FIGURE 6. Total traffic power consumption of cloud based IoT network 
when the link bit rate is 500 kbps for each node: a) energy efficient 
network optimization with DRLS =99%; b) energy efficient network 
optimization with RBDS. 

 

 
 
FIGURE 7. Total traffic power consumption of cloud based IoT network 
when the link bit rate is 1000 kbps for each node: a) energy efficient 
network optimization with DRLS =99%; b) energy efficient network 
optimization with RBDS. 

 

The evaluation results with respect to multi-channel usage 

to avoid link overhead and reduce interference are shown in 

Fig. 8. It shows an example of the interference avoidance and 

displays IoT device distribution in one time slot for two sub-

channels. It is clear that there is isolation between the nodes 

since they are served in different sub-channels. 

The results in Fig. 9 show the total traffic power 

consumption of the cloud based IoT network in mW for two 

scenarios of DRLS, first with single channel and second with 

two channels when reliability level constrained to 99%, 

versus the different number of IoT devices that generate 

1000 kbps of bit rate for each device. The results show that 

the network is fully working in DRLS with a single channel 

provided that the traffic load is below 60%. Nevertheless, 

when it increases above this, the network goes down owing 

to packet drop out due to capacity limitation. However, when 

the number of channels increased to two, the network still 

works whilst fully loaded since there is no overhead over 
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links as a result of distributing the traffic load over the two 

channels available for each IoT device. 

 

 
 
FIGURE 8. Interference avoidance by distribution of nodes on sub-
channels 

 

 
 
FIGURE 9. Total traffic power consumption in mW of a different number 
of IoT devices when the link bit rate is 1000 kbps for each node:  a) energy 
efficient network optimization for DRLS =99% with a single channel and 
b) energy efficient network optimization for DRLS =99% with two 
channels. 

VIII. CONCLUSION 

In this paper, we have presented an MILP optimization 

model to address dual goals by achieving reliability and 

reducing total traffic power consumption in the cloud based 

IoT network. We proposed four optimization schemes: 1- 

DRLS that restricts the link reliability to certain percentage. 

2- SBRS, which optimizes the selection of standby routes for 

node failures.3- RBDS that uses an S-LEC data compression 

scheme to overcome capacity limits and further reduce traffic 

power consumption, and 4- RBS that uses multiple channels 

to mitigate interference and avoid link overhead. The results 

indicate that the proposed schemes can significantly reduce 

energy consumption with an average power saving of 57% 

for SBRS and 60% for RBDS, compared to DRLS. 
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